1932

Abstract

Vaccine design efforts against the human immunodeficiency virus (HIV) have been greatly stimulated by the observation that many infected patients eventually develop highly potent broadly neutralizing antibodies (bnAbs). Importantly, these bnAbs have evolved to recognize not only the two protein components of the viral envelope protein (Env) but also the numerous glycans that form a protective barrier on the Env protein. Because Env is heavily glycosylated compared to host glycoproteins, the glycans have become targets for the antibody response. Therefore, considerable efforts have been made in developing and validating biophysical methods to elucidate the complex structure of the Env-spike glycoprotein, with its combination of glycan and protein epitopes. We illustrate here how the application of robust biophysical methods has transformed our understanding of the structure and function of the HIV Env spike and stimulated innovation in vaccine design strategies that takes into account the essential glycan components.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-060414-034156
2018-05-20
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-060414-034156.html?itemId=/content/journals/10.1146/annurev-biophys-060414-034156&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Agirre J, Davies GJ, Wilson KS, Cowtan KD 2017. Carbohydrate structure: the rocky road to automation. Curr. Opin. Struct. Biol. 44:39–47
    [Google Scholar]
  2. 2.  Arnold JN, Radcliffe CM, Wormald MR, Royle L, Harvey DJ et al. 2004. The glycosylation of human serum IgD and IgE and the accessibility of identified oligomannose structures for interaction with mannan-binding lectin. J. Immunol. 173:6831–40
    [Google Scholar]
  3. 3.  Baba TW, Liska V, Hofmann-Lehmann R, Vlasak J, Xu W et al. 2000. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6:200–6
    [Google Scholar]
  4. 4.  Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D 2011. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481:81–84
    [Google Scholar]
  5. 5.  Bartesaghi A, Merk A, Borgnia MJ, Milne JL, Subramaniam S 2013. Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy. Nat. Struct. Mol. Biol. 20:1352–57
    [Google Scholar]
  6. 6.  Behrens AJ, Crispin M 2017. Structural principles controlling HIV envelope glycosylation. Curr. Opin. Struct. Biol. 44:125–33
    [Google Scholar]
  7. 7.  Behrens AJ, Harvey DJ, Milne E, Cupo A, Kumar A et al. 2017. Molecular architecture of the cleavage-dependent mannose patch on a soluble HIV-1 envelope glycoprotein trimer. J. Virol. 91:e01894–16
    [Google Scholar]
  8. 8.  Behrens AJ, Vasiljevic S, Pritchard LK, Harvey DJ, Andev RS et al. 2016. Composition and antigenic effects of individual glycan sites of a trimeric HIV-1 envelope glycoprotein. Cell Rep 14:2695–706
    [Google Scholar]
  9. 9.  Binley JM, Sanders RW, Clas B, Schuelke N, Master A et al. 2000. A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure. J. Virol. 74:627–43
    [Google Scholar]
  10. 10.  Binley JM, Sanders RW, Master A, Cayanan CS, Wiley CL et al. 2002. Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J. Virol. 76:2606–16
    [Google Scholar]
  11. 11.  Blattner C, Lee JH, Sliepen K, Derking R, Falkowska E et al. 2014. Structural delineation of a quaternary, cleavage-dependent epitope at the gp41-gp120 interface on intact HIV-1 Env trimers. Immunity 40:669–80
    [Google Scholar]
  12. 12.  Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME et al. 2004. Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. PNAS 101:17033–38
    [Google Scholar]
  13. 13.  Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA et al. 2011. The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLOS ONE 6:e23521
    [Google Scholar]
  14. 14.  Briney B, Sok D, Jardine JG, Kulp DW, Skog P et al. 2016. Tailored immunogens direct affinity maturation toward HIV neutralizing antibodies. Cell 166:1459–70.e11
    [Google Scholar]
  15. 15.  Bryan MC, Fazio F, Lee HK, Huang CY, Chang A et al. 2004. Covalent display of oligosaccharide arrays in microtiter plates. J. Am. Chem. Soc. 126:8640–41
    [Google Scholar]
  16. 16.  Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S et al. 2012. A blueprint for HIV vaccine discovery. Cell Host Microbe 12:396–407
    [Google Scholar]
  17. 17.  Burton DR, Hangartner L 2016. Broadly neutralizing antibodies to HIV and their role in vaccine design. Annu. Rev. Immunol. 34:635–59
    [Google Scholar]
  18. 18.  Burton DR, Mascola JR 2015. Antibody responses to envelope glycoproteins in HIV-1 infection. Nat. Immunol. 16:571–76
    [Google Scholar]
  19. 19.  Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y et al. 2003. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–71
    [Google Scholar]
  20. 20.  Cale EM, Gorman J, Radakovich NA, Crooks ET, Osawa K et al. 2017. Virus-like particles identify an HIV V1V2 apex-binding neutralizing antibody that lacks a protruding loop. Immunity 46:777–91
    [Google Scholar]
  21. 21.  Cao L, Diedrich JK, Kulp DW, Pauthner M, He L et al. 2017. Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nat. Commun. 8:14954
    [Google Scholar]
  22. 22.  Chang SH, Han JL, Tseng SY, Lee HY, Lin CW et al. 2010. Glycan array on aluminum oxide-coated glass slides through phosphonate chemistry. J. Am. Chem. Soc. 132:13371–80
    [Google Scholar]
  23. 23.  Chang VT, Crispin M, Aricescu AR, Harvey DJ, Nettleship JE et al. 2007. Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–73
    [Google Scholar]
  24. 24.  Coss KP, Vasiljevic S, Pritchard LK, Krumm SA, Glaze M et al. 2016. HIV-1 glycan density drives the persistence of the mannose patch within an infected individual. J. Virol. 90:11132–44
    [Google Scholar]
  25. 25.  Crispin M, Doores KJ 2015. Targeting host-derived glycans on enveloped viruses for antibody-based vaccine design. Curr. Opin. Virol. 11:63–69
    [Google Scholar]
  26. 26.  Crispin M, Ritchie GE, Critchley AJ, Morgan BP, Wilson IA et al. 2004. Monoglucosylated glycans in the secreted human complement component C3: implications for protein biosynthesis and structure. FEBS Lett 566:270–74
    [Google Scholar]
  27. 27.  Crispin M, Stuart DI, Jones EY 2007. Building meaningful models of glycoproteins. Nat. Struct. Mol. Biol. 14:354
    [Google Scholar]
  28. 28.  Crooks ET, Osawa K, Tong T, Grimley SL, Dai YD et al. 2017. Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 Envelope glycoprotein trimers on neutralizing antibody induction. Virology 505:193–209
    [Google Scholar]
  29. 29.  Crooks ET, Tong T, Chakrabarti B, Narayan K, Georgiev IS et al. 2015. Vaccine-elicited tier 2 HIV-1 neutralizing antibodies bind to quaternary epitopes involving glycan-deficient patches proximal to the CD4 binding site. PLOS Pathog 11:e1004932
    [Google Scholar]
  30. 30.  Cutalo JM, Deterding LJ, Tomer KB 2004. Characterization of glycopeptides from HIV-I(SF2) gp120 by liquid chromatography mass spectrometry. J. Am. Soc. Mass Spectrom. 15:1545–55
    [Google Scholar]
  31. 31.  de Taeye SW, Ozorowski G, Torrents de la Peña A, Guttman M, Julien J-P et al. 2015. Immunogenicity of stabilized HIV-1 envelope trimers with reduced exposure of non-neutralizing epitopes. Cell 163:1702–15
    [Google Scholar]
  32. 32.  Decroly E, Vandenbranden M, Ruysschaert JM, Cogniaux J, Jacob GS et al. 1994. The convertases furin and PC1 can both cleave the human immunodeficiency virus (HIV)-1 envelope glycoprotein gp160 into gp120 (HIV-1 SU) and gp41 (HIV-I TM). J. Biol. Chem. 269:12240–47
    [Google Scholar]
  33. 33.  Dimitrov DS. 2010. Therapeutic antibodies, vaccines and antibodyomes. mAbs 2:347–56
    [Google Scholar]
  34. 34.  Domann PJ, Pardos-Pardos AC, Fernandes DL, Spencer DI, Radcliffe CM et al. 2007. Separation-based glycoprofiling approaches using fluorescent labels. Proteomics 7:Suppl. 170–76
    [Google Scholar]
  35. 35.  Doores KJ. 2015. The HIV glycan shield as a target for broadly neutralizing antibodies. FEBS J 282:4679–91
    [Google Scholar]
  36. 36.  Doores KJ, Bonomelli C, Harvey DJ, Vasiljevic S, Dwek RA et al. 2010. Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. PNAS 107:13800–5
    [Google Scholar]
  37. 37.  Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M et al. 2009. Antibody recognition of a highly conserved influenza virus epitope. Science 324:246–51
    [Google Scholar]
  38. 38.  Emini EA, Schleif WA, Nunberg JH, Conley AJ, Eda Y et al. 1992. Prevention of HIV-1 infection in chimpanzees by gp120 V3 domain-specific monoclonal antibody. Nature 355:728–30
    [Google Scholar]
  39. 39.  Escolano A, Dosenovic P, Nussenzweig MC 2017. Progress toward active or passive HIV-1 vaccination. J. Exp. Med. 214:3–16
    [Google Scholar]
  40. 40.  Falkowska E, Le KM, Ramos A, Doores KJ, Lee JH et al. 2014. Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. Immunity 40:657–68
    [Google Scholar]
  41. 41.  Freund NT, Horwitz JA, Nogueira L, Sievers SA, Scharf L et al. 2015. A new glycan-dependent CD4-binding site neutralizing antibody exerts pressure on HIV-1 in vivo. PLOS Pathog 11:e1005238
    [Google Scholar]
  42. 42.  Fukui S, Feizi T, Galustian C, Lawson AM, Chai W 2002. Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions. Nat. Biotechnol. 20:1011–17
    [Google Scholar]
  43. 43.  Garces F, Lee JH, de Val N, de la Pena AT, Kong L et al. 2015. Affinity maturation of a potent family of HIV antibodies is primarily focused on accommodating or avoiding glycans. Immunity 43:1053–63
    [Google Scholar]
  44. 44.  Garces F, Sok D, Kong L, McBride R, Kim HJ et al. 2014. Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell 159:69–79
    [Google Scholar]
  45. 45.  Geissner A, Seeberger PH 2016. Glycan arrays: from basic biochemical research to bioanalytical and biomedical applications. Annu. Rev. Anal. Chem. 9:223–47
    [Google Scholar]
  46. 46.  Go EP, Ding H, Zhang S, Ringe RP, Nicely N et al. 2017. Glycosylation benchmark profile for HIV-1 envelope glycoprotein production based on eleven Env trimers. J. Virol. 91:e02428–16
    [Google Scholar]
  47. 47.  Go EP, Herschhorn A, Gu C, Castillo-Menendez L, Zhang S et al. 2015. Comparative analysis of the glycosylation profiles of membrane-anchored HIV-1 envelope glycoprotein trimers and soluble gp140. J. Virol. 89:8245–57
    [Google Scholar]
  48. 48.  Go EP, Liao H-X, Alam SM, Hua D, Haynes BF, Desaire H 2013. Characterization of host-cell line specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. J. Proteome Res. 12:1223–34
    [Google Scholar]
  49. 49.  Green RS, Stone EL, Tenno M, Lehtonen E, Farquhar MG, Marth JD 2007. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27:308–20
    [Google Scholar]
  50. 50.  Gristick HB, von Boehmer L, West AP Jr, Schamber M, Gazumyan A et al. 2016. Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site. Nat. Struct. Mol. Biol. 23:906–15
    [Google Scholar]
  51. 51.  Guenaga J, Dubrovskaya V, de Val N, Sharma SK, Carrette B et al. 2015. Structure-guided redesign increases the propensity of HIV Env to generate highly stable soluble trimers. J. Virol. 90:2806–17
    [Google Scholar]
  52. 52.  Guenaga J, Garces F, de Val N, Stanfield RL, Dubrovskaya V et al. 2017. Glycine substitution at helix-to-coil transitions facilitates the structural determination of a stabilized subtype C HIV envelope glycoprotein. Immunity 46:792–803
    [Google Scholar]
  53. 53.  Guttman M, Garcia NK, Cupo A, Matsui T, Julien JP et al. 2014. CD4-induced activation in a soluble HIV-1 Env trimer. Structure 22:974–84
    [Google Scholar]
  54. 54.  Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G et al. 2009. Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLOS Pathog 5:e1000433
    [Google Scholar]
  55. 55.  Hessell AJ, Rakasz EG, Tehrani DM, Huber M, Weisgrau KL et al. 2010. Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immuno-deficiency virus SHIVBa-L. J. Virol. 84:1302–13
    [Google Scholar]
  56. 56.  Hu JK, Crampton JC, Cupo A, Ketas T, van Gils MJ et al. 2015. Murine antibody responses to cleaved soluble HIV-1 envelope trimers are highly restricted in specificity. J. Virol. 89:10383–98
    [Google Scholar]
  57. 57.  Huang J, Kang BH, Pancera M, Lee JH, Tong T et al. 2014. Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature 515:138–42
    [Google Scholar]
  58. 58.  Jardine JG, Julien J-P, Menis S, Ota T, Kalyuzhniy O et al. 2013. Rational HIV immunogen design to target specific germline B cell receptors. Science 340:711–16
    [Google Scholar]
  59. 59.  Jardine JG, Kulp DW, Havenar-Daughton C, Sarkar A, Briney B et al. 2016. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science 351:1458–63
    [Google Scholar]
  60. 60.  Jardine JG, Ota T, Sok D, Pauthner M, Kulp DW et al. 2015. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349:156–61
    [Google Scholar]
  61. 61.  Jardine JG, Sok D, Julien J-P, Briney B, Sarkar A et al. 2016. Minimally mutated HIV-1 broadly neutralizing antibodies to guide reductionist vaccine design. PLOS Pathog 12:e1005815
    [Google Scholar]
  62. 62.  Julien J-P, Cupo A, Sok D, Stanfield RL, Lyumkis D et al. 2013. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342:1477–83
    [Google Scholar]
  63. 63.  Julien J-P, Lee JH, Cupo A, Murin CD, Derking R et al. 2013. Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. PNAS 110:4351–56
    [Google Scholar]
  64. 64.  Julien J-P, Lee JH, Ozorowski G, Hua Y, Torrents de la Peña A et al. 2015. Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens. PNAS 112:11947–52
    [Google Scholar]
  65. 65.  Julien J-P, Lee PS, Wilson IA 2012. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol. Rev. 250:180–98
    [Google Scholar]
  66. 66.  Julien J-P, Sok D, Khayat R, Lee JH, Doores KJ et al. 2013. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLOS Pathog 9:e1003342
    [Google Scholar]
  67. 67.  Khayat R, Lee JH, Julien J-P, Cupo A, Klasse PJ et al. 2013. Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers. J. Virol. 87:9865–72
    [Google Scholar]
  68. 68.  Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM et al. 2016. Pre-fusion structure of a human coronavirus spike protein. Nature 531:118–21
    [Google Scholar]
  69. 69.  Klasse PJ, LaBranche CC, Ketas TJ, Ozorowski G, Cupo A et al. 2016. Sequential and simultaneous immunization of rabbits with HIV-1 envelope glycoprotein SOSIP.664 trimers from Clades A, B and C. PLOS Pathog 12:e1005864
    [Google Scholar]
  70. 70.  Klein F, Gaebler C, Mouquet H, Sather DN, Lehmann C et al. 2012. Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. J. Exp. Med. 209:1469–79
    [Google Scholar]
  71. 71.  Kong L, He L, de Val N, Vora N, Morris CD et al. 2016. Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1 envelope metastability. Nat. Commun. 7:12040
    [Google Scholar]
  72. 72.  Kong L, Lee JH, Doores KJ, Murin CD, Julien J-P et al. 2013. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat. Struct. Mol. Biol. 20:796–803
    [Google Scholar]
  73. 73.  Kong L, Torrents de la Peña A, Deller MC, Garces F, Sliepen K et al. 2015. Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Acta Crystallogr. D Biol. Crystallogr. 71:2099–108
    [Google Scholar]
  74. 74.  Kwong PD, Wyatt R, Desjardins E, Robinson J, Culp JS et al. 1999. Probability analysis of variational crystallization and its application to gp120, the exterior envelope glycoprotein of type 1 human immunodeficiency virus (HIV-1). J. Biol. Chem. 274:4115–23
    [Google Scholar]
  75. 75.  Lawson AM, Hounsell EF, Stoll MS, Feeney J, Chai WG et al. 1991. Characterisation of minor tetra- to hepta-saccharides O-linked to human meconium glycoproteins by t.l.c.–m.s. microsequencing of neoglycolipid derivatives in conjunction with conventional m.s. and 1H-n.m.r. spectroscopy. Carbohydr. Res. 221:191–208
    [Google Scholar]
  76. 76.  Lee JH, Andrabi R, Su C-Y, Yasmeen A, Julien J-P et al. 2017. A broadly neutralizing antibody targets the dynamic HIV envelope trimer apex via a long, rigidified, and anionic β-hairpin structure. Immunity 46:690–702
    [Google Scholar]
  77. 77.  Lee JH, de Val N, Lyumkis D, Ward AB 2015. Model building and refinement of a natively glycosylated HIV-1 Env protein by high-resolution cryoelectron microscopy. Structure 23:1943–51
    [Google Scholar]
  78. 78.  Lee JH, Ozorowski G, Ward AB 2016. Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science 351:1043–48
    [Google Scholar]
  79. 79.  Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ 1990. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 265:10373–82
    [Google Scholar]
  80. 80.  Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB et al. 2013. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10:584–90
    [Google Scholar]
  81. 81.  Li Y, Migueles SA, Welcher B, Svehla K, Phogat A et al. 2007. Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat. Med. 13:1032–34
    [Google Scholar]
  82. 82.  Liu Y, Pan J, Cai Y, Grigorieff N, Harrison SC, Chen B 2017. Conformational states of a soluble, uncleaved HIV-1 envelope trimer. J. Virol. 91:e00175–17
    [Google Scholar]
  83. 83.  Liu Y, Pan J, Jenni S, Raymond DD, Caradonna T et al. 2017. CryoEM structure of an influenza virus receptor-binding site antibody-antigen interface. J. Mol. Biol. 429:1829–39
    [Google Scholar]
  84. 84.  Loke I, Kolarich D, Packer NH, Thaysen-Andersen M 2016. Emerging roles of protein mannosylation in inflammation and infection. Mol. Aspects Med. 51:31–55
    [Google Scholar]
  85. 85.  Lyumkis D, Julien J-P, de Val N, Cupo A, Potter CS et al. 2013. Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342:1484–90
    [Google Scholar]
  86. 86.  Mascola JR, Lewis MG, Stiegler G, Harris D, VanCott TC et al. 1999. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73:4009–18
    [Google Scholar]
  87. 87.  McCoy LE, Burton DR 2017. Identification and specificity of broadly neutralizing antibodies against HIV. Immunol. Rev. 275:11–20
    [Google Scholar]
  88. 88.  McCoy LE, Falkowska E, Doores KJ, Le K, Sok D et al. 2015. Incomplete neutralization and deviation from sigmoidal neutralization curves for HIV broadly neutralizing monoclonal antibodies. PLOS Pathog 11:e1005110
    [Google Scholar]
  89. 89.  McCoy LE, van Gils MJ, Ozorowski G, Messmer T, Briney B et al. 2016. Holes in the glycan shield of the native HIV envelope are a target of trimer-elicited neutralizing antibodies. Cell Rep 16:2327–38
    [Google Scholar]
  90. 90.  McLellan JS, Pancera M, Carrico C, Gorman J, Julien J-P et al. 2011. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480:336–43
    [Google Scholar]
  91. 91.  Medina-Ramírez M, Garces F, Escolano A, Skog P, de Taeye SW et al. 2017. Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. J. Exp. Med. 214:2573–90
    [Google Scholar]
  92. 92.  Mizuochi T, Spellman MW, Larkin M, Solomon J, Basa LJ, Feizi T 1988. Carbohydrate structures of the human-immunodeficiency-virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese-hamster ovary cells. Biochem. J. 254:599–603
    [Google Scholar]
  93. 93.  Moldt B, Rakasz EG, Schultz N, Chan-Hui PY, Swiderek K et al. 2012. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. PNAS 109:18921–25
    [Google Scholar]
  94. 94.  Moulard M, Decroly E 2000. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim. Biophys. Acta 1469:121–32
    [Google Scholar]
  95. 95.  Ozorowski G, Pallesen J, de Val N, Lyumkis D, Cottrell CA et al. 2017. Open and closed structures reveal allostery and pliability in the HIV-1 envelope spike. Nature 547:360–63
    [Google Scholar]
  96. 96.  Pabst M, Chang M, Stadlmann J, Altmann F 2012. Glycan profiles of the 27 N-glycosylation sites of the HIV envelope protein CN54gp140. Biol. Chem. 393:719–30
    [Google Scholar]
  97. 97.  Pallesen J, Murin CD, de Val N, Cottrell CA, Hastie KM et al. 2016. Structures of Ebola virus GP and sGP in complex with therapeutic antibodies. Nat Microbiol 1:16128
    [Google Scholar]
  98. 98.  Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN et al. 2017. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. PNAS 114:E7348–57
    [Google Scholar]
  99. 99.  Pancera M, Shahzad-ul-Hussan S, Doria-Rose NA, McLellan JS, Bailer RT et al. 2013. Structural basis for diverse N-glycan recognition by HIV-1–neutralizing V1–V2–directed antibody PG16. Nat. Struct. Mol. Biol. 20:804–13
    [Google Scholar]
  100. 100.  Pancera M, Zhou T, Druz A, Georgiev IS, Soto C et al. 2014. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514:455–61
    [Google Scholar]
  101. 101.  Panico M, Bouche L, Binet D, O'Connor MJ, Rahman D et al. 2016. Mapping the complete glycoproteome of virion-derived HIV-1 gp120 provides insights into broadly neutralizing antibody binding. Sci. Rep. 6:32956
    [Google Scholar]
  102. 102.  Parren PW, Marx PA, Hessell AJ, Luckay A, Harouse J et al. 2001. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J. Virol. 75:8340–47
    [Google Scholar]
  103. 103.  Pejchal R, Doores KJ, Walker LM, Khayat R, Huang P-S et al. 2011. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–103
    [Google Scholar]
  104. 104.  Peng W, de Vries RP, Grant OC, Thompson AJ, McBride R et al. 2017. Recent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity. Cell Host Microbe 21:23–34
    [Google Scholar]
  105. 105.  Pietzsch J, Gruell H, Bournazos S, Donovan BM, Klein F et al. 2012. A mouse model for HIV-1 entry. PNAS 109:15859–64
    [Google Scholar]
  106. 106.  Pritchard LK, Harvey DJ, Bonomelli C, Crispin M, Doores KJ 2015. Cell- and protein-directed glycosylation of native cleaved HIV-1 envelope. J. Virol. 89:8932–44
    [Google Scholar]
  107. 107.  Pritchard LK, Spencer DI, Royle L, Bonomelli C, Seabright GE et al. 2015. Glycan clustering stabilizes the mannose patch of HIV-1 and preserves vulnerability to broadly neutralizing antibodies. Nat. Commun. 6:7479
    [Google Scholar]
  108. 108.  Pritchard LK, Spencer DI, Royle L, Vasiljevic S, Krumm SA et al. 2015. Glycan microheterogeneity at the PGT135 antibody recognition site on HIV-1 gp120 reveals a molecular mechanism for neutralization resistance. J. Virol. 89:6952–59
    [Google Scholar]
  109. 109.  Pritchard LK, Vasiljevic S, Ozorowski G, Seabright GE, Cupo A et al. 2015. Structural constraints determine the glycosylation of HIV-1 envelope trimers. Cell Rep 11:1604–13
    [Google Scholar]
  110. 110.  Pugach P, Ozorowski G, Cupo A, Ringe R, Yasmeen A et al. 2015. A native-like SOSIP.664 trimer based on an HIV-1 subtype B env gene. J. Virol. 89:3380–95
    [Google Scholar]
  111. 111.  Rademacher TW, Parekh RB, Dwek RA 1988. Glycobiology. Annu. Rev. Biochem. 57:785–838
    [Google Scholar]
  112. 112.  Reeves PJ, Callewaert N, Contreras R, Khorana HG 2002. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. PNAS 99:13419–24
    [Google Scholar]
  113. 113.  Ringe RP, Ozorowski G, Rantalainen K, Struwe WB, Matthews K et al. 2017. Reducing V3 antigenicity and immunogenicity on soluble, native-like HIV-1 Env SOSIP trimers. J. Virol. 91:e00677–17
    [Google Scholar]
  114. 114.  Ringe RP, Sanders RW, Yasmeen A, Kim HJ, Lee JH et al. 2013. Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation. PNAS 110:18256–61
    [Google Scholar]
  115. 115.  Ringe RP, Yasmeen A, Ozorowski G, Go EP, Pritchard LK et al. 2015. Influences on the design and purification of soluble, recombinant native-like HIV-1 envelope glycoprotein trimers. J. Virol. 89:12189–210
    [Google Scholar]
  116. 116.  Rudd PM, Dwek RA 1997. Glycosylation: heterogeneity and the 3D structure of proteins. Crit. Rev. Biochem. Mol. Biol. 32:1–100
    [Google Scholar]
  117. 117.  Sanders RW, Derking R, Cupo A, Julien J-P, Yasmeen A et al. 2013. A next-generation cleaved, soluble HIV-1 Env trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLOS Pathog 9:e1003618
    [Google Scholar]
  118. 118.  Sanders RW, Moore JP 2017. Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol. Rev. 275:161–82
    [Google Scholar]
  119. 119.  Sanders RW, Vesanen M, Schuelke N, Master A, Schiffner L et al. 2002. Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J. Virol. 76:8875–89
    [Google Scholar]
  120. 120.  Sanders RW, Wilson IA, Moore JP 2016. HIV's Achilles' Heel. Sci. Am. 315:50–55
    [Google Scholar]
  121. 121.  Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R et al. 2002. The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of α1→2 mannose residues on the outer face of gp120. J. Virol. 76:7306–21
    [Google Scholar]
  122. 122.  Scharf L, Scheid JF, Lee JH, West AP, Chen C et al. 2014. Antibody 8ANC195 reveals a site of broad vulnerability on the HIV-1 envelope spike. Cell Rep 7:785–95
    [Google Scholar]
  123. 123.  Scheid JF, Mouquet H, Feldhahn N, Seaman MS, Velinzon K et al. 2009. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:636–40
    [Google Scholar]
  124. 124.  Scheid JF, Mouquet H, Feldhahn N, Walker BD, Pereyra F et al. 2009. A method for identification of HIV gp140 binding memory B cells in human blood. J. Immunol. Methods 343:65–67
    [Google Scholar]
  125. 125.  Scheres SH. 2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180:519–30
    [Google Scholar]
  126. 126.  Scheres SH. 2016. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol 579:125–57
    [Google Scholar]
  127. 127.  Sharma SK, de Val N, Bale S, Guenaga J, Tran K et al. 2015. Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design. Cell Rep 11:539–50
    [Google Scholar]
  128. 128.  Shibata R, Igarashi T, Haigwood N, Buckler-White A, Ogert R et al. 1999. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med. 5:204–10
    [Google Scholar]
  129. 129.  Sok D, Doores KJ, Briney B, Le KM, Saye-Francisco KL et al. 2014. Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci. Transl. Med. 6:236ra63
    [Google Scholar]
  130. 130.  Sok D, Pauthner M, Briney B, Lee JH, Saye-Francisco KL et al. 2016. A prominent site of antibody vulnerability on HIV envelope incorporates a motif associated with CCR5 binding and its camouflaging glycans. Immunity 45:31–45
    [Google Scholar]
  131. 131.  Steichen JM, Kulp DW, Tokatlian T, Escolano A, Dosenovic P et al. 2016. HIV vaccine design to target germline precursors of glycan-dependent broadly neutralizing antibodies. Immunity 45:483–96
    [Google Scholar]
  132. 132.  Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA 2006. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312:404–10
    [Google Scholar]
  133. 133.  Stevens J, Corper AL, Basler CF, Taubenberger JK, Palese P, Wilson IA 2004. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 303:1866–70
    [Google Scholar]
  134. 134.  Stewart-Jones GB, Soto C, Lemmin T, Chuang GY, Druz A et al. 2016. Trimeric HIV-1-Env structures define glycan shields from Clades A, B, and G. Cell 165:813–26
    [Google Scholar]
  135. 135.  van Gils MJ, van den Kerkhof TL, Ozorowski G, Cottrell CA, Sok D et al. 2016. An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nat Microbiol 2:16199
    [Google Scholar]
  136. 136.  Veesler D, Campbell MG, Cheng A, Fu CY, Murez Z et al. 2013. Maximizing the potential of electron cryomicroscopy data collected using direct detectors. J. Struct. Biol. 184:193–202
    [Google Scholar]
  137. 137.  Vinothkumar KR, Henderson R 2016. Single particle electron cryomicroscopy: trends, issues and future perspective. Q. Rev. Biophys. 49:e13
    [Google Scholar]
  138. 138.  Walker LM, Burton DR 2010. Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Curr. Opin. Immunol. 22:358–66
    [Google Scholar]
  139. 139.  Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R et al. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:466–70
    [Google Scholar]
  140. 140.  Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P et al. 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326:285–89
    [Google Scholar]
  141. 141.  Ward AB, Sali A, Wilson IA 2013. Integrative structural biology. Science 339:913–15
    [Google Scholar]
  142. 142.  Ward AB, Wilson IA 2017. The HIV-1 envelope glycoprotein structure: nailing down a moving target. Immunol. Rev. 275:21–32
    [Google Scholar]
  143. 143.  Wei X, Decker JM, Wang S, Hui H, Kappes JC et al. 2003. Antibody neutralization and escape by HIV-1. Nature 422:307–12
    [Google Scholar]
  144. 144.  Wibmer CK, Gorman J, Anthony CS, Mkhize NN, Druz A et al. 2016. Structure of an N276-dependent HIV-1 neutralizing antibody targeting a rare V5 glycan hole adjacent to the CD4 binding site. J. Virol. 90:10220–35
    [Google Scholar]
  145. 145.  Willey RL, Shibata R, Freed EO, Cho MW, Martin MA 1996. Differential glycosylation, virion incorporation, and sensitivity to neutralizing antibodies of human immunodeficiency virus type 1 envelope produced from infected primary T-lymphocyte and macrophage cultures. J. Virol. 70:6431–36
    [Google Scholar]
  146. 146.  Wilson IA, Skehel JJ, Wiley DC 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–73
    [Google Scholar]
  147. 147.  Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J et al. 1998. The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393:705–11
    [Google Scholar]
  148. 148.  Wyatt R, Sodroski J 1998. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–88
    [Google Scholar]
  149. 149.  Yasmeen A, Ringe R, Derking R, Cupo A, Julien J-P et al. 2014. Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology 11:41
    [Google Scholar]
  150. 150.  Zhou T, Doria-Rose NA, Cheng C, Stewart-Jones GBE, Chuang GY et al. 2017. Quantification of the impact of the HIV-1-glycan shield on antibody elicitation. Cell Rep 19:719–32
    [Google Scholar]
  151. 151.  Zhou T, Zhu J, Wu X, Moquin S, Zhang B et al. 2013. Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. Immunity 39:245–58
    [Google Scholar]
  152. 152.  Zhu X, Borchers C, Bienstock RJ, Tomer KB 2000. Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry 39:11194–204
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-060414-034156
Loading
/content/journals/10.1146/annurev-biophys-060414-034156
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error