1932

Abstract

Many of the most important molecules of life are polymers. In animals, the most abundant of the proteinaceous polymers are the collagens, which constitute the fibrous matrix outside cells and which can also self-assemble into gels. The physically measurable stiffness of gels, as well as tissues, increases with the amount of collagen, and cells seem to sense this stiffness. An understanding of this mechanosensing process in complex tissues, including fibrotic disease states with high collagen, is now utilizing ’omics data sets and is revealing polymer physics–type, nonlinear scaling relationships between concentrations of seemingly unrelated biopolymers. The nuclear structure protein lamin A provides one example, with protein and transcript levels increasing with collagen 1 and tissue stiffness, and with mechanisms rooted in protein stabilization induced by cytoskeletal stress. Physics-based models of fibrous matrix, cytoskeletal force dipoles, and the lamin A gene circuit illustrate the wide range of testable predictions emerging for tissues, cell cultures, and even stem cell–based tissue regeneration. Beyond the epigenetics of mechanosensing, the scaling in cancer of chromosome copy number variations and other mutations with tissue stiffness suggests that genomic changes are occurring by mechanogenomic processes that now require elucidation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-062215-011206
2017-05-22
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/46/1/annurev-biophys-062215-011206.html?itemId=/content/journals/10.1146/annurev-biophys-062215-011206&mimeType=html&fmt=ahah

Literature Cited

  1. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S. 1.  et al. 2013. Signatures of mutational processes in human cancer. Nature 500:415–21 [Google Scholar]
  2. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF. 2.  et al. 2013. NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res 41:D991–95 [Google Scholar]
  3. Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM. 3.  et al. 2010. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 16:1009–17 [Google Scholar]
  4. Bates JH, Davis GS, Majumdar A, Butnor KJ, Suki B. 4.  2007. Linking parenchymal disease progression to changes in lung mechanical function by percolation. Am. J. Respir. Crit. Care Med. 176:617–23 [Google Scholar]
  5. Ben-Yaakov D, Golkov R, Shokef Y, Safran SA. 5.  2015. Response of adherent cells to mechanical perturbations of the surrounding matrix. Soft Matter 11:1412–24 [Google Scholar]
  6. Beyer TA, Weiss A, Khomchuk Y, Huang K, Ogunjimi AA. 6.  et al. 2013. Switch enhancers interpret TGF-β and Hippo signaling to control cell fate in human embryonic stem cells. Cell Rep 5:1611–24 [Google Scholar]
  7. Bisping E, Ikeda S, Kong SW, Tarnavski O, Bodyak N. 7.  et al. 2006. Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload–induced heart failure. PNAS 103:14471–76 [Google Scholar]
  8. Booth AJ, Hadley R, Cornett AM, Dreffs AA, Matthes SA. 8.  et al. 2012. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 186:866–76 [Google Scholar]
  9. Buxboim A, Rajagopal K, Brown AE, Discher DE. 9.  2010. How deeply cells feel: methods for thin gels. J. Phys. Condens. Matter 22:194116 [Google Scholar]
  10. Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PC. 10.  et al. 2014. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24:1909–17 [Google Scholar]
  11. Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP. 11.  2016. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater. 15:344–52 [Google Scholar]
  12. Cameron AR, Frith JE, Gomez GA, Yap AS, Cooper-White JJ. 12.  2014. The effect of time-dependent deformation of viscoelastic hydrogels on myogenic induction and Rac1 activity in mesenchymal stem cells. Biomaterials 35:1857–68 [Google Scholar]
  13. Carver W, Goldsmith EC. 13.  2013. Regulation of tissue fibrosis by the biomechanical environment. BioMed Res. Int 2013101979 [Google Scholar]
  14. Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA. 14.  et al. 2016. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:326–34 [Google Scholar]
  15. Chen X, Bahrami A, Pappo A, Easton J, Dalton J. 15.  et al. 2014. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep 7:104–12 [Google Scholar]
  16. Cho S, Irianto J, Discher DE. 16.  2017. Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216:305–15 [Google Scholar]
  17. Cohen O, Safran SA. 17.  2016. Elastic interactions synchronize beating in cardiomyocytes. Soft Matter 12:6088–95 [Google Scholar]
  18. Cool CD, Groshong SD, Rai PR, Henson PM, Stewart JS, Brown KK. 18.  2006. Fibroblast foci are not discrete sites of lung injury or repair: the fibroblast reticulum. Am. J. Respir. Crit. Care Med. 174:654–58 [Google Scholar]
  19. Cox TR, Erler JT. 19.  2011. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model. Mech. 4:165–78 [Google Scholar]
  20. Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C. 20.  et al. 2006. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172:41–53 [Google Scholar]
  21. Dasbiswas K, Majkut S, Discher DE, Safran SA. 21.  2015. Substrate stiffness–modulated registry phase correlations in cardiomyocytes map structural order to coherent beating. Nat. Commun. 6:6085 [Google Scholar]
  22. Degos F, Perez P, Roche B, Mahmoudi A, Asselineau J. 22.  et al. 2010. Diagnostic accuracy of FibroScan and comparison to liver fibrosis biomarkers in chronic viral hepatitis: a multicenter prospective study (the FIBROSTIC study). J. Hepatol. 53:1013–21 [Google Scholar]
  23. Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE. 23.  et al. 2012. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat. Genet. 44:343–47 [Google Scholar]
  24. Dingal PC, Bradshaw AM, Cho S, Raab M, Buxboim A. 24.  et al. 2015. Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nat. Mater. 14:951–60 [Google Scholar]
  25. Discher DE, Mooney DJ, Zandstra PW. 25.  2009. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–77 [Google Scholar]
  26. Dittmer TA, Misteli T. 26.  2011. The lamin protein family. Genome Biol 12:222 [Google Scholar]
  27. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S. 27.  et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83 [Google Scholar]
  28. Enemchukwu NO, Cruz-Acuna R, Bongiorno T, Johnson CT, Garcia JR. 28.  et al. 2016. Synthetic matrices reveal contributions of ECM biophysical and biochemical properties to epithelial morphogenesis. J. Cell Biol. 212:113–24 [Google Scholar]
  29. Engler A, Bacakova L, Newman C, Hategan A, Griffin M, Discher D. 29.  2004. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–28 [Google Scholar]
  30. Engler AJ, Sen S, Sweeney HL, Discher DE. 30.  2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89 [Google Scholar]
  31. Flynn BP, Bhole AP, Saeidi N, Liles M, Dimarzio CA, Ruberti JW. 31.  2010. Mechanical strain stabilizes reconstituted collagen fibrils against enzymatic degradation by mammalian collagenase matrix metalloproteinase 8 (MMP-8). PLOS ONE 5:e12337 [Google Scholar]
  32. Fontana RJ, Goodman ZD, Dienstag JL, Bonkovsky HL, Naishadham D. 32.  et al. 2008. Relationship of serum fibrosis markers with liver fibrosis stage and collagen content in patients with advanced chronic hepatitis C. Hepatology 47:789–98 [Google Scholar]
  33. Friedrich BM, Buxboim A, Discher DE, Safran SA. 33.  2011. Striated acto-myosin fibers can reorganize and register in response to elastic interactions with the matrix. Biophys. J. 100:2706–15 [Google Scholar]
  34. Friedrich BM, Safran SA. 34.  2012. How cells feel their substrate: spontaneous symmetry breaking of active surface stresses. Soft Matter 8:3223–30 [Google Scholar]
  35. Frisch SM, Screaton RA. 35.  2001. Anoikis mechanisms. Curr. Opin. Cell Biol. 13:555–62 [Google Scholar]
  36. Gennes P-G. 36.  1979. Scaling Concepts in Polymer Physics Ithaca, NY: Cornell Univ. Press
  37. Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J. 37.  et al. 2008. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836–43 [Google Scholar]
  38. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA. 38.  et al. 2010. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–81 [Google Scholar]
  39. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. 39.  2009. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26 [Google Scholar]
  40. Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA. 40.  et al. 2010. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9:518–26 [Google Scholar]
  41. Huebsch N, Lippens E, Lee K, Mehta M, Koshy ST. 41.  et al. 2015. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14:1269–77 [Google Scholar]
  42. Irianto J, Pfeifer CR, Bennett RR, Xia Y, Ivanovska IL, Liu AJ. 42.  et al. 2016. Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol. Biol. Cell 27:401–20 [Google Scholar]
  43. Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J. 43.  et al. 2017. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27:210–23 [Google Scholar]
  44. Jorba I, Uriarte JJ, Campillo N, Farre R, Navajas D. 44.  2017. Probing micromechanical properties of the extracellular matrix of soft tissues by atomic force microscopy. J. Cell. Physiol. 232:19–26 [Google Scholar]
  45. Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA. 45.  2013. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12:458–65 [Google Scholar]
  46. Klingberg F, Hinz B, White ES. 46.  2013. The myofibroblast matrix: implications for tissue repair and fibrosis. J. Pathol. 229:298–309 [Google Scholar]
  47. Korsmo MJ, Ebrahimi B, Eirin A, Woollard JR, Krier JD. 47.  et al. 2013. Magnetic resonance elastography noninvasively detects in vivo renal medullary fibrosis secondary to swine renal artery stenosis. Investig. Radiol. 48:61–68 [Google Scholar]
  48. Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL. 48.  et al. 2006. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281:25768–80 [Google Scholar]
  49. Landau L, Lifshitz E. 49.  1970. Theory of Elasticity Oxford, UK: Pergamon Press
  50. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M. 50.  et al. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906 [Google Scholar]
  51. Licup AJ, Munster S, Sharma A, Sheinman M, Jawerth LM. 51.  et al. 2015. Stress controls the mechanics of collagen networks. PNAS 112:9573–78 [Google Scholar]
  52. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS. 52.  et al. 2010. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190:693–706 [Google Scholar]
  53. Lopez B, Querejeta R, Gonzalez A, Larman M, Diez J. 53.  2012. Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure: potential role of lysyl oxidase. Hypertension 60:677–83 [Google Scholar]
  54. Majkut S, Dingal PC, Discher DE. 54.  2014. Stress sensitivity and mechanotransduction during heart development. Curr. Biol. 24:R495–501 [Google Scholar]
  55. Majkut S, Idema T, Swift J, Krieger C, Liu A, Discher DE. 55.  2013. Heart-specific stiffening in early embryos parallels matrix and myosin expression to optimize beating. Curr. Biol. 23:2434–39 [Google Scholar]
  56. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P. 56.  et al. 2015. Tumor evolution: high burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–86 [Google Scholar]
  57. McKee CT, Last JA, Russell P, Murphy CJ. 57.  2011. Indentation versus tensile measurements of Young's modulus for soft biological tissues. Tissue Eng. Part B Rev. 17:155–64 [Google Scholar]
  58. Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S. 58.  et al. 2014. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. PNAS 111:13805–10 [Google Scholar]
  59. Nitsan I, Drori S, Lewis YE, Cohen S, Tzlil S. 59.  2016. Mechanical communication in cardiac cell synchronized beating. Nat. Phys. 12:472–77 [Google Scholar]
  60. Pathak A, Deshpande VS, McMeeking RM, Evans AG. 60.  2008. The simulation of stress fibre and focal adhesion development in cells on patterned substrates. J. R. Soc. Interface 5:507–24 [Google Scholar]
  61. Pelham RJ Jr., Wang Y. 61.  1997. Cell locomotion and focal adhesions are regulated by substrate flexibility. PNAS 94:13661–65 [Google Scholar]
  62. Rajan S, Williams SS, Jagatheesan G, Ahmed RP, Fuller-Bicer G. 62.  et al. 2006. Microarray analysis of gene expression during early stages of mild and severe cardiac hypertrophy. Physiol. Genom. 27:309–17 [Google Scholar]
  63. Rammensee S, Kang MS, Georgiou K, Kumar S, Schaffer DV. 63.  2017. Dynamics of mechanosensitive neural stem cell differentiation. Stem Cells 35:497–506 [Google Scholar]
  64. Rehfeldt F, Brown AE, Raab M, Cai S, Zajac AL. 64.  et al. 2012. Hyaluronic acid matrices show matrix stiffness in 2D and 3D dictates cytoskeletal order and myosin-II phosphorylation within stem cells. Integr. Biol. 4:422–30 [Google Scholar]
  65. Rhinn M, Dolle P. 65.  2012. Retinoic acid signalling during development. Development 139:843–58 [Google Scholar]
  66. Roca-Cusachs P, del Rio A, Puklin-Faucher E, Gauthier NC, Biais N, Sheetz MP. 66.  2013. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. PNAS 110:E1361–70 [Google Scholar]
  67. Ruberti JW, Hallab NJ. 67.  2005. Strain-controlled enzymatic cleavage of collagen in loaded matrix. Biochem. Biophys. Res. Commun. 336:483–89 [Google Scholar]
  68. Ryan J, Perez-Avila CA, Vaughan N. 68.  1995. Insulin dependent diabetes mellitus and deliberate self-harm. J. Accid. Emerg. Med. 12:296–97 [Google Scholar]
  69. Sakar MS, Eyckmans J, Pieters R, Eberli D, Nelson BJ, Chen CS. 69.  2016. Cellular forces and matrix assembly coordinate fibrous tissue repair. Nat. Commun. 7:11036 [Google Scholar]
  70. Schwarz US, Safran SA. 70.  2013. Physics of adherent cells. Rev. Mod. Phys. 85:1327 [Google Scholar]
  71. Shain AH, Yeh I, Kovalyshyn I, Sriharan A, Talevich E. 71.  et al. 2015. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 373:1926–36 [Google Scholar]
  72. Sharma A, Licup AJ, Jansen KA, Rens R, Sheinman M, Koenderink GH. 72.  2016. Strain-controlled criticality governs the nonlinear mechanics of fibre networks. Nat. Phys. 12:584–87 [Google Scholar]
  73. Shi Q, Ghosh RP, Engelke H, Rycroft CH, Cassereau L. 73.  et al. 2014. Rapid disorganization of mechanically interacting systems of mammary acini. PNAS 111:658–63 [Google Scholar]
  74. Shin JW, Swift J, Spinler KR, Discher DE. 74.  2011. Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular projections typical of platelet-producing megakaryocytes. PNAS 108:11458–63 [Google Scholar]
  75. Shin JW, Buxboim A, Spinler KR, Swift J, Christian DA. 75.  et al. 2014. Contractile forces sustain and polarize hematopoiesis from stem and progenitor cells. Cell Stem Cell 14:81–93 [Google Scholar]
  76. Smith LR, Barton ER. 76.  2014. Collagen content does not alter the passive mechanical properties of fibrotic skeletal muscle in mdx mice. Am. J. Physiol. Cell Physiol. 306:C889–98 [Google Scholar]
  77. Smith LR, Hammers DW, Sweeney HL, Barton ER. 77.  2015. Increased collagen cross-linking is a signature of dystrophin-deficient muscle. Muscle Nerve 54:71–78 [Google Scholar]
  78. Smith LR, Lee KS, Ward SR, Chambers HG, Lieber RL. 78.  2011. Hamstring contractures in children with spastic cerebral palsy result from a stiffer ECM and increased in vivo sarcomere length. J. Physiol. 589:2625–39 [Google Scholar]
  79. Sonna LA, Fujita J, Gaffin SL, Lilly CM. 79.  2002. Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 92:1725–42 [Google Scholar]
  80. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC. 80.  et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104 [Google Scholar]
  81. Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY. 81.  et al. 2011. Collective cell guidance by cooperative intercellular forces. Nat. Mater. 10:469–75 [Google Scholar]
  82. Tang X, Bajaj P, Bashir R. 82.  2016. How far cardiac cells can see each other mechanically. Soft Matter 7:6151–58 [Google Scholar]
  83. Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J. 83.  et al. 2016. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44:D447–56 [Google Scholar]
  84. Wang H, Abhilash AS, Chen CS, Wells RG, Shenoy VB. 84.  2014. Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys. J. 107:2592–603 [Google Scholar]
  85. Wells RG. 85.  2013. Tissue mechanics and fibrosis. Biochim. Biophys. Acta 1832:884–90 [Google Scholar]
  86. Wipff PJ, Rifkin DB, Meister JJ, Hinz B. 86.  2007. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179:1311–23 [Google Scholar]
  87. Wynn TA. 87.  2007. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Investig. 117:524–29 [Google Scholar]
  88. Yang C, Tibbitt MW, Basta L, Anseth KS. 88.  2014. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13:645–52 [Google Scholar]
  89. Yang YL, Leone LM, Kaufman LJ. 89.  2009. Elastic moduli of collagen gels can be predicted from two-dimensional confocal microscopy. Biophys. J. 97:2051–60 [Google Scholar]
  90. Zemel A, Rehfeldt F, Brown AE, Discher DE, Safran SA. 90.  2010. Optimal matrix rigidity for stress fiber polarization in stem cells. Nat. Phys. 6:468–73 [Google Scholar]
/content/journals/10.1146/annurev-biophys-062215-011206
Loading
/content/journals/10.1146/annurev-biophys-062215-011206
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error