1932

Abstract

The cytoskeleton comprises networks of different biopolymers, which serve various cellular functions. To accomplish these tasks, their mechanical properties are of particular importance. Understanding them requires detailed knowledge of the mechanical properties of the individual filaments that make up these networks, in particular, microtubules, actin filaments, and intermediate filaments. Far from being homogeneous beams, cytoskeletal filaments have complex mechanical properties, which are directly related to the specific structural arrangement of their subunits. They are also versatile, as the filaments’ mechanics and biochemistry are tightly coupled, and their properties can vary with the cellular context. In this review, we summarize decades of research on cytoskeletal filament mechanics, highlighting their most salient features and discussing recent insights from this active field of research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030722-120914
2025-05-06
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/biophys/54/1/annurev-biophys-030722-120914.html?itemId=/content/journals/10.1146/annurev-biophys-030722-120914&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Aher A, Rai D, Schaedel L, Gaillard J, John K, et al. 2020.. CLASP mediates microtubule repair by restricting lattice damage and regulating tubulin incorporation. . Curr. Biol. 30:(11):217583.e6
    [Crossref] [Google Scholar]
  2. 2.
    Akamatsu M, Vasan R, Serwas D, Ferrin MA, Rangamani P, Drubin DG. 2020.. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. . eLife 9::e49840
    [Crossref] [Google Scholar]
  3. 3.
    Andreu-Carbó M, Fernandes S, Velluz M-C, Kruse K, Aumeier C. 2022.. Motor usage imprints microtubule stability along the shaft. . Dev. Cell 57:(1):518.e8
    [Crossref] [Google Scholar]
  4. 4.
    Asbury CL, Gestaut DR, Powers AF, Franck AD, Davis TN. 2006.. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. . PNAS 103:(26):987378
    [Crossref] [Google Scholar]
  5. 5.
    Aumeier C, Schaedel L, Gaillard J, John K, Blanchoin L, Théry M. 2016.. Self-repair promotes microtubule rescue. . Nat. Cell Biol. 18:(10):105464
    [Crossref] [Google Scholar]
  6. 6.
    Baek K, Liu X, Ferron F, Shu S, Korn ED, Dominguez R. 2008.. Modulation of actin structure and function by phosphorylation of Tyr-53 and profilin binding. . PNAS 105:(33):1174853
    [Crossref] [Google Scholar]
  7. 7.
    Bai J, Wioland H, Advedissian T, Cuvelier F, Romet-Lemonne G, Echard A. 2020.. Actin reduction by MsrB2 is a key component of the cytokinetic abscission checkpoint and prevents tetraploidy. . PNAS 117:(8):416979
    [Crossref] [Google Scholar]
  8. 8.
    Banerjee S, Gardel ML, Schwarz US. 2020.. The actin cytoskeleton as an active adaptive material. . Annu. Rev. Condens. Matter Phys. 11::42139
    [Crossref] [Google Scholar]
  9. 9.
    Bibeau JP, Pandit NG, Gray S, Shatery Nejad N, Sindelar CV, et al. 2023.. Twist response of actin filaments. . PNAS 120:(4):e2208536120
    [Crossref] [Google Scholar]
  10. 10.
    Blanchoin L, Pollard TD. 1999.. Mechanism of interaction of Acanthamoeba actophorin (ADF/cofilin) with actin filaments. . J. Biol. Chem. 274:(22):1553846
    [Crossref] [Google Scholar]
  11. 11.
    Block J, Schroeder V, Pawelzyk P, Willenbacher N, Köster S. 2015.. Physical properties of cytoplasmic intermediate filaments. . Biochim. Biophys. Acta Mol. Cell Res. 1853:(11):305364
    [Crossref] [Google Scholar]
  12. 12.
    Block J, Witt H, Candelli A, Danes JC, Peterman EJG, et al. 2018.. Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. . Sci. Adv. 4:(6):eaat1161
    [Crossref] [Google Scholar]
  13. 13.
    Block J, Witt H, Candelli A, Peterman EJG, Wuite GJL, et al. 2017.. Nonlinear loading-rate-dependent force response of individual vimentin intermediate filaments to applied strain. . Phys. Rev. Lett. 118:(4):048101
    [Crossref] [Google Scholar]
  14. 14.
    Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, et al. 2006.. Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. . J. Cell Biol. 173:(5):73341
    [Crossref] [Google Scholar]
  15. 15.
    Brangwynne CP, MacKintosh FC, Weitz DA. 2007.. Force fluctuations and polymerization dynamics of intracellular microtubules. . PNAS 104:(41):1612833
    [Crossref] [Google Scholar]
  16. 16.
    Budaitis BG, Badieyan S, Yue Y, Blasius TL, Reinemann DN, et al. 2022.. A kinesin-1 variant reveals motor-induced microtubule damage in cells. . Curr. Biol. 32:(11):241629.e6
    [Crossref] [Google Scholar]
  17. 17.
    Carl AG, Reynolds MJ, Gurel PS, Phua DYZ, Sun X, et al. 2024.. Myosin forces elicit an F-actin structural landscape that mediates mechanosensitive protein recognition. . bioRxiv 2024.08.15.608188. https://doi.org/10.1101/2024.08.15.608188
  18. 18.
    Ceron RH, Carman PJ, Rebowski G, Boczkowska M, Heuckeroth RO, Dominguez R. 2022.. A solution to the long-standing problem of actin expression and purification. . PNAS 119:(41):e2209150119
    [Crossref] [Google Scholar]
  19. 19.
    Chaaban S, Brouhard GJ. 2017.. A microtubule bestiary: structural diversity in tubulin polymers. . Mol. Biol. Cell 28:(22):292431
    [Crossref] [Google Scholar]
  20. 20.
    Chaudhuri O, Parekh SH, Fletcher DA. 2007.. Reversible stress softening of actin networks. . Nature 445:(7125):29598
    [Crossref] [Google Scholar]
  21. 21.
    Chavali SS, Chou SZ, Cao W, Pollard TD, De La Cruz EM, Sindelar CV. 2024.. Cryo-EM structures reveal how phosphate release from Arp3 weakens actin filament branches formed by Arp2/3 complex. . Nat. Commun. 15:(1):2059
    [Crossref] [Google Scholar]
  22. 22.
    Chen S, Markovich T, MacKintosh FC. 2023.. Motor-free contractility of active biopolymer networks. . Phys. Rev. E 108:(4):044405
    [Crossref] [Google Scholar]
  23. 23.
    Chikireddy J, Lengagne L, Le Borgne R, Durieu C, Wioland H, et al. 2024.. Fascin-induced bundling protects actin filaments from disassembly by cofilin. . J. Cell Biol. 223:(6):e202312106
    [Crossref] [Google Scholar]
  24. 24.
    Chou SZ, Pollard TD. 2019.. Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. . PNAS 116:(10):426574
    [Crossref] [Google Scholar]
  25. 25.
    Chrétien D, Fuller SD. 2000.. Microtubules switch occasionally into unfavorable configurations during elongation. . J. Mol. Biol. 298:(4):66376
    [Crossref] [Google Scholar]
  26. 26.
    Chrétien D, Metoz F, Verde F, Karsenti E, Wade R. 1992.. Lattice defects in microtubules: Protofilament numbers vary within individual microtubules. . J. Cell Biol. 117:(5):103140
    [Crossref] [Google Scholar]
  27. 27.
    Çolakoğlu G, Brown A. 2009.. Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing. . J. Cell Biol. 185:(5):76977
    [Crossref] [Google Scholar]
  28. 28.
    Coombes C, Yamamoto A, McClellan M, Reid TA, Plooster M, et al. 2016.. Mechanism of microtubule lumen entry for the α-tubulin acetyltransferase enzyme αTAT1. . PNAS 113:(46):E717684
    [Crossref] [Google Scholar]
  29. 29.
    Cuveillier C, Delaroche J, Seggio M, Gory-Fauré S, Bosc C, et al. 2020.. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. . Sci. Adv. 6:(14):eaaz4344
    [Crossref] [Google Scholar]
  30. 30.
    De La Cruz EM, Roland J, McCullough BR, Blanchoin L, Martiel J-L. 2010.. Origin of twist-bend coupling in actin filaments. . Biophys. J. 99:(6):185260
    [Crossref] [Google Scholar]
  31. 31.
    Dogterom M, Yurke B. 1997.. Measurement of the force-velocity relation for growing microtubules. . Science 278:(5339):85660
    [Crossref] [Google Scholar]
  32. 32.
    Drazic A, Aksnes H, Marie M, Boczkowska M, Varland S, et al. 2018.. NAA80 is actin's N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility. . PNAS 115:(17):4399404
    [Crossref] [Google Scholar]
  33. 33.
    Duque J, Bonfanti A, Fouchard J, Baldauf L, Azenha SR, et al. 2024.. Rupture strength of living cell monolayers. . Nat. Mater. 23:(11):156374
    [Crossref] [Google Scholar]
  34. 34.
    Dye RB, Flicker PF, Lien DY, Williams RC. 1992.. End-stabilized microtubules observed in vitro: stability, subunit interchange, and breakage. . Cell Motil. Cytoskelet. 21:(3):17186
    [Crossref] [Google Scholar]
  35. 35.
    Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, et al. 1998.. Impaired mechanical stability, migration and contractile capacity in vimentin deficient fibroblasts. . J. Cell Sci. 111:(13):1897907
    [Crossref] [Google Scholar]
  36. 36.
    Eibauer M, Weber MS, Kronenberg-Tenga R, Beales CT, Boujemaa-Paterski R, et al. 2024.. Vimentin filaments integrate low-complexity domains in a complex helical structure. . Nat. Struct. Mol. Biol. 31:(6):93949
    [Crossref] [Google Scholar]
  37. 37.
    Endow SA, Marszalek PE. 2019.. An estimate to the first approximation of microtubule rupture force. . Eur. Biophys. J. 48:(6):56977
    [Crossref] [Google Scholar]
  38. 38.
    Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, et al. 2009.. Introducing intermediate filaments: from discovery to disease. . J. Clin. Investig. 119:(7):176371
    [Crossref] [Google Scholar]
  39. 39.
    Eriksson JE, He T, Trejo-Skalli AV, Härmälä-Braskén A-S, Hellman J, et al. 2004.. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. . J. Cell Sci. 117:(6):91932
    [Crossref] [Google Scholar]
  40. 40.
    Eshun-Wilson L, Zhang R, Portran D, Nachury MV, Toso DB, et al. 2019.. Effects of α-tubulin acetylation on microtubule structure and stability. . PNAS 116:(21):1036671
    [Crossref] [Google Scholar]
  41. 41.
    Felgner H, Frank R, Biernat J, Mandelkow E-M, Mandelkow E, et al. 1997.. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. . J. Cell Biol. 138:(5):106775
    [Crossref] [Google Scholar]
  42. 42.
    Footer MJ, Kerssemakers JWJ, Theriot JA, Dogterom M. 2007.. Direct measurement of force generation by actin filament polymerization using an optical trap. . PNAS 104:(7):218186
    [Crossref] [Google Scholar]
  43. 43.
    Forsting J, Kraxner J, Witt H, Janshoff A, Köster S. 2019.. Vimentin intermediate filaments undergo irreversible conformational changes during cyclic loading. . Nano Lett. 19:(10):734956
    [Crossref] [Google Scholar]
  44. 44.
    Foster HE, Ventura Santos C, Carter AP. 2022.. A cryo-ET survey of microtubules and intracellular compartments in mammalian axons. . J. Cell Biol. 221:(2):e202103154
    [Crossref] [Google Scholar]
  45. 45.
    Frémont S, Hammich H, Bai J, Wioland H, Klinkert K, et al. 2017.. Oxidation of F-actin controls the terminal steps of cytokinesis. . Nat. Commun. 8::14528
    [Crossref] [Google Scholar]
  46. 46.
    Ganser C, Uchihashi T. 2019.. Microtubule self-healing and defect creation investigated by in-line force measurements during high-speed atomic force microscopy imaging. . Nanoscale 11:(1):12535
    [Crossref] [Google Scholar]
  47. 47.
    Gazzola M, Schaeffer A, Butler-Hallissey C, Friedl K, Vianay B, et al. 2023.. Microtubules self-repair in living cells. . Curr. Biol. 33:(1):12233.e4
    [Crossref] [Google Scholar]
  48. 48.
    Ge P, Durer ZAO, Kudryashov D, Zhou ZH, Reisler E. 2014.. Cryo-EM reveals different coronin binding modes for ADP- and ADP-BeFx actin filaments. . Nat. Struct. Mol. Biol. 21:(12):107581
    [Crossref] [Google Scholar]
  49. 49.
    Ghasemi F, Cao L, Mladenov M, Guichard B, Way M, et al. 2024.. Regeneration of actin filament branches from the same Arp2/3 complex. . Sci. Adv. 10:(4):eadj7681
    [Crossref] [Google Scholar]
  50. 50.
    Gittes F, Mickey B, Nettleton J, Howard J. 1993.. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. . J. Cell Biol. 120:(4):92334
    [Crossref] [Google Scholar]
  51. 51.
    Grill SW, Hyman AA. 2005.. Spindle positioning by cortical pulling forces. . Dev. Cell 8:(4):46165
    [Crossref] [Google Scholar]
  52. 52.
    Grintsevich EE, Ge P, Sawaya MR, Yesilyurt HG, Terman JR, et al. 2017.. Catastrophic disassembly of actin filaments via Mical-mediated oxidation. . Nat. Commun. 8:(1):2183
    [Crossref] [Google Scholar]
  53. 53.
    Grintsevich EE, Yesilyurt HG, Rich SK, Hung R-J, Terman JR, Reisler E. 2016.. F-actin dismantling through a redox-driven synergy between Mical and cofilin. . Nat. Cell Biol. 18:(8):87685
    [Crossref] [Google Scholar]
  54. 54.
    Grishchuk EL, Molodtsov MI, Ataullakhanov FI, McIntosh JR. 2005.. Force production by disassembling microtubules. . Nature 438:(7066):38488
    [Crossref] [Google Scholar]
  55. 55.
    Gudimchuk NB, McIntosh JR. 2021.. Regulation of microtubule dynamics, mechanics and function through the growing tip. . Nat. Rev. Mol. Cell Biol. 22:(12):77795
    [Crossref] [Google Scholar]
  56. 56.
    Harris BJ, Ross JL, Hawkins TL. 2018.. Microtubule seams are not mechanically weak defects. . Phys. Rev. E 97:(6):062408
    [Crossref] [Google Scholar]
  57. 57.
    Hawkins T, Mirigian M, Selcuk Yasar M, Ross JL. 2010.. Mechanics of microtubules. . J. Biomech. 43:(1):2330
    [Crossref] [Google Scholar]
  58. 58.
    Hayakawa K, Tatsumi H, Sokabe M. 2011.. Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. . J. Cell Biol. 195:(5):72127
    [Crossref] [Google Scholar]
  59. 59.
    Herrmann H, Aebi U. 2016.. Intermediate filaments: structure and assembly. . Cold Spring Harb. Perspect. Biol. 8:(11):a018242
    [Crossref] [Google Scholar]
  60. 60.
    Herrmann H, Bär H, Kreplak L, Strelkov SV, Aebi U. 2007.. Intermediate filaments: from cell architecture to nanomechanics. . Nat. Rev. Mol. Cell Biol. 8:(7):56273
    [Crossref] [Google Scholar]
  61. 61.
    Herrmann H, Häner M, Brettel M, Ku N-O, Aebi U. 1999.. Characterization of distinct early assembly units of different intermediate filament proteins. . J. Mol. Biol. 286:(5):140320
    [Crossref] [Google Scholar]
  62. 62.
    Hilitski F, Ward AR, Cajamarca L, Hagan MF, Grason GM, Dogic Z. 2015.. Measuring cohesion between macromolecular filaments one pair at a time: depletion-induced microtubule bundling. . Phys. Rev. Lett. 114:(13):138102
    [Crossref] [Google Scholar]
  63. 63.
    Howard J. 2001.. Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, MA:: Sinauer. 367 pp.
    [Google Scholar]
  64. 64.
    Hu J, Li Y, Hao Y, Zheng T, Gupta SK, et al. 2019.. High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments. . PNAS 116:(35):1717580
    [Crossref] [Google Scholar]
  65. 65.
    Huber F, Boire A, López MP, Koenderink GH. 2015.. Cytoskeletal crosstalk: when three different personalities team up. . Curr. Opin. Cell Biol. 32::3947
    [Crossref] [Google Scholar]
  66. 66.
    Huehn AR, Bibeau JP, Schramm AC, Cao W, De La Cruz EM, Sindelar CV. 2020.. Structures of cofilin-induced structural changes reveal local and asymmetric perturbations of actin filaments. . PNAS 117:(3):147884
    [Crossref] [Google Scholar]
  67. 67.
    Hung R-J, Pak CW, Terman JR. 2011.. Direct redox regulation of F-actin assembly and disassembly by Mical. . Science 334:(6063):171013
    [Crossref] [Google Scholar]
  68. 68.
    Hung R-J, Spaeth CS, Yesilyurt HG, Terman JR. 2013.. SelR reverses Mical-mediated oxidation of actin to regulate F-actin dynamics. . Nat. Cell Biol. 15:(12):144554
    [Crossref] [Google Scholar]
  69. 69.
    Isambert H, Venier P, Maggs AC, Fattoum A, Kassab R, et al. 1995.. Flexibility of actin filaments derived from thermal fluctuations. . J. Biol. Chem. 270:(19):1143744
    [Crossref] [Google Scholar]
  70. 70.
    Janke C, Magiera MM. 2020.. The tubulin code and its role in controlling microtubule properties and functions. . Nat. Rev. Mol. Cell Biol. 21:(6):30726
    [Crossref] [Google Scholar]
  71. 71.
    Janmey PA, Euteneuer U, Traub P, Schliwa M. 1991.. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. . J. Cell Biol. 113:(1):15560
    [Crossref] [Google Scholar]
  72. 72.
    Janson ME, Dogterom M. 2004.. A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. . Biophys. J. 87:(4):272336
    [Crossref] [Google Scholar]
  73. 73.
    Jasnin M, Hervy J, Balor S, Bouissou A, Proag A, et al. 2022.. Elasticity of podosome actin networks produces nanonewton protrusive forces. . Nat. Commun. 13:(1):3842
    [Crossref] [Google Scholar]
  74. 74.
    Jégou A, Carlier M-F, Romet-Lemonne G. 2013.. Formin mDia1 senses and generates mechanical forces on actin filaments. . Nat. Commun. 4::1883
    [Crossref] [Google Scholar]
  75. 75.
    Jegou A, Romet-Lemonne G. 2020.. The many implications of actin filament helicity. . Semin. Cell Dev. Biol. 102::6572
    [Crossref] [Google Scholar]
  76. 76.
    Jégou A, Romet-Lemonne G. 2021.. Mechanically tuning actin filaments to modulate the action of actin-binding proteins. . Curr. Opin. Cell Biol. 68::7280
    [Crossref] [Google Scholar]
  77. 77.
    Kang H, Bradley MJ, McCullough BR, Pierre A, Grintsevich EE, et al. 2012.. Identification of cation-binding sites on actin that drive polymerization and modulate bending stiffness. . PNAS 109:(42):1692327
    [Crossref] [Google Scholar]
  78. 78.
    Kapitein LC, Peterman EJG, Kwok BH, Kim JH, Kapoor TM, Schmidt CF. 2005.. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. . Nature 435:(7038):11418
    [Crossref] [Google Scholar]
  79. 79.
    Kawaguchi K, Ishiwata S, Yamashita T. 2008.. Temperature dependence of the flexural rigidity of single microtubules. . Biochem. Biophys. Res. Commun. 366:(3):63742
    [Crossref] [Google Scholar]
  80. 80.
    Kerr JP, Robison P, Shi G, Bogush AI, Kempema AM, et al. 2015.. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. . Nat. Commun. 6:(1):8526
    [Crossref] [Google Scholar]
  81. 81.
    Kis A, Kasas S, Babić B, Kulik AJ, Benoît W, et al. 2002.. Nanomechanics of microtubules. . Phys. Rev. Lett. 89:(24):248101
    [Crossref] [Google Scholar]
  82. 82.
    Kojima H, Ishijima A, Yanagida T. 1994.. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. . PNAS 91:(26):1296266
    [Crossref] [Google Scholar]
  83. 83.
    Kraxner J, Lorenz C, Menzel J, Parfentev I, Silbern I, et al. 2021.. Post-translational modifications soften vimentin intermediate filaments. . Nanoscale 13:(1):38087
    [Crossref] [Google Scholar]
  84. 84.
    Kreplak L, Bär H, Leterrier JF, Herrmann H, Aebi U. 2005.. Exploring the mechanical behavior of single intermediate filaments. . J. Mol. Biol. 354:(3):56977
    [Crossref] [Google Scholar]
  85. 85.
    Kreplak L, Herrmann H, Aebi U. 2008.. Tensile properties of single Desmin intermediate filaments. . Biophys. J. 94:(7):279099
    [Crossref] [Google Scholar]
  86. 86.
    Kučera O, Siahaan V, Janda D, Dijkstra SH, Pilátová E, et al. 2021.. Anillin propels myosin-independent constriction of actin rings. . Nat. Commun. 12:(1):4595
    [Crossref] [Google Scholar]
  87. 87.
    Kumari A, Kesarwani S, Javoor MG, Vinothkumar KR, Sirajuddin M. 2020.. Structural insights into actin filament recognition by commonly used cellular actin markers. . EMBO J. 39:(14):e104006
    [Crossref] [Google Scholar]
  88. 88.
    Kuo Y-W, Mahamdeh M, Tuna Y, Howard J. 2022.. The force required to remove tubulin from the microtubule lattice by pulling on its α-tubulin C-terminal tail. . Nat. Commun. 13:(1):3651
    [Crossref] [Google Scholar]
  89. 89.
    Kurachi M, Hoshi M, Tashiro H. 1995.. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. . Cell Motil. Cytoskelet. 30:(3):22128
    [Crossref] [Google Scholar]
  90. 90.
    Lansky Z, Braun M, Lüdecke A, Schlierf M, ten Wolde PR, et al. 2015.. Diffusible crosslinkers generate directed forces in microtubule networks. . Cell 160:(6):115968
    [Crossref] [Google Scholar]
  91. 91.
    Latorre E, Kale S, Casares L, Gómez-González M, Uroz M, et al. 2018.. Active superelasticity in three-dimensional epithelia of controlled shape. . Nature 563:(7730):2038
    [Crossref] [Google Scholar]
  92. 92.
    Lazarides E. 1980.. Intermediate filaments as mechanical integrators of cellular space. . Nature 283:(5744):24955
    [Crossref] [Google Scholar]
  93. 93.
    Leduc C, Etienne-Manneville S. 2015.. Intermediate filaments in cell migration and invasion: the unusual suspects. . Curr. Opin. Cell Biol. 32::10212
    [Crossref] [Google Scholar]
  94. 94.
    Li T-D, Bieling P, Weichsel J, Mullins RD, Fletcher DA. 2022.. The molecular mechanism of load adaptation by branched actin networks. . eLife 11::e73145
    [Crossref] [Google Scholar]
  95. 95.
    Li Y, Kučera O, Cuvelier D, Rutkowski DM, Deygas M, et al. 2023.. Compressive forces stabilize microtubules in living cells. . Nat. Mater. 22:(7):91324
    [Crossref] [Google Scholar]
  96. 96.
    Lin Y-C, Broedersz CP, Rowat AC, Wedig T, Herrmann H, et al. 2010.. Divalent cations crosslink vimentin intermediate filament tail domains to regulate network mechanics. . J. Mol. Biol. 399:(4):63744
    [Crossref] [Google Scholar]
  97. 97.
    Lopez BJ, Valentine MT. 2014.. Mechanical effects of EB1 on microtubules depend on GTP hydrolysis state and presence of paclitaxel. . Cytoskeleton 71:(9):53041
    [Crossref] [Google Scholar]
  98. 98.
    Lorenz C, Forsting J, Schepers AV, Kraxner J, Bauch S, et al. 2019.. Lateral subunit coupling determines intermediate filament mechanics. . Phys. Rev. Lett. 123:(18):188102
    [Crossref] [Google Scholar]
  99. 99.
    Lorenz C, Forsting J, Style RW, Klumpp S, Köster S. 2023.. Keratin filament mechanics and energy dissipation are determined by metal-like plasticity. . Matter 6:(6):201933
    [Crossref] [Google Scholar]
  100. 100.
    Lorenz C, Köster S. 2022.. Multiscale architecture: mechanics of composite cytoskeletal networks. . Biophys. Rev. 3:(3):031304
    [Crossref] [Google Scholar]
  101. 101.
    Luo J, Lam WH, Yu D, Chao VC, Zopfi MN, et al. 2025.. Tubulin acetyltransferases access and modify the microtubule luminal K40 residue through anchors in taxane-binding pockets. . Nat. Struct. Mol. Biol. 32::35868
    [Crossref] [Google Scholar]
  102. 102.
    Ma R, Berro J. 2018.. Structural organization and energy storage in crosslinked actin assemblies. . PLOS Comput. Biol. 14:(5):e1006150
    [Crossref] [Google Scholar]
  103. 103.
    Mandelkow EM, Mandelkow E, Milligan RA. 1991.. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. . J. Cell Biol. 114:(5):97791
    [Crossref] [Google Scholar]
  104. 104.
    McCullough BR, Blanchoin L, Martiel J-L, De La Cruz EM. 2008.. Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics. . J. Mol. Biol. 381:(3):55058
    [Crossref] [Google Scholar]
  105. 105.
    Mendez MG, Restle D, Janmey PA. 2014.. Vimentin enhances cell elastic behavior and protects against compressive stress. . Biophys. J. 107:(2):31423
    [Crossref] [Google Scholar]
  106. 106.
    Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, et al. 2023.. UCSF ChimeraX: tools for structure building and analysis. . Protein Sci. 32:(11):e4792
    [Crossref] [Google Scholar]
  107. 107.
    Mickey B, Howard J. 1995.. Rigidity of microtubules is increased by stabilizing agents. . J. Cell Biol. 130:(4):90917
    [Crossref] [Google Scholar]
  108. 108.
    Mizuno H, Higashida C, Yuan Y, Ishizaki T, Narumiya S, Watanabe N. 2011.. Rotational movement of the formin mDia1 along the double helical strand of an actin filament. . Science 331:(6013):8083
    [Crossref] [Google Scholar]
  109. 109.
    Mogilner A, Oster G. 1996.. Cell motility driven by actin polymerization. . Biophys. J. 71:(6):303045
    [Crossref] [Google Scholar]
  110. 110.
    Mostowy S, Cossart P. 2012.. Septins: the fourth component of the cytoskeleton. . Nat. Rev. Mol. Cell Biol. 13:(3):18394
    [Crossref] [Google Scholar]
  111. 111.
    Murray LE, Kim H, Rice LM, Asbury CL. 2022.. Working strokes produced by curling protofilaments at disassembling microtubule tips can be biochemically tuned and vary with species. . eLife 11::e83225
    [Crossref] [Google Scholar]
  112. 112.
    Murrell M, Oakes PW, Lenz M, Gardel ML. 2015.. Forcing cells into shape: the mechanics of actomyosin contractility. . Nat. Rev. Mol. Cell Biol. 16:(8):48698
    [Crossref] [Google Scholar]
  113. 113.
    Niedzialkowska E, Runyan LA, Kudryashova E, Egelman EH, Kudryashov DS. 2024.. Stabilization of F-actin by Salmonella effector SipA resembles the structural effects of inorganic phosphate and phalloidin. . Structure 32:(6):72538.e8
    [Crossref] [Google Scholar]
  114. 114.
    Nishimura Y, Kasahara K, Inagaki M. 2019.. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. . Proc. Jpn. Acad. Ser. B 95:(8):47993
    [Crossref] [Google Scholar]
  115. 115.
    Nöding B, Herrmann H, Köster S. 2014.. Direct observation of subunit exchange along mature vimentin intermediate filaments. . Biophys. J. 107:(12):292331
    [Crossref] [Google Scholar]
  116. 116.
    Nöding B, Köster S. 2012.. Intermediate filaments in small configuration spaces. . Phys. Rev. Lett. 108:(8):088101
    [Crossref] [Google Scholar]
  117. 117.
    Nunes Vicente F, Lelek M, Tinevez J-Y, Tran QD, Pehau-Arnaudet G, et al. 2022.. Molecular organization and mechanics of single vimentin filaments revealed by super-resolution imaging. . Sci. Adv. 8:(8):eabm2696
    [Crossref] [Google Scholar]
  118. 118.
    Oda T, Iwasa M, Aihara T, Maéda Y, Narita A. 2009.. The nature of the globular- to fibrous-actin transition. . Nature 457:(7228):44145
    [Crossref] [Google Scholar]
  119. 119.
    Oosawa F. 1977.. Actin-actin bond strength and the conformational change of F-actin. . Biorheology 14:(1):1119
    [Google Scholar]
  120. 120.
    Oosterheert W, Klink BU, Belyy A, Pospich S, Raunser S. 2022.. Structural basis of actin filament assembly and aging. . Nature 611:(7935):37479
    [Crossref] [Google Scholar]
  121. 121.
    Oshima RG. 2007.. Intermediate filaments: a historical perspective. . Exp. Cell Res. 313:(10):198194
    [Crossref] [Google Scholar]
  122. 122.
    Pampaloni F, Lattanzi G, Jonáš A, Surrey T, Frey E, Florin E-L. 2006.. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. . PNAS 103:(27):1024853
    [Crossref] [Google Scholar]
  123. 123.
    Patteson AE, Carroll RJ, Iwamoto DV, Janmey PA. 2021.. The vimentin cytoskeleton: when polymer physics meets cell biology. . Phys. Biol. 18:(1):011001
    [Crossref] [Google Scholar]
  124. 124.
    Peskin CS, Odell GM, Oster GF. 1993.. Cellular motions and thermal fluctuations: the Brownian ratchet. . Biophys. J. 65:(1):31624
    [Crossref] [Google Scholar]
  125. 125.
    Pfitzner A-K, Moser von Filseck J, Roux A. 2021.. Principles of membrane remodeling by dynamic ESCRT-III polymers. . Trends Cell Biol. 31:(10):85668
    [Crossref] [Google Scholar]
  126. 126.
    Pogoda K, Byfield F, Deptuła P, Cieśluk M, Suprewicz Ł, et al. 2022.. Unique role of vimentin networks in compression stiffening of cells and protection of nuclei from compressive stress. . Nano Lett. 22:(12):472532
    [Crossref] [Google Scholar]
  127. 127.
    Portran D, Schaedel L, Xu Z, Théry M, Nachury MV. 2017.. Tubulin acetylation protects long-lived microtubules against mechanical ageing. . Nat. Cell Biol. 19:(4):39198
    [Crossref] [Google Scholar]
  128. 128.
    Qin Z, Kreplak L, Buehler MJ. 2009.. Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. . PLOS ONE 4:(10):e7294
    [Crossref] [Google Scholar]
  129. 129.
    Reynolds MJ, Hachicho C, Carl AG, Gong R, Alushin GM. 2022.. Bending forces and nucleotide state jointly regulate F-actin structure. . Nature 611:(7935):38086
    [Crossref] [Google Scholar]
  130. 130.
    Risca VI, Wang EB, Chaudhuri O, Chia JJ, Geissler PL, Fletcher DA. 2012.. Actin filament curvature biases branching direction. . PNAS 109:(8):291318
    [Crossref] [Google Scholar]
  131. 131.
    Robert-Paganin J, Pylypenko O, Kikuti C, Sweeney HL, Houdusse A. 2020.. Force generation by myosin motors: a structural perspective. . Chem. Rev. 120:(1):535
    [Crossref] [Google Scholar]
  132. 132.
    Robison P, Caporizzo MA, Ahmadzadeh H, Bogush AI, Chen CY, et al. 2016.. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. . Science 352:(6284):aaf0659
    [Crossref] [Google Scholar]
  133. 133.
    Rölleke U, Kumari P, Meyer R, Köster S. 2023.. The unique biomechanics of intermediate filaments - from single filaments to cells and tissues. . Curr. Opin. Cell Biol. 85::102263
    [Crossref] [Google Scholar]
  134. 134.
    Romeiro Motta M, Biswas S, Schaedel L. 2023.. Beyond uniformity: exploring the heterogeneous and dynamic nature of the microtubule lattice. . Eur. J. Cell Biol. 102:(4):151370
    [Crossref] [Google Scholar]
  135. 135.
    Romet-Lemonne G, Jégou A. 2021.. The dynamic instability of actin filament barbed ends. . J. Cell Biol. 220:(4):e202102020
    [Crossref] [Google Scholar]
  136. 136.
    Sapra KT, Qin Z, Dubrovsky-Gaupp A, Aebi U, Müller DJ, et al. 2020.. Nonlinear mechanics of lamin filaments and the meshwork topology build an emergent nuclear lamina. . Nat. Commun. 11:(1):6205
    [Crossref] [Google Scholar]
  137. 137.
    Schaap IAT, de Pablo PJ, Schmidt CF. 2004.. Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy. . Eur. Biophys. J. 33:(5):46267
    [Crossref] [Google Scholar]
  138. 138.
    Schaedel L, John K, Gaillard J, Nachury MV, Blanchoin L, Théry M. 2015.. Microtubules self-repair in response to mechanical stress. . Nat. Mater. 14:(11):115663
    [Crossref] [Google Scholar]
  139. 139.
    Schaedel L, Triclin S, Chrétien D, Abrieu A, Aumeier C, et al. 2019.. Lattice defects induce microtubule self-renewal. . Nat. Phys. 15:(8):83038
    [Crossref] [Google Scholar]
  140. 140.
    Schahl A, Lagardere L, Walker B, Ren P, Wioland H, et al. 2022.. Histidine 73 methylation coordinates β-actin plasticity in response to key environmental factors. . bioRxiv 2022.12.16.520803. https://doi.org/10.1101/2022.12.16.520803
  141. 141.
    Schramm AC, Hocky GM, Voth GA, Martiel J-L, De La Cruz EM. 2019.. Plastic deformation and fragmentation of strained actin filaments. . Biophys. J. 117:(3):45363
    [Crossref] [Google Scholar]
  142. 142.
    Seervai RNH, Jangid RK, Karki M, Tripathi DN, Jung SY, et al. 2020.. The Huntingtin-interacting protein SETD2/HYPB is an actin lysine methyltransferase. . Sci. Adv. 6:(40):eabb7854
    [Crossref] [Google Scholar]
  143. 143.
    Seltmann K, Fritsch AW, Käs JA, Magin TM. 2013.. Keratins significantly contribute to cell stiffness and impact invasive behavior. . PNAS 110:(46):1850712
    [Crossref] [Google Scholar]
  144. 144.
    Serrano T, Casartelli N, Ghasemi F, Wioland H, Cuvelier F, et al. 2024.. HIV-1 budding requires cortical actin disassembly by the oxidoreductase MICAL1. . PNAS 121:(48):e2407835121
    [Crossref] [Google Scholar]
  145. 145.
    Shim S, Gouveia B, Ramm B, Valdez VA, Petry S, Stone HA. 2024.. Motorless transport of microtubules along tubulin, RanGTP, and salt gradients. . Nat. Commun. 15:(1):9434
    [Crossref] [Google Scholar]
  146. 146.
    Smith MA, Blankman E, Gardel ML, Luettjohann L, Waterman CM, Beckerle MC. 2010.. A zyxin-mediated mechanism for actin stress fiber maintenance and repair. . Dev. Cell 19:(3):36576
    [Crossref] [Google Scholar]
  147. 147.
    Snider NT, Omary MB. 2014.. Post-translational modifications of intermediate filament proteins: mechanisms and functions. . Nat. Rev. Mol. Cell Biol. 15:(3):16377
    [Crossref] [Google Scholar]
  148. 148.
    Steinert PM, Marekov LN, Parry DA. 1993.. Diversity of intermediate filament structure. Evidence that the alignment of coiled-coil molecules in vimentin is different from that in keratin intermediate filaments. . J. Biol. Chem. 268:(33):2491625
    [Crossref] [Google Scholar]
  149. 149.
    Strassel C, Magiera MM, Dupuis A, Batzenschlager M, Hovasse A, et al. 2019.. An essential role for α4A-tubulin in platelet biogenesis. . Life Sci. Alliance 2:(1):e201900309
    [Crossref] [Google Scholar]
  150. 150.
    Théry M, Blanchoin L. 2021.. Microtubule self-repair. . Curr. Opin. Cell Biol. 68::14454
    [Crossref] [Google Scholar]
  151. 151.
    Thiery JP, Sleeman JP. 2006.. Complex networks orchestrate epithelial-mesenchymal transitions. . Nat. Rev. Mol. Cell Biol. 7:(2):13142
    [Crossref] [Google Scholar]
  152. 152.
    Tran QD, Lenz M, Wioland H, Jegou A, Romet-Lemonne G, Leduc C. 2024.. Continuous self-repair protects vimentin intermediate filaments from fragmentation. . bioRxiv 2024.09.02.610785. https://doi.org/10.1101/2024.09.02.610785
  153. 153.
    Tran QD, Sorichetti V, Pehau-Arnaudet G, Lenz M, Leduc C. 2023.. Fragmentation and entanglement limit vimentin intermediate filament assembly. . Phys. Rev. X 13:(1):011014
    [Google Scholar]
  154. 154.
    Triclin S, Inoue D, Gaillard J, Htet ZM, DeSantis ME, et al. 2021.. Self-repair protects microtubules from destruction by molecular motors. . Nat. Mater. 20:(6):88391
    [Crossref] [Google Scholar]
  155. 155.
    Tsuda Y, Yasutake H, Ishijima A, Yanagida T. 1996.. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. . PNAS 93:(23):1293742
    [Crossref] [Google Scholar]
  156. 156.
    van Mameren J, Vermeulen KC, Gittes F, Schmidt CF. 2009.. Leveraging single protein polymers to measure flexural rigidity. . J. Phys. Chem. B 113:(12):383744
    [Crossref] [Google Scholar]
  157. 157.
    Varland S, Vandekerckhove J, Drazic A. 2019.. Actin post-translational modifications: the Cinderella of cytoskeletal control. . Trends Biochem. Sci. 44:(6):50216
    [Crossref] [Google Scholar]
  158. 158.
    Vemu A, Szczesna E, Zehr EA, Spector JO, Grigorieff N, et al. 2018.. Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. . Science 361:(6404):eaau1504
    [Crossref] [Google Scholar]
  159. 159.
    Verhey KJ, Gaertig J. 2007.. The tubulin code. . Cell Cycle 6:(17):215260
    [Crossref] [Google Scholar]
  160. 160.
    Volkov VA, Zaytsev AV, Gudimchuk N, Grissom PM, Gintsburg AL, et al. 2013.. Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules. . PNAS 110:(19):770813
    [Crossref] [Google Scholar]
  161. 161.
    Wagstaff J, Löwe J. 2018.. Prokaryotic cytoskeletons: protein filaments organizing small cells. . Nat. Rev. Microbiol. 16:(4):187201
    [Crossref] [Google Scholar]
  162. 162.
    Ward A, Hilitski F, Schwenger W, Welch D, Lau AWC, et al. 2015.. Solid friction between soft filaments. . Nat. Mater. 14:(6):58388
    [Crossref] [Google Scholar]
  163. 163.
    Weirich KL, Banerjee S, Dasbiswas K, Witten TA, Vaikuntanathan S, Gardel ML. 2017.. Liquid behavior of cross-linked actin bundles. . PNAS 114:(9):213136
    [Crossref] [Google Scholar]
  164. 164.
    Wilkinson AW, Diep J, Dai S, Liu S, Ooi YS, et al. 2019.. SETD3 is an actin histidine methyltransferase that prevents primary dystocia. . Nature 565:(7739):37276
    [Crossref] [Google Scholar]
  165. 165.
    Wioland H, Frémont S, Guichard B, Echard A, Jégou A, Romet-Lemonne G. 2021.. Actin filament oxidation by MICAL1 suppresses protections from cofilin-induced disassembly. . EMBO Rep. 22:(2):e50965
    [Crossref] [Google Scholar]
  166. 166.
    Wioland H, Jegou A, Romet-Lemonne G. 2019.. Torsional stress generated by ADF/cofilin on cross-linked actin filaments boosts their severing. . PNAS 116:(7):2595602
    [Crossref] [Google Scholar]
  167. 167.
    Xu X-P, Cao W, Swift MF, Pandit NG, Huehn AE, et al. 2024.. High-resolution yeast actin structures indicate the molecular mechanism of actin filament stiffening by cations. . Commun. Chem. 7:(1):164
    [Crossref] [Google Scholar]
  168. 168.
    Xu Z, Schaedel L, Portran D, Aguilar A, Gaillard J, et al. 2017.. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. . Science 356:(6335):32832
    [Crossref] [Google Scholar]
  169. 169.
    Xue Z, Sokac AM. 2016.. Back-to-back mechanisms drive actomyosin ring closure during Drosophila embryo cleavage. . J. Cell Biol. 215:(3):33544
    [Crossref] [Google Scholar]
  170. 170.
    Zhou H, Isozaki N, Fujimoto K, Yokokawa R. 2021.. Growth rate-dependent flexural rigidity of microtubules influences pattern formation in collective motion. . J. Nanobiotechnol. 19:(1):218
    [Crossref] [Google Scholar]
  171. 171.
    Zimmermann D, Santos A, Kovar DR, Rock RS. 2015.. Actin age orchestrates myosin-5 and myosin-6 run lengths. . Curr. Biol. 25:(15):205762
    [Crossref] [Google Scholar]
  172. 172.
    Zsolnay V, Gardel ML, Kovar DR, Voth GA. 2024.. Cracked actin filaments as mechanosensitive receptors. . Biophys. J. 123:(19):328394
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030722-120914
Loading
/content/journals/10.1146/annurev-biophys-030722-120914
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error