1932

Abstract

The relationship between genotype and phenotype, or the fitness landscape, is the foundation of genetic engineering and evolution. However, mapping fitness landscapes poses a major technical challenge due to the amount of quantifiable data that is required. Catalytic RNA is a special topic in the study of fitness landscapes due to its relatively small sequence space combined with its importance in synthetic biology. The combination of in vitro selection and high-throughput sequencing has recently provided empirical maps of both complete and local RNA fitness landscapes, but the astronomical size of sequence space limits purely experimental investigations. Next steps are likely to involve data-driven interpolation and extrapolation over sequence space using various machine learning techniques. We discuss recent progress in understanding RNA fitness landscapes, particularly with respect to protocells and machine representations of RNA. The confluence of technical advances may significantly impact synthetic biology in the near future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-030822-025038
2024-07-16
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-030822-025038.html?itemId=/content/journals/10.1146/annurev-biophys-030822-025038&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adamala K, Szostak JW. 2013.. Competition between model protocells driven by an encapsulated catalyst. . Nat. Chem. 5::495501
    [Crossref] [Google Scholar]
  2. 2.
    Adamala K, Szostak JW. 2013.. Nonenzymatic template-directed RNA synthesis inside model protocells. . Science 342::1098100
    [Crossref] [Google Scholar]
  3. 3.
    Adamski P, Eleveld M, Sood A, Kun Á, Szilágyi A, et al. 2020.. From self-replication to replicator systems en route to de novo life. . Nat. Rev. Chem. 4::386403
    [Crossref] [Google Scholar]
  4. 4.
    Agresti JJ, Kelly BT, Jäschke A, Griffiths AD. 2005.. Selection of ribozymes that catalyse multiple-turnover Diels–Alder cycloadditions by using in vitro compartmentalization. . PNAS 102::1617075
    [Crossref] [Google Scholar]
  5. 5.
    Ameta S, Winz M-L, Previti C, Jäschke A. 2014.. Next-generation sequencing reveals how RNA catalysts evolve from random space. . Nucleic Acids Res. 42::130310
    [Crossref] [Google Scholar]
  6. 6.
    Andreasson JOL, Savinov A, Block SM, Greenleaf WJ. 2020.. Comprehensive sequence-to-function mapping of cofactor-dependent RNA catalysis in the GLMS ribozyme. . Nat. Commun. 11::1663
    [Crossref] [Google Scholar]
  7. 7.
    Angenent-Mari NM, Garruss AS, Soenksen LR, Church G, Collins JJ. 2020.. A deep learning approach to programmable RNA switches. . Nat. Commun. 11::5057
    [Crossref] [Google Scholar]
  8. 8.
    Attwater J, Wochner A, Pinheiro VB, Coulson A, Holliger P. 2010.. Ice as a protocellular medium for RNA replication. . Nat. Commun. 1::76
    [Crossref] [Google Scholar]
  9. 9.
    Bansho Y, Furubayashi T, Ichihashi N, Yomo T. 2016.. Host–parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. . PNAS 113::404550
    [Crossref] [Google Scholar]
  10. 10.
    Benner SA. 2023.. Rethinking nucleic acids from their origins to their applications. . Philos. Trans. R. Soc. Lond. B 378::20220027
    [Crossref] [Google Scholar]
  11. 11.
    Bernhardt HS. 2012.. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others). . Biol. Direct 7::23
    [Crossref] [Google Scholar]
  12. 12.
    Bernhardt HS, Tate WP. 2012.. Primordial soup or vinaigrette: Did the RNA world evolve at acidic pH?. Biol. Direct 7::4
    [Crossref] [Google Scholar]
  13. 13.
    Blain JC, Szostak JW. 2014.. Progress toward synthetic cells. . Annu. Rev. Biochem. 83::61540
    [Crossref] [Google Scholar]
  14. 14.
    Blanco C, Janzen E, Pressman A, Saha R, Chen IA. 2019.. Molecular fitness landscapes from high-coverage sequence profiling. . Annu. Rev. Biophys. 48::118
    [Crossref] [Google Scholar]
  15. 15.
    Charest N, Shen Y, Lai Y-C, Chen IA, Shea J-E. 2023.. Discovering pathways through ribozyme fitness landscapes using information theoretic quantification of epistasis. . RNA 29::164457
    [Crossref] [Google Scholar]
  16. 16.
    Chen IA, Roberts RW, Szostak JW. 2004.. The emergence of competition between model protocells. . Science 305::147476
    [Crossref] [Google Scholar]
  17. 17.
    Chen IA, Salehi-Ashtiani K, Szostak JW. 2005.. RNA catalysis in model protocell vesicles. . J. Am. Chem. Soc. 127::1321319
    [Crossref] [Google Scholar]
  18. 18.
    Chen JC, Chen JP, Shen MW, Wornow M, Bae M, et al. 2022.. Generating experimentally unrelated target molecule-binding highly functionalized nucleic-acid polymers using machine learning. . Nat. Commun. 13::4541 18. Used semisupervised generative models learned from experimental labels to discover novel daunomycin-binding sequences.
    [Crossref] [Google Scholar]
  19. 19.
    Curtis EA. 2022.. Pushing the limits of nucleic acid function. . Chem. Eur. J. 28::e202201737
    [Crossref] [Google Scholar]
  20. 20.
    Curtis EA, Bartel DP. 2013.. Synthetic shuffling and in vitro selection reveal the rugged adaptive fitness landscape of a kinase ribozyme. . RNA 19::111628
    [Crossref] [Google Scholar]
  21. 21.
    Daher M, Widom JR, Tay W, Walter NG. 2018.. Soft interactions with model crowders and non-canonical interactions with cellular proteins stabilize RNA folding. . J. Mol. Biol. 430::50923
    [Crossref] [Google Scholar]
  22. 22.
    Das SG, Direito SOL, Waclaw B, Allen RJ, Krug J. 2020.. Predictable properties of fitness landscapes induced by adaptational tradeoffs. . eLife 9::e55155
    [Crossref] [Google Scholar]
  23. 23.
    DasGupta S, Zhang S, Szostak JW. 2023.. Molecular crowding facilitates ribozyme-catalyzed RNA assembly. . ACS Cent. Sci. 9::167078
    [Crossref] [Google Scholar]
  24. 24.
    DasGupta S, Zhang SJ, Smela MP, Szostak JW. 2023.. RNA-catalyzed RNA ligation within prebiotically plausible model protocells. . Chem. Eur. J. 29::e202301376
    [Crossref] [Google Scholar]
  25. 25.
    de Visser JAGM, Krug J. 2014.. Empirical fitness landscapes and the predictability of evolution. . Nat. Rev. Genet. 15::48090
    [Crossref] [Google Scholar]
  26. 26.
    Deck C, Jauker M, Richert C. 2011.. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. . Nat. Chem. 3::6038
    [Crossref] [Google Scholar]
  27. 27.
    Desai R, Kilburn D, Lee H-T, Woodson SA. 2014.. Increased ribozyme activity in crowded solutions. . J. Biol. Chem. 289::297277
    [Crossref] [Google Scholar]
  28. 28.
    Dhamodharan V, Kobori S, Yokobayashi Y. 2017.. Large scale mutational and kinetic analysis of a self-hydrolyzing deoxyribozyme. . ACS Chem. Biol. 12::294045
    [Crossref] [Google Scholar]
  29. 29.
    Di Gioacchino A, Procyk J, Molari M, Schreck JS, Zhou Y, et al. 2022.. Generative and interpretable machine learning for aptamer design and analysis of in vitro sequence selection. . PLOS Comput. Biol. 18::e1010561
    [Crossref] [Google Scholar]
  30. 30.
    Di Giulio M. 1997.. On the RNA world: evidence in favor of an early ribonucleopeptide world. . J. Mol. Evol. 45::57178
    [Crossref] [Google Scholar]
  31. 31.
    Dockerill M, Winssinger N. 2023.. DNA-encoded libraries: towards harnessing their full power with Darwinian evolution. . Angew. Chem. Int. Ed. 62::e202215542
    [Crossref] [Google Scholar]
  32. 32.
    El Allali A, Elhamraoui Z, Daoud R. 2021.. Machine learning applications in RNA modification sites prediction. . Comput. Struct. Biotechnol. J. 19::551024
    [Crossref] [Google Scholar]
  33. 33.
    Engelhart AE, Adamala KP, Szostak JW. 2016.. A simple physical mechanism enables homeostasis in primitive cells. . Nat. Chem. 8::44853
    [Crossref] [Google Scholar]
  34. 34.
    Fay MM, Lyons SM, Ivanov P. 2017.. RNA G-quadruplexes in biology: principles and molecular mechanisms. . J. Mol. Biol. 429::212747
    [Crossref] [Google Scholar]
  35. 35.
    Fisette J-F, Montagna DR, Mihailescu M-R, Wolfe MS. 2012.. A G-rich element forms a G-quadruplex and regulates BACE1 mRNA alternative splicing. . J. Neurochem. 121::76373
    [Crossref] [Google Scholar]
  36. 36.
    Fragata I, Blanckaert A, Dias Louro MA, Liberles DA, Bank C. 2019.. Evolution in the light of fitness landscape theory. . Trends Ecol. Evol. 34::6982
    [Crossref] [Google Scholar]
  37. 37.
    Frank SA, Slatkin M. 1992.. Fisher's fundamental theorem of natural selection. . Trends Ecol. Evol. 7::9295
    [Crossref] [Google Scholar]
  38. 38.
    Gebicki JM, Hicks M. 1976.. Preparation and properties of vesicles enclosed by fatty acid membranes. . Chem. Phys. Lipids 16::14260
    [Crossref] [Google Scholar]
  39. 39.
    Gould SJ. 2002.. The Structure of Evolutionary Theory. Cambridge, MA:: Harvard Univ. Press
    [Google Scholar]
  40. 40.
    Guo Y, Chen J, Cheng M, Monchaud D, Zhou J, Ju H. 2017.. A thermophilic tetramolecular G-quadruplex/hemin DNAzyme. . Angew. Chem. Int. Ed. 56::1663640
    [Crossref] [Google Scholar]
  41. 41.
    Halder K, Wieland M, Hartig JS. 2009.. Predictable suppression of gene expression by 5′-UTR-based RNA quadruplexes. . Nucleic Acids Res. 37::681117
    [Crossref] [Google Scholar]
  42. 42.
    Hanczyc MM, Fujikawa SM, Szostak JW. 2003.. Experimental models of primitive cellular compartments: encapsulation, growth, and division. . Science 302::61822
    [Crossref] [Google Scholar]
  43. 43.
    Hershberg R. 2015.. Mutation—the engine of evolution: studying mutation and its role in the evolution of bacteria. . Cold Spring Harb. Perspect. Biol. 7::a018077
    [Crossref] [Google Scholar]
  44. 44.
    Hyman AA, Weber CA, Jülicher F. 2014.. Liquid-liquid phase separation in biology. . Annu. Rev. Cell Dev. Biol. 30::3958
    [Crossref] [Google Scholar]
  45. 45.
    Ichihashi N, Usui K, Kazuta Y, Sunami T, Matsuura T, Yomo T. 2013.. Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment. . Nat. Commun. 4::2494
    [Crossref] [Google Scholar]
  46. 46.
    Iglesias-Artola JM, Drobot B, Kar M, Fritsch AW, Mutschler H, et al. 2022.. Charge-density reduction promotes ribozyme activity in RNA–peptide coacervates via RNA fluidization and magnesium partitioning. . Nat. Chem. 14::40716
    [Crossref] [Google Scholar]
  47. 47.
    Iwano N, Adachi T, Aoki K, Nakamura Y, Hamada M. 2022.. Generative aptamer discovery using RaptGen. . Nat. Comput. Sci. 2::37886
    [Crossref] [Google Scholar]
  48. 48.
    Jalali-Yazdi F, Lai LH, Takahashi TT, Roberts RW. 2016.. High-throughput measurement of binding kinetics by mRNA display and next-generation sequencing. . Angew. Chem. Int. Ed. 55::400710 48. Demonstrated how to use HTS to measure binding constants for many peptides in parallel.
    [Crossref] [Google Scholar]
  49. 49.
    Janzen E, Shen Y, Vázquez-Salazar A, Liu Z, Blanco C, et al. 2022.. Emergent properties as by-products of prebiotic evolution of aminoacylation ribozymes. . Nat. Commun. 13::3631
    [Crossref] [Google Scholar]
  50. 50.
    Jia TZ, Hentrich C, Szostak JW. 2014.. Rapid RNA exchange in aqueous two-phase system and coacervate droplets. . Orig. Life Evol. Biosph. 44::112
    [Crossref] [Google Scholar]
  51. 51.
    Jin L, Kamat NP, Jena S, Szostak JW. 2018.. Fatty acid/phospholipid blended membranes: a potential intermediate state in protocellular evolution. . Small 14::1704077
    [Crossref] [Google Scholar]
  52. 52.
    Jones CP, Ferré-D'Amaré AR. 2015.. RNA quaternary structure and global symmetry. . Trends Biochem. Sci. 40::21120
    [Crossref] [Google Scholar]
  53. 53.
    Joyce GF, Orgel LE. 1993.. Prospects for understanding the origin of the RNA world. . In The RNA World, ed. RF Gesteland, JF Atkins , pp. 125. New York:: Cold Spring Harb. Lab. Press
    [Google Scholar]
  54. 54.
    Joyce GF, Szostak JW. 2018.. Protocells and RNA self-replication. . Cold Spring Harb. Perspect. Biol. 10::a0344801
    [Crossref] [Google Scholar]
  55. 55.
    Kelich P, Jeong S, Navarro N, Adams J, Sun X, et al. 2021.. Discovery of DNA–carbon nanotube sensors for serotonin with machine learning and near-infrared fluorescence spectroscopy. . ACS Nano 16::73645 55. Used ML models learned from analytical responses (not just selection abundance) to improve DNA-nanotube biosensors.
    [Crossref] [Google Scholar]
  56. 56.
    Kilburn D, Roh JH, Behrouzi R, Briber RM, Woodson SA. 2013.. Crowders perturb the entropy of RNA energy landscapes to favor folding. . J. Am. Chem. Soc. 135::1005563
    [Crossref] [Google Scholar]
  57. 57.
    Kilburn D, Roh JH, Guo L, Briber RM, Woodson SA. 2010.. Molecular crowding stabilizes folded RNA structure by the excluded volume effect. . J. Am. Chem. Soc. 132::869096
    [Crossref] [Google Scholar]
  58. 58.
    Kobori S, Nomura Y, Miu A, Yokobayashi Y. 2015.. High-throughput assay and engineering of self-cleaving ribozymes by sequencing. . Nucleic Acids Res. 43::e85
    [Crossref] [Google Scholar]
  59. 59.
    Kobori S, Takahashi K, Yokobayashi Y. 2017.. Deep sequencing analysis of aptazyme variants based on a Pistol ribozyme. . ACS Synth. Biol. 6::128388
    [Crossref] [Google Scholar]
  60. 60.
    Kobori S, Yokobayashi Y. 2016.. High-throughput mutational analysis of a twister ribozyme. . Angew. Chem. Int. Ed. 55::1035457
    [Crossref] [Google Scholar]
  61. 61.
    Kohlberger M, Gadermaier G. 2021.. SELEX: critical factors and optimization strategies for successful aptamer selection. . Biotechnol. Appl. Biochem. 69::177192
    [Crossref] [Google Scholar]
  62. 62.
    Kumari S, Bugaut A, Huppert JL, Balasubramanian S. 2007.. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. . Nat. Chem. Biol. 3::21821
    [Crossref] [Google Scholar]
  63. 63.
    Lai Y-C, Chen IA. 2020.. Protocells. . Curr. Biol. 30::R48285
    [Crossref] [Google Scholar]
  64. 64.
    Lai Y-C, Liu Z, Chen IA. 2021.. Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation. . PNAS 118::e2025054118 64. Found that vesicle encapsulation increased fitness differences between ribozyme sequences, sharpening the landscape and accelerating evolutionary adaptation.
    [Crossref] [Google Scholar]
  65. 65.
    Lawrence MS, Bartel DP. 2005.. New ligase-derived RNA polymerase ribozymes. . RNA 11::117380
    [Crossref] [Google Scholar]
  66. 66.
    Le Vay K, Salibi E, Song EY, Mutschler H. 2020.. Nucleic acid catalysis under potential prebiotic conditions. . Chem. Asian J. 15::21430
    [Crossref] [Google Scholar]
  67. 67.
    Le Vay K, Song EY, Ghosh B, Tang T-YD, Mutschler H. 2021.. Enhanced ribozyme-catalyzed recombination and oligonucleotide assembly in peptide-RNA condensates. . Angew. Chem. Int. Ed. 60::26096104 67. Found that peptide–RNA coacervates enabled ribozyme catalysis, illustrating an RNA world function for peptides.
    [Crossref] [Google Scholar]
  68. 68.
    Lee H-T, Kilburn D, Behrouzi R, Briber RM, Woodson SA. 2015.. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme. . Nucleic Acids Res. 43::117076 68. Found that macromolecular crowding increased mutational tolerance, flattening the ribozyme fitness landscape.
    [Crossref] [Google Scholar]
  69. 69.
    Lewontin RC. 1970.. The units of selection. . Annu. Rev. Ecol. Evol. Syst. 1::118 69. Classic work explaining natural selection at multiple levels, from molecules and coacervates to populations.
    [Crossref] [Google Scholar]
  70. 70.
    Mansy SS. 2010.. Membrane transport in primitive cells. . Cold Spring Harb. Perspect. Biol. 2::a002188
    [Crossref] [Google Scholar]
  71. 71.
    Matsumoto S, Tateishi-Karimata H, Takahashi S, Ohyama T, Sugimoto N. 2020.. Effect of molecular crowding on the stability of RNA G-quadruplexes with various numbers of quartets and lengths of loops. . Biochemistry 59::264049
    [Crossref] [Google Scholar]
  72. 72.
    Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. 2013.. Distributed representations of words and phrases and their compositionality. . In NIPS‘13: Proceedings of the 26thInternational Conference on Neural Information Processing Systems, Vol. 2, pp. 311119. New York:: ACM
    [Google Scholar]
  73. 73.
    Müller F, Escobar L, Xu F, Węgrzyn E, Nainytė M, et al. 2022.. A prebiotically plausible scenario of an RNA–peptide world. . Nature 605::27984
    [Crossref] [Google Scholar]
  74. 74.
    Müller UF, Bartel DP. 2008.. Improved polymerase ribozyme efficiency on hydrophobic assemblies. . RNA 14::55262
    [Crossref] [Google Scholar]
  75. 75.
    Nakashima KK, van Haren MHI, André AAM, Robu I, Spruijt E. 2021.. Active coacervate droplets are protocells that grow and resist Ostwald ripening. . Nat. Commun. 12::3819
    [Crossref] [Google Scholar]
  76. 76.
    Nakashima KK, Vibhute MA, Spruijt E. 2019.. Biomolecular chemistry in liquid phase separated compartments. . Front. Mol. Biosci. 6::21
    [Crossref] [Google Scholar]
  77. 77.
    Nehdi A, Perreault J-P. 2006.. Unbiased in vitro selection reveals the unique character of the self-cleaving antigenomic HDV RNA sequence. . Nucleic Acids Res. 34::58492
    [Crossref] [Google Scholar]
  78. 78.
    Niland CN, Jankowsky E, Harris ME. 2016.. Optimization of high-throughput sequencing kinetics for determining enzymatic rate constants of thousands of RNA substrates. . Anal. Biochem. 510::110
    [Crossref] [Google Scholar]
  79. 79.
    Nomura Y, Yokobayashi Y. 2019.. Systematic minimization of RNA ligase ribozyme through large-scale design-synthesis-sequence cycles. . Nucleic Acids Res. 47::895060
    [Crossref] [Google Scholar]
  80. 80.
    Noviello TMR, Ceccarelli F, Ceccarelli M, Cerulo L. 2020.. Deep learning predicts short non-coding RNA functions from only raw sequence data. . PLOS Comput. Biol. 16::e1008415
    [Crossref] [Google Scholar]
  81. 81.
    Nowak MA, Highfield R. 2011.. SuperCooperators: Altruism, Evolution, and Why We Need Each Other to Succeed. New York:: Free Press
    [Google Scholar]
  82. 82.
    Obolski U, Ram Y, Hadany L. 2018.. Key issues review: evolution on rugged adaptive landscapes. . Rep. Prog. Phys. 81::012602
    [Crossref] [Google Scholar]
  83. 83.
    Oparin AI. 1938.. The Origin of Life. New York:: Macmillan ( transl. A Synge )
    [Google Scholar]
  84. 84.
    Pan X, Yang Y, Xia CQ, Mirza AH, Shen HB. 2019.. Recent methodology progress of deep learning for RNA–protein interaction prediction. . WIREs RNA 10::e1544
    [Crossref] [Google Scholar]
  85. 85.
    Paudel BP, Rueda D. 2014.. Molecular crowding accelerates ribozyme docking and catalysis. . J. Am. Chem. Soc. 136::167003
    [Crossref] [Google Scholar]
  86. 86.
    Payne JL, Wagner A. 2019.. The causes of evolvability and their evolution. . Nat. Rev. Genet. 20::2438
    [Crossref] [Google Scholar]
  87. 87.
    Peng H, Lelievre A, Landenfeld K, Müller S, Chen IA. 2022.. Vesicle encapsulation stabilizes intermolecular association and structure formation of functional RNA and DNA. . Curr. Biol. 32::8696.e6
    [Crossref] [Google Scholar]
  88. 88.
    Peri G, Gibard C, Shults NH, Crossin K, Hayden EJ. 2022.. Dynamic RNA fitness landscapes of a group I ribozyme during changes to the experimental environment. . Mol. Biol. Evol. 39::msab373 88. Explored the effect of environmental changes on a ribozyme fitness landscape.
    [Crossref] [Google Scholar]
  89. 89.
    Pinheiro VB, Arangundy-Franklin S, Holliger P. 2014.. Compartmentalized self-tagging for in vitro-directed evolution of XNA polymerases. . Curr. Protoc. Nucleic Acid Chem. 57::9.9.118
    [Crossref] [Google Scholar]
  90. 90.
    Pitt JN, Ferré-D'Amaré AR. 2010.. Rapid construction of empirical RNA fitness landscapes. . Science 330::37679
    [Crossref] [Google Scholar]
  91. 91.
    Pressman A, Blanco C, Chen IA. 2015.. The RNA world as a model system to study the origin of life. . Curr. Biol. 25::R95363
    [Crossref] [Google Scholar]
  92. 92.
    Pressman AD, Liu Z, Janzen E, Blanco C, Müller UF, et al. 2019.. Mapping a systematic ribozyme fitness landscape reveals a frustrated evolutionary network for self-aminoacylating RNA. . J. Am. Chem. Soc. 141::621323 92. First complete map of a fitness landscape for ribozymes.
    [Crossref] [Google Scholar]
  93. 93.
    Rivas G, Minton AP. 2016.. Macromolecular crowding in vitro, in vivo, and in between. . Trends Biochem. Sci. 41::97081
    [Crossref] [Google Scholar]
  94. 94.
    Rotrattanadumrong R, Yokobayashi Y. 2022.. Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning. . Nat. Commun. 13::4847
    [Crossref] [Google Scholar]
  95. 95.
    Rushdi A, Simoneit BT. 2001.. Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400°C. . Orig. Life Evol. Biosph. 31::10318
    [Crossref] [Google Scholar]
  96. 96.
    Saha R, Pohorille A, Chen IA. 2015.. Molecular crowding and early evolution. . Orig. Life Evol. Biosph. 44::31924
    [Crossref] [Google Scholar]
  97. 97.
    Saha R, Verbanic S, Chen IA. 2018.. Lipid vesicles chaperone an encapsulated RNA aptamer. . Nat. Commun. 9::2313
    [Crossref] [Google Scholar]
  98. 98.
    Salibi E, Peter B, Schwille P, Mutschler H. 2023.. Periodic temperature changes drive the proliferation of self-replicating RNAs in vesicle populations. . Nat. Commun. 14::1222
    [Crossref] [Google Scholar]
  99. 99.
    Shen Y, Pressman A, Janzen E, Chen IA. 2021.. Kinetic sequencing (k-Seq) as a massively parallel assay for ribozyme kinetics: utility and critical parameters. . Nucleic Acids Res. 49::e67 99. Addresses rigor and reproducibility of HTS assay technique and suggests best practices.
    [Crossref] [Google Scholar]
  100. 100.
    Strulson CA, Molden RC, Keating CD, Bevilacqua PC. 2012.. RNA catalysis through compartmentalization. . Nat. Chem. 4::94146
    [Crossref] [Google Scholar]
  101. 101.
    Szostak JW, Bartel DP, Luisi PL. 2001.. Synthesizing life. . Nature 409::38790
    [Crossref] [Google Scholar]
  102. 102.
    Turk RM, Chumachenko NV, Yarus M. 2010.. Multiple translational products from a five-nucleotide ribozyme. . PNAS 107::458589
    [Crossref] [Google Scholar]
  103. 103.
    Tyrrell J, Weeks KM, Pielak GJ. 2015.. Challenge of mimicking the influences of the cellular environment on RNA structure by PEG-induced macromolecular crowding. . Biochemistry 54::644753
    [Crossref] [Google Scholar]
  104. 104.
    Le Vay KK, Salibi E, Ghosh B, Tang T-YD, Mutschler H. 2023.. Ribozyme activity modulates the physical properties of RNA–peptide coacervates. . eLife 12:e83543
    [Google Scholar]
  105. 105.
    Walde P, Wick R, Fresta M, Mangone A, Luisi PL. 1994.. Autopoietic self-reproduction of fatty acid vesicles. . J. Am. Chem. Soc. 116::1164954
    [Crossref] [Google Scholar]
  106. 106.
    Wang Q, Schlenoff JB. 2014.. The polyelectrolyte complex/coacervate continuum. . Macromolecules 47::310816
    [Crossref] [Google Scholar]
  107. 107.
    Werren JH. 2011.. Selfish genetic elements, genetic conflict, and evolutionary innovation. . PNAS 108::1086370
    [Crossref] [Google Scholar]
  108. 108.
    Wilson DS, Szostak JW. 1999.. In vitro selection of functional nucleic acids. . Annu. Rev. Biochem. 68::61147
    [Crossref] [Google Scholar]
  109. 109.
    Wright S. 1932.. The roles of mutation, inbreeding, crossbreeding and selection in evolution. . In Proceedings of the Sixth International Congress of Genetics, Vol. 1, pp. 35666. Brooklyn, NY:: Brooklyn Bot. Gard.
    [Google Scholar]
  110. 110.
    Yan Z, Hamilton WL, Blanchette M. 2020.. Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions. . Bioinformatics 36::27684
    [Crossref] [Google Scholar]
  111. 111.
    Yang KK, Wu Z, Arnold FH. 2019.. Machine-learning-guided directed evolution for protein engineering. . Nat. Methods 16::68794
    [Crossref] [Google Scholar]
  112. 112.
    Yokobayashi Y. 2019.. Applications of high-throughput sequencing to analyze and engineer ribozymes. . Methods 161::4145
    [Crossref] [Google Scholar]
  113. 113.
    Yokobayashi Y. 2020.. High-throughput analysis and engineering of ribozymes and deoxyribozymes by sequencing. . Acc. Chem. Res. 53::290312
    [Crossref] [Google Scholar]
  114. 114.
    Zhou H-X, Dill KA. 2001.. Stabilization of proteins in confined spaces. . Biochemistry 40::1128993
    [Crossref] [Google Scholar]
  115. 115.
    Zhu TF, Szostak JW. 2009.. Coupled growth and division of model protocell membranes. . J. Am. Chem. Soc. 131::570513
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-030822-025038
Loading
/content/journals/10.1146/annurev-biophys-030822-025038
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error