1932

Abstract

Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid–interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070317-032923
2018-05-20
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/biophys/47/1/annurev-biophys-070317-032923.html?itemId=/content/journals/10.1146/annurev-biophys-070317-032923&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM et al. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573
    [Google Scholar]
  2. 2.  Ambros V. 2004. The functions of animal microRNAs. Nature 431:350–55
    [Google Scholar]
  3. 3.  Ambrose EJ. 1956. A surface contact microscope for the study of cell movements. Nature 178:1194
    [Google Scholar]
  4. 4.  Ambrose WP, Goodwin PM, Nolan JP 1999. Single-molecule detection with total internal reflection excitation: comparing signal-to-background and total signals in different geometries. Cytometry 36:224–31
    [Google Scholar]
  5. 5.  Ameres SL, Martinez J, Schroeder R 2007. Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130:101–12
    [Google Scholar]
  6. 6.  Amitai G, Sorek R 2016. CRISPR–Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14:67–76
    [Google Scholar]
  7. 7.  Anders C, Niewoehner O, Duerst A, Jinek M 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–73
    [Google Scholar]
  8. 8.  Anderson DG, Kowalczykowski SC 1997. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a χ-regulated manner. Cell 90:77–86
    [Google Scholar]
  9. 9.  Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P et al. 2006. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–7
    [Google Scholar]
  10. 10.  Barrangou R, Doudna JA 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34:933–41
    [Google Scholar]
  11. 11.  Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12
    [Google Scholar]
  12. 12.  Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–97
    [Google Scholar]
  13. 13.  Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215–33
    [Google Scholar]
  14. 14.  Bauer M, Metzler R 2012. Generalized facilitated diffusion model for DNA-binding proteins with search and recognition states. Biophys. J. 102:2321–30
    [Google Scholar]
  15. 15.  Bell JC, Kowalczykowski SC 2016. Mechanics and single-molecule interrogation of DNA recombination. Annu. Rev. Biochem. 85:193–226
    [Google Scholar]
  16. 16.  Bell JC, Kowalczykowski SC 2016. RecA: regulation and mechanism of a molecular search engine. Trends Biochem. Sci. 41:491–507
    [Google Scholar]
  17. 17.  Berg OG, Winter RB, von Hippel PH 1981. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20:6929–48
    [Google Scholar]
  18. 18.  Blosser TR, Loeff L, Westra ER, Vlot M, Kunne T et al. 2015. Two distinct DNA binding modes guide dual roles of a CRISPR-Cas protein complex. Mol. Cell 58:60–70
    [Google Scholar]
  19. 19.  Boland A, Tritschler F, Heimstadt S, Izaurralde E, Weichenrieder O 2010. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep 11:522–27
    [Google Scholar]
  20. 20.  Broderick JA, Salomon WE, Ryder SP, Aronin N, Zamore PD 2011. Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing. RNA 17:1858–69
    [Google Scholar]
  21. 21.  Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–64
    [Google Scholar]
  22. 22.  Brown MW, Dillard KE, Xiao Y, Dolan AE, Hernandez ET et al. 2017. Assembly and translocation of a CRISPR-Cas primed acquisition complex. bioRxiv208058 https://www.biorxiv.org/content/early/2017/10/26/208058
  23. 23.  Chandradoss SD, Schirle NT, Szczepaniak M, MacRae IJ, Joo C 2015. A dynamic search process underlies microRNA targeting. Cell 162:96–107
    [Google Scholar]
  24. 24.  Chen Z, Yang H, Pavletich NP 2008. Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures. Nature 453:489–94
    [Google Scholar]
  25. 25.  Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A 2017. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci. Adv.3:eaao0027
  26. 26.  De Vlaminck I, van Loenhout MT, Zweifel L, den Blanken J, Hooning K et al. 2012. Mechanism of homology recognition in DNA recombination from dual-molecule experiments. Mol. Cell 46:616–24
    [Google Scholar]
  27. 27.  Dillingham MS, Kowalczykowski SC 2008. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72:642–71
    [Google Scholar]
  28. 28.  Doudna JA, Charpentier E 2014. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096
    [Google Scholar]
  29. 29.  Doxzen KW, Doudna JA 2017. DNA recognition by an RNA-guided bacterial Argonaute. PLOS ONE 12:e0177097
    [Google Scholar]
  30. 30.  East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JH et al. 2016. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–73
    [Google Scholar]
  31. 31.  Egelman EH, Yu X 1989. The location of DNA in RecA-DNA helical filaments. Science 245:404–7
    [Google Scholar]
  32. 32.  Fineran PC, Gerritzen MJ, Suarez-Diez M, Kunne T, Boekhorst J et al. 2014. Degenerate target sites mediate rapid primed CRISPR adaptation. PNAS 111:E1629–38
    [Google Scholar]
  33. 33.  Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11
    [Google Scholar]
  34. 34.  Forget AL, Kowalczykowski SC 2012. Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482:423–27
    [Google Scholar]
  35. 35.  Frank F, Sonenberg N, Nagar B 2010. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465:818–22
    [Google Scholar]
  36. 36.  Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71
    [Google Scholar]
  37. 37.  Gasiunas G, Barrangou R, Horvath P, Siksnys V 2012. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:15539–40
    [Google Scholar]
  38. 38.  Girard A, Sachidanandam R, Hannon GJ, Carmell MA 2006. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202
    [Google Scholar]
  39. 39.  Globyte V, Lee SH, Bae T, Kim J-S, Joo C 2018. CRISPR Cas9 searches for a protospacer adjacent motif by one-dimensional diffusion. bioRxiv264879 https://doi.org/10.1101/264879
    [Crossref]
  40. 40.  Gosse C, Croquette V 2002. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82:3314–29
    [Google Scholar]
  41. 41.  Greene EC, Wind S, Fazio T, Gorman J, Visnapuu ML 2010. DNA curtains for high-throughput single-molecule optical imaging. Methods Enzymol 472:293–315
    [Google Scholar]
  42. 42.  Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP 2007. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27:91–105
    [Google Scholar]
  43. 43.  Ha T. 2001. Single-molecule fluorescence methods for the study of nucleic acids. Curr. Opin. Struct. Biol. 11:287–92
    [Google Scholar]
  44. 44.  Ha T. 2001. Single-molecule fluorescence resonance energy transfer. Methods 25:78–86
    [Google Scholar]
  45. 45.  Hauptmann J, Dueck A, Harlander S, Pfaff J, Merkl R, Meister G 2013. Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat. Struct. Mol. Biol. 20:814–17
    [Google Scholar]
  46. 46.  Hayes RP, Xiao Y, Ding F, van Erp PB, Rajashankar K et al. 2016. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Nature 530:499–503
    [Google Scholar]
  47. 47.  Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH et al. 2014. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. PNAS 111:6618–23
    [Google Scholar]
  48. 48.  Hsu PD, Lander ES, Zhang F 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262–78
    [Google Scholar]
  49. 49.  Jackson RN, Golden SM, van Erp PB, Carter J, Westra ER et al. 2014. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345:1473–79
    [Google Scholar]
  50. 50.  Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K et al. 2016. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351:867–71
    [Google Scholar]
  51. 51.  Jiang F, Zhou K, Ma L, Gressel S, Doudna JA 2015. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 348:1477–81
    [Google Scholar]
  52. 52.  Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31:233–39
    [Google Scholar]
  53. 53.  Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–21
    [Google Scholar]
  54. 54.  Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E et al. 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997
    [Google Scholar]
  55. 55.  Jo MH, Shin S, Jung S-R, Kim E, Song J-J, Hohng S 2015. Human Argonaute 2 has diverse reaction pathways on target RNAs. Mol. Cell 59:117–24
    [Google Scholar]
  56. 56.  Jones DL, Leroy P, Unoson C, Fange D, Ćurić V et al. 2017. Kinetics of dCas9 target search in Escherichia coli. Science 357:1420–24
    [Google Scholar]
  57. 57.  Jung C, Hawkins JA, Jones SK Jr., Xiao Y, Rybarski JR et al. 2017. Massively parallel biophysical analysis of CRISPR-Cas complexes on next generation sequencing chips. Cell 170:35–47.e13
    [Google Scholar]
  58. 58.  Jung S-R, Kim E, Hwang W, Shin S, Song J-J, Hohng S 2013. Dynamic anchoring of the 3′-end of the guide strand controls the target dissociation of Argonaute–guide complex. J. Am. Chem. Soc. 135:16865–71
    [Google Scholar]
  59. 59.  Kaya E, Doxzen KW, Knoll KR, Wilson RC, Strutt SC 2016. A bacterial Argonaute with noncanonical guide RNA specificity. PNAS 113:4057–62
    [Google Scholar]
  60. 60.  Khorshid M, Hausser J, Zavolan M, van Nimwegen E 2013. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat. Methods 10:253–55
    [Google Scholar]
  61. 61.  Kim SH, Ahn T, Cui TJ, Chauhan S, Sung J et al. 2017. RecA filament maintains structural integrity using ATP-driven internal dynamics. Sci Adv 3:e1700676
    [Google Scholar]
  62. 62.  Klein M, Chandradoss SD, Depken M, Joo C 2017. Why Argonaute is needed to make microRNA target search fast and reliable. Semin. Cell Dev. Biol. 65:20–28
    [Google Scholar]
  63. 63.  Klum SM, Chandradoss SD, Schirle NT, Joo C, MacRae IJ 2018. Helix-7 in Argonaute2 shapes the microRNA seed region for rapid target recognition. EMBO J 3:321–45
    [Google Scholar]
  64. 64.  Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823–26
    [Google Scholar]
  65. 65.  Kowalczykowski SC. 2015. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol. 7:a016410
    [Google Scholar]
  66. 66.  Kwak PB, Tomari Y 2012. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat. Struct. Mol. Biol. 19:145–51
    [Google Scholar]
  67. 67.  Lee JY, Terakawa T, Qi Z, Steinfeld JB, Redding S et al. 2015. Base triplet stepping by the Rad51/RecA family of recombinases. Science 349:977–81
    [Google Scholar]
  68. 68.  Lee RC, Feinbaum RL, Ambros V 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–54
    [Google Scholar]
  69. 69.  Lesterlin C, Ball G, Schermelleh L, Sherratt DJ 2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506:249–53
    [Google Scholar]
  70. 70.  Lim Y, Bak SY, Sung K, Jeong E, Lee SH et al. 2016. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nat. Commun. 7:13350
    [Google Scholar]
  71. 71.  Lingel A, Simon B, Izaurralde E, Sattler M 2004. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol. 11:576–77
    [Google Scholar]
  72. 72.  Ma JB, Ye K, Patel DJ 2004. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429:318–22
    [Google Scholar]
  73. 73.  Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. 2015. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13:722–36
    [Google Scholar]
  74. 74.  Makarova KS, Wolf YI, Koonin EV 2013. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res 41:4360–77
    [Google Scholar]
  75. 75.  Mani A, Braslavsky I, Arbel-Goren R, Stavans J 2010. Caught in the act: the lifetime of synaptic intermediates during the search for homology on DNA. Nucleic Acids Res 38:2036–43
    [Google Scholar]
  76. 76.  Marraffini LA. 2015. CRISPR-Cas immunity in prokaryotes. Nature 526:55–61
    [Google Scholar]
  77. 77.  Marraffini LA, Sontheimer EJ 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–45
    [Google Scholar]
  78. 78.  Marraffini LA, Sontheimer EJ 2010. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463:568–71
    [Google Scholar]
  79. 79.  Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T 2004. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15:185–97
    [Google Scholar]
  80. 80.  Mochizuki K, Fine NA, Fujisawa T, Gorovsky MA 2002. Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell 110:689–99
    [Google Scholar]
  81. 81.  Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J 2016. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353:aad5147
    [Google Scholar]
  82. 82.  Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Almendros C 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–40
    [Google Scholar]
  83. 83.  Mulepati S, Bailey S 2013. In vitro reconstitution of an Escherichia coli RNA-guided immune system reveals unidirectional, ATP-dependent degradation of DNA target. J. Biol. Chem. 288:22184–92
    [Google Scholar]
  84. 84.  Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA 2013. Bacterial Argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 51:594–605
    [Google Scholar]
  85. 85.  Parker JS. 2010. How to slice: snapshots of Argonaute in action. Silence 1:3
    [Google Scholar]
  86. 86.  Parker JS, Roe SM, Barford D 2004. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J 23:4727–37
    [Google Scholar]
  87. 87.  Qi Z, Redding S, Lee JY, Gibb B, Kwon Y et al. 2015. DNA sequence alignment by microhomology sampling during homologous recombination. Cell 160:856–69
    [Google Scholar]
  88. 88.  Ragunathan K, Joo C, Ha T 2011. Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 19:1064–73
    [Google Scholar]
  89. 89.  Ragunathan K, Liu C, Ha T 2012. RecA filament sliding on DNA facilitates homology search. eLife 1:e00067
    [Google Scholar]
  90. 90.  Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P et al. 2015. Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell 163:854–65
    [Google Scholar]
  91. 91.  Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC et al. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–6
    [Google Scholar]
  92. 92.  Rutkauskas M, Sinkunas T, Songailiene I, Tikhomirova MS, Siksnys V, Seidel R 2015. Directional R-loop formation by the CRISPR-Cas surveillance complex cascade provides efficient off-target site rejection. Cell Rep 10:1534–43
    [Google Scholar]
  93. 93.  Saetrom P, Heale BS, Snove O Jr. Aagaard L, Alluin J. Rossi JJ 2007. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res. 35:2333–42
    [Google Scholar]
  94. 94.  Salomon WE, Jolly SM, Moore MJ, Zamore PD, Serebrov V 2015. Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides. Cell 162:84–95
    [Google Scholar]
  95. 95.  Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V 2011. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275–82
    [Google Scholar]
  96. 96.  Schirle NT, MacRae IJ 2012. The crystal structure of human Argonaute2. Science 336:1037–40
    [Google Scholar]
  97. 97.  Schirle NT, Sheu-Gruttadauria J, MacRae IJ 2014. Structural basis for microRNA targeting. Science 346:608–13
    [Google Scholar]
  98. 98.  Semenova E, Jore MM, Datsenko KA, Semenova A, Westra ER et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. PNAS 108:10098–103
    [Google Scholar]
  99. 99.  Shabalina SA, Koonin EV 2008. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23:578–87
    [Google Scholar]
  100. 100.  Singh D, Sternberg SH, Fei J, Doudna JA, Ha T 2016. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 7:12778
    [Google Scholar]
  101. 101.  Sinkunas T, Gasiunas G, Waghmare SP, Dickman MJ, Barrangou R et al. 2013. In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J 32:385–94
    [Google Scholar]
  102. 102.  Slutsky M, Mirny LA 2004. Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. Biophys. J. 87:4021–35
    [Google Scholar]
  103. 103.  Song JJ, Smith SK, Hannon GJ, Joshua-Tor L 2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–37
    [Google Scholar]
  104. 104.  Sternberg SH, LaFrance B, Kaplan M, Doudna JA 2015. Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527:110–13
    [Google Scholar]
  105. 105.  Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA 2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67
    [Google Scholar]
  106. 106.  Storz G, Vogel J, Wassarman KM 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43:880–91
    [Google Scholar]
  107. 107.  Sunghyeok Y, Taegeun B, Kyoungmi K, Omer H, Hwan LS et al. 2017. DNA-dependent RNA cleavage by the Natronobacterium gregoryi Argonaute. bioRxiv101923 https://doi.org/10.1101/101923
    [Crossref]
  108. 108.  Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH et al. 2014. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507:258–61
    [Google Scholar]
  109. 109.  Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T et al. 2014. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. PNAS 111:9798–803
    [Google Scholar]
  110. 110.  Updegrove TB, Zhang A, Storz G 2016. Hfq: the flexible RNA matchmaker. Curr. Opin. Microbiol. 30:133–38
    [Google Scholar]
  111. 111.  Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S et al. 2004. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–76
    [Google Scholar]
  112. 112.  Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD 2012. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151:1055–67
    [Google Scholar]
  113. 113.  Westra ER, van Erp PB, Kunne T, Wong SP, Staals RH et al. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46:595–605
    [Google Scholar]
  114. 114.  Xue C, Whitis NR, Sashital DG 2016. Conformational control of Cascade interference and priming activities in CRISPR immunity. Mol. Cell 64:826–34
    [Google Scholar]
  115. 115.  Yao C, Sasaki HM, Ueda T, Tomari Y, Tadakuma H 2015. Single-molecule analysis of the target cleavage reaction by the Drosophila RNAi enzyme complex. Mol. Cell 59:125–32
    [Google Scholar]
  116. 116.  Zander A, Holzmeister P, Klose D, Tinnefeld P, Grohmann D 2014. Single-molecule FRET supports the two-state model of Argonaute action. RNA Biol 11:45–56
    [Google Scholar]
  117. 117.  Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS et al. 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–71
    [Google Scholar]
  118. 118.  Zhao H, Sheng G, Wang J, Wang M, Bunkoczi G et al. 2014. Crystal structure of the RNA-guided immune surveillance Cascade complex in Escherichia coli. Nature 515:147–50
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-070317-032923
Loading
/content/journals/10.1146/annurev-biophys-070317-032923
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error