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Abstract

It would often be useful in computer simulations to use an implicit descrip-
tion of solvation effects, instead of explicitly representing the individual sol-
vent molecules. Continuum dielectric models often work well in describing
the thermodynamic aspects of aqueous solvation and can be very efficient
compared to the explicit treatment of the solvent. Here, we review a par-
ticular class of so-called fast implicit solvent models, generalized Born (GB)
models, which are widely used for molecular dynamics (MD) simulations
of proteins and nucleic acids. These approaches model hydration effects and
provide solvent-dependent forces with efficiencies comparable tomolecular-
mechanics calculations on the solute alone; as such, they can be incorporated
into MD or other conformational searching strategies in a straightforward
manner. The foundations of the GB model are reviewed, followed by ex-
amples of newer, emerging models and examples of important applications.
We discuss their strengths and weaknesses, both for fidelity to the underly-
ing continuum model and for the ability to replace explicit consideration of
solvent molecules in macromolecular simulations.
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1. INTRODUCTION

Biochemical processes often depend strongly on their environment, often consisting of water plus
mobile ions, whose main thermodynamic impact is to stabilize charges or polar groups and to
screen charge–charge interactions.Computer simulations, based onMDorMonteCarlo sampling
techniques, can represent these and other solvation effects by including explicit water molecules
and ions as a part of the simulation setup (87). This approach is generally straightforward but can
be both expensive and inconvenient for studies where the behavior of the biomolecular system (the
solute) is of primary interest. The basic idea of implicit solvation is to integrate out explicit solvent
degrees of freedom, incorporating their thermodynamic effects into a solvation free energy�Gsolv.
This leads to a simulation setup where the only explicit degrees of freedom are the coordinates of
the solute and where the effects of the solvent environment adjust instantaneously as the solute
configuration changes.

By its very nature, implicit solvent models describe only a thermodynamic equilibrium state;
sampling of the equilibrium states can be greatly enhanced but at the expense of disregarding the
kinetics.Of greater concern is a seemingly inevitable loss of accuracy and generality of fast implicit
solvation: The complex ways in which collections of water molecules interact with biomolecules
are greatly simplified to achieve computational efficiency, to the detriment of physical realism.
Furthermore, explicit solvent simulations can be very general: It is relatively straightforward to
explore changes in temperature and pressure, to incorporate heterogeneous environments (such as
lipid bilayers), to deal withmultivalent ions ormixtures ofmonovalent and divalent ions, and so on.
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In contrast, the implicit solvent models discussed here are mostly specific to a fairly homogeneous
water/ion environment in a narrow temperature range. Given these limitations, it may be useful
to sum up reasons that implicit solvent models are still of wide interest:

1. There is no need for the lengthy equilibration of water that is typically necessary in explicit
water simulations; implicit solvent models correspond to instantaneous solvent dielectric
response.

2. Continuum simulations generally give improved sampling, owing to the absence of viscosity
associated with the explicit water environment; hence, the macromolecule can more quickly
explore the available conformational space.

3. There are no artifacts of periodic boundary conditions; the continuum model corresponds
to solvation in an infinite volume of solvent.

4. New (and simpler) ways to estimate free energies become feasible; since solvent degrees of
freedom are taken into account implicitly, estimating free energies of solvated structures is
much more straightforward than with explicit water models (57, 104).

5. Implicit models provide a high degree of algorithm flexibility. For instance, a Monte-Carlo
move involving a solvent-exposed side chain would require nontrivial rearrangement of the
nearby water molecules if they were treated explicitly. With an implicit solvent model, this
complication does not arise. Similar considerations (discussed in Section 4.6) arise when
protonation changes are sampled in constant pH simulations.

6. Last but not least, the implicit solvation approach is very useful at guiding physical reasoning
(122).

In this review, we focus our discussion on the generalized Born (GB) implicit solvent model,
whose computational speed is roughly comparable to that of molecular-mechanics (force field)
calculations for biomolecules in the absence of solvent and that provides both solvation energies
and the solvent contribution to forces on the solute atoms. The forces enable MD simulations,
and the speed makes possible the sorts of extensive explorations of conformational space that are
needed for computational design, docking calculations, and free energy estimates.We build upon
earlier reviews (8, 9, 82, 87, 120) but try to cover some of the most recent developments while also
keeping this account reasonably self-contained.

2. POLAR SOLVATION: THE GENERALIZED BORN MODEL

One of the conceptually simplest models treats the solute as a low-dielectric region εin, embed-
ded in a continuous medium characterized by a macroscopic dielectric constant εout, applying
macroscopic concepts at a level of atomic detail (10, 98). There are many reasons to be suspi-
cious of this model, not least of which is the difficulty of assigning a single dielectric constant to
the structurally diverse interior of a protein or other macromolecule (97). Still, this represents a
well-specified physical model, whose properties can be systematically explored and whose defects
might be ameliorated through empirical parameterization or adjustment. Early explorations, be-
fore the development of digital computers, treated the solute molecule as a sphere; this model still
provides useful insights, and we begin there.

2.1. Electrostatic Interactions in Spherical Geometries

The Born equation (12) describes the transfer free energy of a single spherical ion (with a single
charge at its center) from the gas phase to a (water) environment characterized by a continuum
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Figure 1

(a) A spherical solute of radius A. Two point charges, qi and q j , are placed at distances ri and r j , respectively,
from the sphere center. (b) Representation of a molecule as a set of overlapping spheres. The integral needed
in Equation 12 can be approximately written as a sum over all of the spheres except for the white one.
Pairwise overlap of spheres, as with the white and blue spheres, and missing interstitial volume (red) are
handled analytically.

dielectric εout:

�Gsolv(Ri ) = −
(
1 − 1

εout

)
q2

2A
, 1.

where A is the ion radius, q is its charge, and Gaussian units are used; a derivation is given below
in Equation 10. The complex effects of water–ion and water–water interactions across multiple
water shells surrounding the ion, and including both the entropic and enthalpic contributions, are
distilled into the functional dependence of�Gsolv on the key parameters of the model: in this case,
the solvent dielectric and the ion charge and size.

The Born formula (12) (Equation 1) is the simplest of several models (54, 55, 109) that share
the same underling physics—they are exact solutions of the Poisson equation of continuum elec-
trostatics for a spherical solute. These so-called spherical cow models still serve to illustrate some
of the key features of electrostatic interactions in biomolecules. The Tanford–Kirkwood model,
for example, was used for many years to rationalize the pH behavior of proteins (39, 109, 110).

Some simple and interesting limits arise when εout becomes very large (56). In particular, one
can show that for an arbitrary charge distribution inside a spherical solute (Figure 1a), the exact
solution of the Poisson equation (in the limit εout → ∞) gives the solvation free energy of the
following simple form (38, 100):

�Gsolv = −1
2

(
1
εin

− 1
εout

) ∑
i, j

qiq j√
r2i j + RiRj

, 1.

Ri = A− r2i /A. 2.

This result is very similar to the GB idea introduced in the next section; note that the double
summation in Equation 2 includes self-energy terms, where i = j (representing stabilization of
charges via polarization of the external medium), as well as cross-terms that represent charge–
charge interactions screened by the surrounding high-dielectric solvent.
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2.2. Treating Molecules as Collections of Atoms

Spherical models are appealing owing to their simplicity and clear physical foundation but have
obvious limitations for realistic molecules, which have multiple charge centers and are nonspher-
ical. Attempts to generalize Equation 1 to the multi-atom case are at least 70 years old (42) and
began to be applied in earnest to biomolecular problems about three decades ago (9, 105). If we
imagine a molecule consisting of charges q1 . . . qN embedded in spheres of radii a1 . . . aN , and if
the separation ri j between any two spheres is sufficiently large in comparison to the radii, then
the solvation free energy can be given by a sum of individual Born terms and pairwise Coulombic
terms:

�Gsolv �
N∑
i

− q2i
2ai

(
1 − 1

εout

)
+ 1

2

N∑
i

N∑
j �=i

qiq j
ri j

(
1
εout

− 1
)
, 4.

where the factor (1/εout − 1) appears in the pairwise terms because the Coulombic interactions
are rescaled by the change of dielectric constant upon going from vacuum to solvent. Of course,
in real molecules, the atomic spheres are not necessarily far from one another, so one needs to go
a step further.

The project of GB theory can be thought of as an effort to find a relatively simple analytical
formula, resembling Equation 4, which for realistic molecular geometries will capture as much
as possible the physics of the Poisson equation. The linearity of the Poisson equation (or the
linearized Poisson–Boltzmann equation) assures that�Gsolv will indeed be quadratic in the source
charges, and so it is natural to generalize Equation 4 to

�Gsolv �
(
1 − 1

εout

)
1
2

∑
i j

qiq j
f GB
i j

, 5.

where f GB is some reasonably simple function. Here, the self (i = j) f GB terms can be thought
of as effective Born radii, whereas for the off-diagonal terms, it becomes an effective interaction
distance. Befittingly, the collective name for the resulting models is the generalized Born. A par-
ticularly successful version of the GB kernel, f GB

i j in Equation 5, was proposed in 1990 (105):

f GB
i j (ri j ) =

[
r2i j + RiRj exp(−r2i j/4RiRj )

]1/2
. 6.

Here, the Ri terms are the effective Born radii of the atoms, which generally depend not only
on ai, the intrinsic radius of atom (i), but on the radii and relative positions of all other atoms.
Qualitatively, the effective Born radius of an atom corresponds to its degree of shielding from
solvent by the surrounding atoms. In what follows, we call the GB model based on Equations 5
and 6 the canonical GB model.

While historically, the GB model was not conceived as a direct approximation to the Pois-
son model, and alternative interpretations exist (17), a number of arguments (87) can be made
to support this viewpoint, including the very similar structure of the canonical GB and that of
Equation 2—the exact solution of the Poisson problem for a sphere. One can further argue (88)
that the exp(−r2i j/4RiRj ) factor in Equation 6 attempts to account, in some average sense, for the
nonspherical shape of realistic molecules by attenuating charge–charge interactions along the long
dimension of the molecule. The view of the GB as an approximation to the Poisson model has
been instrumental in the development of the GB for macromolecular applications and continues
to help reasoning in developing new GB-like theories.
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2.3. The Coulomb Field Approximation

In the classical electrostatics of a linearly polarizable media (49), the work required to assemble
a charge distribution can be formulated either in terms of a product of the charge distribution
with the electric potential or in terms of the scalar product of the electric field E and the electric
displacement D:

G = 1
2

∫
�

ρ(x)ψ (x)dx = 1
8π

∫
�

E · Ddx. 7.

We now introduce the essential approximation used in most early forms of GB theory: that the
electric displacement is Coulombic in form and remains so even as the exterior dielectric is altered
from 1 to εout in the solvation process. In other words, the displacement due to the charge of atom
i (which is here presumed to lie on the origin) is

Di ≈ qir
r3
. 8.

This is called the Coulomb field approximation (CFA). It is exact for a charge at the center of a
sphere, but substantial deviations arise in more complex geometries. The work of placing a charge
at the origin within a molecule whose interior dielectric constant is εin, surrounded by a medium
of dielectric constant εout and in which no other charges have yet been placed, is then

Gi = 1
8π

∫
(D/ε ) · Ddx ≈ 1

8π

∫
in

qi
r4εin

dx + 1
8π

∫
out

qi
r4εout

dx. 9.

The electrostatic component of the solvation free energy is found by taking the difference as the
exterior dielectric is changed from 1.0 to εout:

�Gsolv, i = 1
8π

(
1
εout

− 1
) ∫

out

qi
r4
dx, 10.

where the contribution due to the interior region has canceled in the subtraction. Comparing
Equation 10 to Equations 4 or 5, we conclude that the effective Born radius should be

R−1
i = 1

4π

∫
out

qi
r4
dx. 11.

It is convenient to rewrite this in terms of integration over the interior region, excluding a radius
ai around the origin, as

R−1
i = a−1

i − 1
4π

∫
in, r>ai

1
r4
dx. 12.

Note that in the case of a monatomic ion, where the molecular boundary is simply the sphere
of radius ai, this equation becomes Ri = ai and the Born formula is recovered exactly. However,
in general, the CFA overestimates the effective Born radii; this problem is partially alleviated by
some of the approximations used to compute them, as discussed in Section 2.4.

With these approximations, the original two-dielectric Poisson equation, which implies the
need for a (numerical) solution of a three-dimensional partial differential equation, has been
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replaced by the much simpler task of estimating the three-dimensional integral over a molec-
ular volume in Equation 12. In the next section, we survey some of the approaches used to do this,
which often involve further approximations.

2.4. Estimating Effective Born Radii

Equations 11 and 12 provide a formal approach to computing effective Born radii, but in practice
a variety of approximations and heuristic models are used, both for the sake of efficiency and to
inject some empirical understanding into the resulting values.

2.4.1. The notion of “perfect radii.” In principle, Ri could be chosen so that if one were to
solve the Poisson equation for a charge qi at the position of atom i and no other charges and a
dielectric boundary determined by the molecular shape, then the self-energy of charge i in its
reaction field would be equal to −(q2/2Ri )(1 − 1/εout ). This self-energy could be computed by
solving the Poisson equation numerically, and the resulting values of Ri have been called perfect
radii; these are known to give a reasonably good approximation to Poisson theory when used
in conjunction with Equations 5 and 6 (86). Obviously, this procedure would have no practical
advantage over a direct calculation of �Gsolv using a numerical solution of the Poisson equation,
but comparisons to perfect radii are useful in testing more approximate (and more rapid) models.
In some applications [e.g., coarse-grained DNA models (93, 94)], the perfect radii are computed
once and then kept constant throughout the simulation.

2.4.2. Volume integration via quadrature. Perhaps the most straightforward approach to
Equation 12 is to make use of quadrature schemes, often loosely adapted from quantum chem-
istry calculations. For example, the GBSW (GB simple switching) model (7, 44) uses a spherical
quadrature model to sample the atomic density surrounding each atom to determine its contribu-
tion to the effective Born radius. A switching function is used to blur the sharp boundary between
high- and low-dielectric regions, which fills in many of the small voids shown as red regions in
Figure 1. (A correction to the CFA, discussed in Section 2.5, is also applied.) The use of quadra-
tures results in a method that is not fully rotationally invariant; however, the errors can be small,
and a version optimized for GPUs provides performance on par with the nonquadrature models,
depending on system size (7).

The GBMV (GBmolecular volume) models work harder to evaluate Equation 12 over the true
molecular volume, generally trading speed for accuracy (62). The use of an analytical molecular
volumemodel (35),with some heuristics to speed up table lookups, allows Born radii to be obtained
that are quite close to the exact radii.

The Gaussian generalized Born model (36, 37) mimics GBSW in abandoning the model of a
sharp division between high- and low-dielectric regions and estimates the integrals needed to ob-
tain Born radii by adopting a Gaussian shape model.This approach has the advantage of providing
analytical derivatives without the need for numerical grids.

2.4.3. Volume integrations over collections of overlapping spheres. A separate path to
Equation 12 treats molecules as collections of overlapping spheres with sharp boundaries, as il-
lustrated in Figure 1. If the molecule consisted of a set of nonoverlapping spheres of radius a j
at positions ri j relative to atom i, then Equation 12 could be written as a sum of integrals over
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spherical volumes, which can be computed analytically (95):

R−1
i = a−1

i −
∑
j

a j
2(r2i j − a2j )

− 1
4ri j

log
ri j − a j
ri j + a j

. 13.

An analytical expression is also available for the case of atom j overlapping with the central atom,
i, provided j does not overlap any other atom j′ (95). Although in practice, the atoms j do overlap
with one another to some extent, these overlaps can be neglected to a first approximation, and
empirical corrections can be introduced to compensate for the lack of overlap. This is referred
to as the pairwise descreening approximation (40). Hawkins et al. (40, 41) have introduced such a
scheme based on rescaling the van der Waals radii by factors Sj . The expression for the GB radii
takes the form

R−1
i = a−1

i −
∑
j

H (ri j , Sja j ), 14.

where H is a rather complex expression that, apart from rescaling, is essentially Equation 13 if i
and j do not overlap and has different functional forms in overlapping cases (41). In the analytical
generalized Born plus nonpolar (AGBNP) model of Gallicchio & Levy (28), the scaling factors Si j
are not independent constants but are computed on the fly from a Gaussian-based decomposition
of the molecular volume into atomic contributions.

A serious problem with representing molecular volume as a set of overlapping atomic spheres
is the neglect of interstitial spaces between the atomic spheres in the interior of the molecule
(Figure 1). In the approximation, these crevices are treated as if they belonged to the solvent
space—that is, filled with high dielectric, which is unphysical for many types of calculations (83);
the corresponding effective radii are underestimated. (The use of the CFA leads to a certain can-
cellation of errors in this case since the CFA tends to overestimate the effective radii.) For biopoly-
mers, this neglect of interstitial space leads to appreciable underestimation of the effective radii,
compared to the perfect radii introduced above (86).

Efforts to correct this deficiency while preserving computational efficiency of the pairwise ap-
proximation have led to a series of GB flavors. In one of them, GBOBC (now available in many
modeling packages), an empirical correction is introduced (84, 85) that modifies the pairwise inte-
gration method to reduce the effect of interstitial high dielectrics.However, by design, the GBOBC

approach compensates for missing interstitial volume only on average, in a geometry-independent
manner. To further improve the GB accuracy, an additional correction to the pairwise procedure
was introduced (74) that brings in elements of molecular volume, in a pairwise sense: An addi-
tional term is added to Equation 14 that reintroduces the molecular volume between each pair
of atoms missed by the original approximation. The integral over this neck-shaped region can be
approximated by a simple analytical function with a negligible additional computational expense
relative to GBOBC. It took a significant reparameterization effort to make the original GB-neck
model a success for both proteins (81) and the DNA (80)—all of these models are now available
in Amber.

2.5. Beyond the Coulomb Field Approximation

As mentioned above, the CFA can lead to significant errors in the effective Born radii. In fact,
even for a perfectly spherical solute, the CFA is exact only for a charge located in the center of the
sphere, while for a charge near the boundary, it overestimates the effective radius by a factor of
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2 (9).Consequently, theCFA overestimates effective radii for realisticmolecular geometries as well
(62). This problem has been well known for quite some time, and various empirical corrections
to the CFA have been proposed (44, 60, 62). These typically take the form of a simple linear or a
rational combination of correction terms such as

αN =
⎛
⎝ 1
4π

(N − 3)
∫
ex

dV
|r − ri|N

⎞
⎠

1
N−3

, 15.

where N ≥ 4. Specifically, Lee et al. (62) were the first to propose an alternative to the CFA along
these lines—namely, an expression involving α4 and α5—and later, an even more accurate expres-
sion based on α4 and α7 (60). These corrections are utilized in the GBSW and GBMV models
discussed above.

2.6. Expressions Based on Exact Spherical Limits

The canonical GB model becomes exact for a perfect sphere in the conductor limit εout → ∞,
assuming exact effective Born radii. However, the effective radii computed via the CFA, and via
other, more complex integral forms mentioned above, are not exact even for a sphere, leading to
hard-to-control inaccuracies for realistic shapes.

An alternative expression to compute the effective R6 radii was proposed by A. Svrcek-Seiler
(personal communication) and independently by Grycuk (38) as

R−1
i =

(
3
4π

∫
out

dV
|r − ri|6

)1/3

=
(
a−3
i − 3

4π

∫ solute

r>ai
|r|−6dV

)1/3

, 16.

where in the first expression, the integral (out) is taken over the region outside the molecule and
in the second integral, the origin is moved to the center of atom i. The above expression is an
integral equivalent of Equation 3—that is, it gives the effective Born radii that are exact for any
charge location within a perfect spherical solute in the conductor limit.

The potential advantage of Equation 16 over the CFA and its extensions for practical computa-
tion became clear when it was shown (75) that the corresponding R6 radii can be very close to the
perfect radii for realistic biomolecular shapes, resulting in solvation energies in close agreement
with perfect radii. It was also demonstrated (100) that the use of εout → ∞ limit in computing
the effective Born radii results in more accurate estimates of �Gsolv via canonical GB, at least for
single globular molecules. Implementations of the R6 GB model in which Equation 16 is inte-
grated analytically over the van derWaals volume of the solute are available (58, 121). Performing
the integral analytically over the molecular volume, which has traditionally been the target for GB
models intended for use in MD simulations, proved difficult, and a number of approximations had
to be made to produce a fully analytical expression (2); pilot implementations in MD produced
mixed results. Compared to the CFA, the R6 model is apparently less forgiving to approximations
to the molecular volume, and there is no fortuitous cancellation of error that helps the CFA.

Surface-based R6 formulations have also been developed, in which the effective Born radii are
calculated via

R−3
i =

(
− 1
4π

∮
∂V

r − ri
|r − ri|6 · dS

)
, 17.
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where ∂V represents the molecular surface of the molecule, dS is the infinitesimal surface element
vector, ri is the position of atom i, and r represents the position of the infinitesimal surface element.
[This follows the lead of earlier work to turn volume integrals into surface ones (32).] A version of
the model, GBNSR6 (1, 27) (numerical surface R6 GB), is available in Amber. It has been tested
in calculation of small molecule hydration energies (1) and in protein ligand binding (45), where
its accuracy is noteworthy (47).

2.7. Alternative Forms for Charge–Charge Interactions

The canonical form of the GB kernel, f GB
i j in Equation 6, is not the only one proposed and tested.

For example, values of the empirical factor other than 4 in exp(−r2i j/4RiRj ) have been considered
(37, 38, 51, 60, 69), in the range from 1 to 8. That the canonical value of 4 remains the most widely
used indicates that it is close to a so-called general purpose optimum and that further accuracy
improvements may require a different functional from of the GB equation.

A substantially different form of the GB kernel f GB
i j was recently proposed (59) on the basis

of a carefully examined connection between the GB and conductor-like polarizable continuum
models (114):

fi j = ri j +
(
1 + 1.028ri j

16
√
RiRj

)−16

. 18.

Noticeable improvements over the canonical GB in both accuracy and speed were reported (59);
however, the testing has so far been limited.

GB-like models also exist that go beyond the canonical GB Green function itself (i.e.,
Equation 5). One such model is the analytical linearized Poisson–Boltzmann (ALPB) (99, 100):

�Gel = −1
2

(
1
εin

− 1
εout

)
1

1 + βα

∑
i j

qiq j , 19.

where β = εin/εout, α = 0.571412, and A is the electrostatic size of the molecule, which is essen-
tially the overall size of the structure. In practice, the value of A can be estimated analytically (99).
Moreover, it was shown that keeping the value of A constant in MD simulation is acceptable (99).
In the limit εin

εout
→ 0, the canonical GB and ALPB coincide, but outside of this limit, the latter

model shows a closer agreement with the Poisson theory. For the case of aqueous solvation, the
model provides a small but consistent improvement over the canonical GB.

Going beyond the spherical shape as the basis for derivation of beyond-GB models led to a
model that accounted for the existence of two modes in the solution of the Poisson equation for
nonspherical shapes: longitudinal and transverse (88). The former more or less corresponds to the
canonical GB, while the latter is very different; the overall Green function interpolates between
the twomodes on the basis of the values of the local gradients of the effective Born radii.Compared
to the canonical GB, the newmodel resulted in significantly fewer gross errors in pairwise charge–
charge interactions, with the numerical Poisson solution taken as reference. However, the testing
was so far limited to R6 effective Born radii estimated numerically.

GB-like theories can also explicitly incorporate effects that go even beyond the linear-response
Poisson theory. For example, an extension of the Born model was proposed (77) that explicitly ac-
counts for charge hydration asymmetry (CHA)—strong dependence of the hydration free energy
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on the sign of the solute charge:

�G � −
(
1 − 1

ε

)
q2

2(R+ Rs )

(
1 − sgn[q]

δ

R+ Rw

)
. 20.

Here, ε is the dielectric constant of water, Rw is the radius of water molecule, q and R are the
ion charge and ionic radius, respectively, Rs = 0.52 Å is a constant shift to the dielectric bound-
ary (77), and δ is the symmetry breaking parameter (78). The charge-asymmetric Born equation
(Equation 20) contains no fitting parameters yet describes experimental ion hydration energies to
within 5% of experiment (77). The CHA effects can be introduced into the effective Born radii by
analogy with Equation 20, leading to a charge-asymmetric GB-like model CHA-GB (76), imple-
mented in AmberTools. The introduction of CHA into the GB has improved its ability to predict
hydration free energies of small molecules and amino acids simultaneously, including the charged
ones.

2.8. Effects of Ionic Screening

Mobile ions in the solvent can be very effective at screening charge–charge interactions, augment-
ing the dielectric effect itself. The linearized (or Debye–Hückel) model can be solved analytically
for a sphere (54, 109), and an extension can be made to general shapes in the same way as the
salt-free case discussed above. This leads to the simple ansatz

(
1 − 1

ε

)
→
(
1 − exp(−κ fGB)

ε

)
, 21.

where κ is the Debye–Hückel inverse screening length.
Both the canonical GB (and the Poisson–Boltzmann equation for that matter) utilize a mean-

field description of ions, which does not account for ion–ion correlations or discreteness of ions
near the charged solute surface. While in the case of monovalent ions, the correlation effects
are small and can often be neglected, the correlations between multivalent ions can introduce
significant corrections to ion distributions and electrostatic potentials around solutes. Recently,
a GB-like model was constructed (113) to handle ions explicitly. Modifications to the canonical
model were required, including modifications to account for multiple interacting solutes, which
are characterized by a disconnected dielectric boundary around the solute–ion or ion–ion pairs.
For a duplex DNA example, the monovalent (Na+) and trivalent (CoHex3+) counterion distribu-
tions produced by the model are in close agreement with all-atom explicit water MD simulations
used as reference.

2.9. Adopting Generalized Born for Membrane Environments

A specific challenge arises if one wants to use the GB to describe the effects of the essentially
heterogeneous dielectric environment of biological membranes and water/membrane interface.
Several empirical modifications (24, 102, 112, 116) to the canonical GB have been proposed that
so far utilize the same general idea: keep the main GB formalism intact and use the effective Born
radii to account for the presence of additional dielectric boundaries. For example, the heteroge-
neous dielectric generalized Born (HDGB) flavor is an extension of the GBMV approach, where
the original expression for the effective Born radii now includes an explicit dependence on εin and
εout via an analytical formula for Ri: Ri = Ri(εin, εout ). The model (112) partitions the membrane
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Figure 2

A schematic of an idealized, multi-dielectric membrane environment mimicked by some of the generalized
Born models.

slab into several regions of constant dielectric (Figure 2), approximating a realistic scenario in
which the dielectric properties of the membrane ε(z) vary continuously across the bilayer.

A recent extension of the HDGB model, HDGBvdW (HDGB with a van der Waals term)
(21), provides a more accurate description of the nonpolar components of the free energy of sol-
vation. Compared to the original HDGB, the extension improves free energy estimates in the
hydrophobic interior of the membrane, where nonpolar interactions are significant.

2.10. Speeding It Up for Large Systems

Although the GB equations are more complex than simple molecular-mechanics force fields, they
often perform well in parallel CPU architectures, and adaptations to GPUs are available in several
popular packages (7, 22, 33). However, until recently, available GB implementations were poorly
suited to handle very large structures, because traditional implementations scale asO(N 2) with the
number of solute atomsN . A certain amount of speedup, up to a factor of 3 or so for a 25,000-atom
system, can be achieved by using a soft cutoff in the calculation of the effective Born radii (82),
but the Ewald-based procedures that address the O(N 2) problem for explicit solvent simulations
cannot be readily adapted to the nonperiodic geometries used in implicit solventmodels.However,
cutoffs applied to charge–charge interaction can lead to artifacts, especially for highly charged
systems (46).

To overcome the problem, a method of hierarchical charge partitioning (HCP) was proposed
(3, 4, 6), which bears some similarity with the fast multipole approach but is better suited for
biomolecular simulations. Specifically, HCP is a multi-scale, yet fully atomistic, approach to per-
form MD simulations based on the GB model, mainly intended for very large structures. HCP
employs a charge coarse-graining scheme that takes advantage of the natural hierarchical parti-
tioning of large biomolecules into smaller structural components (e.g., amino acids, chains). The
charge coarse graining is performed via a rigorous mathematical procedure, and no reparameteri-
zation of the original atomistic force field is needed.MD simulations based on HCP [GB-HCPO
(46), available in Amber] scale asN logN with the number of atoms in the solute,whichmeans that
conformations of very large (millions of atoms) fully atomistic systems can be sampled efficiently,
without cut-offs.

3. APPROACHES TO NONPOLAR SOLVATION

The electrostatic component of solvation, including stabilization of polar and charged groups,
and the screening of charge–charge interactions, are generally the most influential terms for
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biomolecules in (salt-) water. The electrostatic component corresponds to the free energy of dis-
charging the solute (i.e., of setting all its charges to zero).What remains is a very nonpolar object
(something like an alkane) that has the same shape as the original solute. This remaining (hypo-
thetical) object has a nonzero solvation free energy, which is generally smaller than the electro-
static component in absolute terms, but which can have a significant influence on conformational
equilibria.

These interactions have proved to be hard to model in a simple fashion, primarily because
one must consider two competing effects: There is a (unfavorable) free energy change required
to create an empty cavity in the solute to accommodate the solute, and this is partially offset by a
(favorable) dispersion interaction between the solute (once it is inserted into the cavity) and the
surrounding solvent molecules. The simplest, and still most widely used, approach is to assume
that the nonpolar contribution is proportional to the solvent-exposed surface area, even though
nonpolar contributions are known to depend upon the solute size and shape in a more complex
fashion (14, 30, 31, 48, 61, 65). To the extent that they “work,” simple surface area terms may
capture changes in solvation over narrow ranges of conformations, and experience suggests that
the relatively smooth changes associated with solvent-accessible surface areas can avoid pitfalls
that arise with more complex models (108).

Even within this model, one has the additional challenge of estimating surface areas in an effi-
cient fashion. The Amber programs use the linear combination of pairwise overlaps model (119),
which uses parameters characteristic of common combinations of neighboring atoms to amolecule
surface area. Gallicchio & Levy (28) have adapted an earlier model based on a superposition of
Gaussian functions representing atomic volumes (34) to compute a surface area estimate (and
its derivatives) in an efficient manner. In this AGBNP model, they also base the solute–solvent
dispersion estimates on already-computed Born radii.

4. APPLICATION EXAMPLES

Implicit solvent models have been in use in biomolecular simulations for a long time, and it is not
feasible to attempt any fair overview of applications. Instead, we list here a few examples, chosen
from those we are familiar with, to illustrate a range of applications where particular aspects of
implicit solvation are important.

4.1. The Molecular Mechanics–Generalized Born Surface Area Approach
to Free Energies

The free energy of solvation estimates provided by implicit solvent models include both enthalpy
and entropy contributions, and this opens up a novel end-point approach to free energy calcula-
tions (103) where the free energy of a given state (A) is written as

G(A) = 〈EMM〉(A) − TSconfig(A) + 〈�Gsolv〉. 22.

Here,EMM is the molecular-mechanics estimate of the average energy of the solute in the absence
of the solvent, Sconfig is a configurational entropy arising from the solute degrees of freedom, and
�Gsolv gives the free energy contributions from the solvent. The average energy and �Gsolv val-
ues are generally computed over the configurations sampled by an MD trajectory, since no sin-
gle configuration can represent thermal motion in a given basin. The configurational entropy of
the solute can be estimated by normal mode or quasiharmonic analysis for fairly rigid molecules
(52, 70) and by a variety of approaches for floppier systems (26). Free energy differences for
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conformational transitions (say, between bound and free states in ligand–receptor interactions)
are made simply by subtracting the free energy estimates of the two end states.

This approach (in its modern incarnation for biomolecules) was first applied to study the A to
B helix transition in DNA and RNA (103) and was rather quickly extended to study ligand bind-
ing events (57). It has since been widely applied, with varying levels of agreement with observed
data (29, 118). One obvious limitation lies in the inability of available implicit solvent models to
capture subtle changes in �Gsolv as a function of conformation. But obtaining good estimates of
configurational entropies can be equally troubling, especially as the extent of disorder increases;
in fact, the reason that this end-point approach is nearly useless for explicit solvent models arises
from the difficulty of extracting entropy estimates for the solvent in explicit MD simulations.

4.2. Second Derivatives and Normal Modes

Many of the GB flavors discussed above are fully analytical, and higher-order derivatives can be
computed by straightforward (if not tedious) applications of the chain rule. This has been imple-
mented for the original Hawkins–Cramer–Truhlar model (40) in the Amber suite of programs
(13). One can then compute normal modes (as with isolated molecules) but where solvent electro-
static effects are incorporated. This can be a very useful model, for example, in studying mechan-
ical properties of biopolymers, such as the stretching and bending rigidity of DNA, with varying
degrees of salt (11). Normal mode analysis also provides estimates of configurational entropies,
which are useful for end-point analyses like the molecular mechanics–generalized Born surface
area approach.

4.3. Large Scale Motions, Very Large Structures

One of the key advantages of the implicit solvation approach is that the effective viscosity of water
can be set to a much lower value than that of real water; this can speed up conformational transi-
tions significantly (5).The speedup is particularly impressive for transitions that involve large parts
of the biomolecule moving essentially unimpeded in the solvent, in which case 100-fold speedup
of conformational sampling compared to the explicit solvent is easily within reach (5), in addition
to any algorithmic speedups that the GB can offer for the system in question. The first atomistic
simulation of a long (147–base pair) DNA fragment free in solution is an example that illustrates
the point: Only several nanoseconds of the simulation (91) had revealed significant, unexpected
flexibility of the double helix. Note that even setting up a traditional explicit solvent simulation
box of the appropriate size would be quite cumbersome, as the contour length of the 147–base
pair DNA is ∼500 Å.

Atomistic simulation of large biomolecular systems, especially those with flexible parts, is an-
other area where GB-based simulations can be useful. The nucleosome—a complex of 8 histone
proteins and 147 base pairs of DNA wrapped around it—is a relevant example here. GB-based
MD simulations (23, 67) were utilized to study highly flexible N-terminal tail regions of the hi-
stone proteins, implicated in chromatin remodeling. Recently, partially assembled intermediate
states of the nucleosome, unavailable from experiment, were constructed (92) through GB-based
simulations followed by refinement in the explicit solvent.

Multimillion atom systems require special multi-scale treatment. One such GB-based model
[GB-HCPO (46), described above] was used to refine the atomistic structure of a chromatin fiber
fragment consisting of 40 nucleosomes, starting from a low-resolution cryo–electron microscopy
input (89) (Figure 3).
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Million-atom 30-nm chromatin fiber

EquilibratedEquilibratedManually constructedManually constructed
All-atom MD

in implicit solvation

Figure 3

Atomistic simulation (46) of a cryo–electron microscopy–consistent model of 30-nm chromatin fiber reveals
important details consistent with experiment: The linker DNA fills the core region, and the H3 histone tails
interact with the linker DNA. Abbreviation: MD, molecular dynamics.

4.4. Protein Folding

Protein folding at the atomic resolution—once called “the grand challenge of computational
science”—is arguably one of the most illustrious success stories of the GB. Whereas interme-
diate states resembling the native state were observed in a pioneering simulation of the folding
process in explicit solvent (18), it was not until later that a complete folding of a small protein from
a fully unfolded state to the native was achieved in a GB-based MD simulation (101). Many other
GB-based folding studies followed (15, 50, 64), including those aimed at protein design (25, 68).
Recent comparisons of the Amber GB model to Rosetta scoring functions have shown GB results
that match or exceed those from Rosetta in terms of protein loop modeling or folding landscape
characterization (90).

In a recent landmark study (79), folding simulations of 17 proteins (Figure 4) were performed
on a commodity personal computer within days (79). In implicit solvent, correct native states of
small proteins were identified as minimum energy snapshots (5, 101) in straightforward simula-
tions starting from completely extended conformations—the task that is not nearly as straightfor-
ward in explicit solvent. For example, a recent study (66) of folding–unfolding transitions of 12
of the fastest folding proteins required extremely long simulations on a one-of-a-kind specialized
supercomputer and the use of significantly elevated temperature to overcome kinetic traps. It is
unclear for how many of the same proteins a truly de novo (e.g., from a linear peptide) prediction
of the native structure could have been made at 300 K.

4.5. Biomolecules in the Presence of Biological Membranes

Translocation of molecular structures through membranes may involve significant molecular
movements and conformational changes; membranes are generally large structures. These quali-
ties make membrane systems good candidates for implicit solvent simulations, such as simulation
of whole membrane proteins (103, 111, 112, 116). Recent applications include predicting the hy-
drophobic length of membrane proteins (19) and protein structure refinement (20).

4.6. Acid–Base and Redox Transitions

One application area that illustrates the potential power of implicit solvent models is constant
pH simulations. In an early (but still popular) approach (72, 73, 106, 107), conventional MD
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Figure 4

Generalized Born (GB)-based molecular dynamics simulations [GB-neck2 (81), Amber] of a number of
proteins starting from completely unfolded states sample conformations (blue) that are close to the
experimental native structures (red). Lowest root-mean-square deviation distance to the experimental native
structure, in angstroms, is indicated under each protein. Figure adapted from Reference 79, courtesy of
Carlos Simmerling. Abbreviation: AA, amino acids.

simulations are interrupted at intervals by Monte Carlo attempts to transfer protons between
the solute and a hypothetical reservoir maintained at a given pH. An attempted move like this
would almost always fail in an explicit solvent simulation, since waters arranged around a charged
titration site (e.g., a protein side chain) would be in a high-energy configuration for a site that
suddenly neutralized, and vice versa. In an implicit solvent model, by contrast, the solvent model
can instantaneously respond to a change in charge, and Monte Carlo move attempts can have
reasonable acceptance rates. A similar use of this instantaneous response is active in models that
treat the transition between charged and neutral sites in terms of a continuous auxiliary variable
(53, 63, 117).

A key problem with the implicit solvent models is that results are often in poorer agreement
with experiment than one would like. Such errors might arise from limitations of solute force fields
or from incomplete sampling, as well as from deficiencies in the solvent model itself. There have
been quite a few efforts to extend the constant pH idea to explicit solvent simulations (including
approaches that use a hybrid explicit/implicit model), and this continues to be an active area of
current research (43).
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5. CONCLUSIONS

We have reviewed the overall physical foundations and specific implementations of one of the
most widely used fast implicit solvation models—the GB approximation. Implementations are
available in a variety of molecular modeling packages, and many thousands of applications have
been reported.

The specific choice of GB flavor depends on one’s needs: A protein folding simulation may call
for one flavor of the GBmodel (79, 85), while a study of a protein in a membrane environment will
need quite another (20, 71). The model one may prefer for estimates of ligand binding energies
(47) can be different from GB flavors one may recommend for simulations of the DNA (16, 80,
115). Yet a different approach is needed if the molecular charge distribution is described by (po-
larizable) multipoles, rather than by fixed point charges (96). Some recent updates in parameters
have led to significant improvements in the quality of GB models applied to proteins and their
complexes with nucleic acids (80, 81). This diversity of approaches reflects a lack of generality:
No single implicit model works well everywhere. This is hardly surprising, given the complexity
of solvent effects that one is trying to fold into a simple and fast model. Furthermore, some of the
success of GB models certainly arises from fortuitous cancellation of errors and from parameter-
ization schemes that hide defects in the solvation model or in the underlying solute force field.
In spite of these limitations, we have described a number of advantages of such schemes and have
documented some of the recent and novel ideas that continue to drive research in this area.We ex-
pect that there will continue to be an important place for implicit solvent models in biomolecular
simulation for some time to come.
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