1932

Abstract

Integral membrane proteins (IMPs) play central roles in cellular physiology and represent the majority of known drug targets. Single-molecule fluorescence and fluorescence resonance energy transfer (FRET) methods have recently emerged as valuable tools for investigating structure–function relationships in IMPs. This review focuses on the practical foundations required for examining polytopic IMP function using single-molecule FRET (smFRET) and provides an overview of the technical and conceptual frameworks emerging from this area of investigation. In this context, we highlight the utility of smFRET methods to reveal transient conformational states critical to IMP function and the use of smFRET data to guide structural and drug mechanism-of-action investigations. We also identify frontiers where progress is likely to be paramount to advancing the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-070323-024308
2024-07-16
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/biophys/53/1/annurev-biophys-070323-024308.html?itemId=/content/journals/10.1146/annurev-biophys-070323-024308&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abou Assi H, Rangadurai AK, Shi H, Liu B, Clay MC, et al. 2020.. 2′-O-methylation can increase the abundance and lifetime of alternative RNA conformational states. . Nucleic Acids Res. 48:(21):1236579
    [Crossref] [Google Scholar]
  2. 2.
    Agam G, Gebhardt C, Popara M, Mächtel R, Folz J, et al. 2023.. Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins. . Nat. Methods 20:(4):52335
    [Crossref] [Google Scholar]
  3. 3.
    Akyuz N, Altman RB, Blanchard SC, Boudker O. 2013.. Transport dynamics in a glutamate transporter homologue. . Nature 502:(7469):11418
    [Crossref] [Google Scholar]
  4. 4.
    Akyuz N, Georgieva ER, Zhou Z, Stolzenberg S, Cuendet MA, et al. 2015.. Transport domain unlocking sets the uptake rate of an aspartate transporter. . Nature 518:(7537):6873
    [Crossref] [Google Scholar]
  5. 5.
    Alejo JL, Blanchard SC, Andersen OS. 2013.. Small-molecule photostabilizing agents are modifiers of lipid bilayer properties. . Biophys. J. 104:(11):241018
    [Crossref] [Google Scholar]
  6. 6.
    Allen KN, Entova S, Ray LC, Imperiali B. 2019.. Monotopic membrane proteins join the fold. . Trends Biochem. Sci. 44:(1):720
    [Crossref] [Google Scholar]
  7. 7.
    Almén MS, Nordström KJV, Fredriksson R, Schiöth HB. 2009.. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. . BMC Biol. 7::50
    [Crossref] [Google Scholar]
  8. 8.
    Altman RB, Terry DS, Zhou Z, Zheng Q, Geggier P, et al. 2011.. Cyanine fluorophore derivatives with enhanced photostability. . Nat. Methods 9:(1):6871
    [Crossref] [Google Scholar]
  9. 9.
    Altman RB, Zheng Q, Zhou Z, Terry DS, Warren JD, Blanchard SC. 2012.. Enhanced photostability of cyanine fluorophores across the visible spectrum. . Nat. Methods 9:(5):42829
    [Crossref] [Google Scholar]
  10. 10.
    Amodeo R, Nifosì R, Giacomelli C, Ravelli C, La Rosa L, et al. 2020.. Molecular insight on the altered membrane trafficking of TrkA kinase dead mutants. . Biochim. Biophys. Acta 1867:(2):118614
    [Crossref] [Google Scholar]
  11. 11.
    Asher WB, Geggier P, Holsey MD, Gilmore GT, Pati AK, et al. 2021.. Single-molecule FRET imaging of GPCR dimers in living cells. . Nat. Methods 18:(4):397405
    [Crossref] [Google Scholar]
  12. 12.
    Asher WB, Terry DS, Gregorio GGA, Kahsai AW, Borgia A, et al. 2022.. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. . Cell 185:(10):166175.e16
    [Crossref] [Google Scholar]
  13. 13.
    Autzen HE, Julius D, Cheng Y. 2019.. Membrane mimetic systems in cryoEM: keeping membrane proteins in their native environment. . Curr. Opin. Struct. Biol. 58::25968
    [Crossref] [Google Scholar]
  14. 14.
    Axelrod D. 1981.. Cell-substrate contacts illuminated by total internal reflection fluorescence. . J. Cell Biol. 89:(1):14145
    [Crossref] [Google Scholar]
  15. 15.
    Axelrod D, Burghardt TP, Thompson NL. 1984.. Total internal reflection fluorescence. . Annu. Rev. Biophys. Bioeng. 13::24768
    [Crossref] [Google Scholar]
  16. 16.
    Axelrod D, Thompson NL, Burghardt TP. 1983.. Total internal reflection fluorescent microscopy. . J. Microsc. 129:(1):1928
    [Crossref] [Google Scholar]
  17. 17.
    Bada Juarez JF, Harper AJ, Judge PJ, Tonge SR, Watts A. 2019.. From polymer chemistry to structural biology: the development of SMA and related amphipathic polymers for membrane protein extraction and solubilisation. . Chem. Phys. Lipids 221::16775
    [Crossref] [Google Scholar]
  18. 18.
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, et al. 2021.. Accurate prediction of protein structures and interactions using a three-track neural network. . Science 373:(6557):87176
    [Crossref] [Google Scholar]
  19. 19.
    Barford D. 2004.. The role of cysteine residues as redox-sensitive regulatory switches. . Curr. Opin. Struct. Biol. 14:(6):67986
    [Crossref] [Google Scholar]
  20. 20.
    Bartels K, Lasitza-Male T, Hofmann H, Löw C. 2021.. Single-molecule fret of membrane transport proteins. . Chembiochemistry 22:(17):265771
    [Crossref] [Google Scholar]
  21. 21.
    Bessa-Neto D, Beliu G, Kuhlemann A, Pecoraro V, Doose S, et al. 2021.. Bioorthogonal labeling of transmembrane proteins with non-canonical amino acids unveils masked epitopes in live neurons. . Nat. Commun. 12::6715
    [Crossref] [Google Scholar]
  22. 22.
    Börsch M, Diez M, Zimmermann B, Reuter R, Gräber P. 2002.. Stepwise rotation of the γ-subunit of EFOF1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. . FEBS Lett. 527:(1–3):14752
    [Crossref] [Google Scholar]
  23. 23.
    Börsch M, Duncan TM. 2013.. Spotlighting motors and controls of single F0F1-ATP synthase. . Biochem. Soc. Trans. 41:(5):121926
    [Crossref] [Google Scholar]
  24. 24.
    Brown W, Galpin JD, Rosenblum C, Tsang M, Ahern CA, Deiters A. 2023.. Chemically acylated tRNAs are functional in zebrafish embryos. . J. Am. Chem. Soc. 145:(4):241420
    [Crossref] [Google Scholar]
  25. 25.
    Bryan JS IV, Pressé S. 2023.. Learning continuous potentials from smFRET. . Biophys. J. 122:(2):43341
    [Crossref] [Google Scholar]
  26. 26.
    Calosci N, Chi CN, Richter B, Camilloni C, Engström A, et al. 2008.. Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins. . PNAS 105:(49):1924146
    [Crossref] [Google Scholar]
  27. 27.
    Carrico IS, Carlson BL, Bertozzi CR. 2007.. Introducing genetically encoded aldehydes into proteins. . Nat. Chem. Biol. 3:(6):32122
    [Crossref] [Google Scholar]
  28. 28.
    Chatterjee A, Sun SB, Furman JL, Xiao H, Schultz PG. 2013.. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. . Biochemistry 52:(10):182837
    [Crossref] [Google Scholar]
  29. 29.
    Chatterjee A, Xiao H, Schultz PG. 2012.. Evolution of multiple, mutually orthogonal prolyl-tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in Escherichia coli. . PNAS 109:(37):1484146
    [Crossref] [Google Scholar]
  30. 30.
    Chen B, Kaledhonkar S, Sun M, Shen B, Lu Z, et al. 2015.. Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryogenic electron microscopy. . Structure 23:(6):1097105
    [Crossref] [Google Scholar]
  31. 31.
    Ciftci D, Huysmans GHM, Wang X, He C, Terry D, et al. 2020.. Single-molecule transport kinetics of a glutamate transporter homolog shows static disorder. . Sci. Adv. 6:(22):eaaz1949
    [Crossref] [Google Scholar]
  32. 32.
    Cohen AE, Moerner WE. 2006.. Suppressing Brownian motion of individual biomolecules in solution. . PNAS 103:(12):436265
    [Crossref] [Google Scholar]
  33. 33.
    Coin I, Katritch V, Sun T, Xiang Z, Siu FY, et al. 2013.. Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF class B GPCR. . Cell 155:(6):125869
    [Crossref] [Google Scholar]
  34. 34.
    Cornish PV, Ermolenko DN, Staple DW, Hoang L, Hickerson RP, et al. 2009.. Following movement of the l1 stalk between three functional states in single ribosomes. . PNAS 106:(8):257176
    [Crossref] [Google Scholar]
  35. 35.
    Cornish VW, Hahn KM, Schultz PG. 1996.. Site-specific protein modification using a ketone handle. . J. Am. Chem. Soc. 118:(34):815051
    [Crossref] [Google Scholar]
  36. 36.
    Crowley KS, Reinhart GD, Johnson AE. 1993.. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. . Cell 73:(6):110115
    [Crossref] [Google Scholar]
  37. 37.
    Cui L, Li H, Xi Y, Hu Q, Liu H, et al. 2022.. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. . Mol. Biomed. 3::29
    [Crossref] [Google Scholar]
  38. 38.
    Das DK, Bulow U, Diehl WE, Durham ND, Senjobe F, et al. 2020.. Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding. . PLOS Biol. 18:(2):e3000626
    [Crossref] [Google Scholar]
  39. 39.
    Deisenhofer J, Epp O, Miki K, Huber R, Michel H. 1984.. X-ray structure analysis of a membrane protein complex. Electron density map at 3 Å resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. . J. Mol. Biol. 180:(2):38598
    [Crossref] [Google Scholar]
  40. 40.
    Deisenhofer J, Epp O, Miki K, Huber R, Michel H. 1985.. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. . Nature 318:(6047):61824
    [Crossref] [Google Scholar]
  41. 41.
    Denisov IG, Sligar SG. 2016.. Nanodiscs for structural and functional studies of membrane proteins. . Nat. Struct. Mol. Biol. 23:(6):48186
    [Crossref] [Google Scholar]
  42. 42.
    Diao J, Ishitsuka Y, Bae W-R. 2011.. Single-molecule FRET study of SNARE-mediated membrane fusion. . Biosci. Rep. 31:(6):45763
    [Crossref] [Google Scholar]
  43. 43.
    Digman MA, Gratton E. 2011.. Lessons in fluctuation correlation spectroscopy. . Annu. Rev. Phys. Chem. 62::64568
    [Crossref] [Google Scholar]
  44. 44.
    Dommerholt J, van Rooijen O, Borrmann A, Guerra CF, Bickelhaupt FM, van Delft FL. 2014.. Highly accelerated inverse electron-demand cycloaddition of electron-deficient azides with aliphatic cyclooctynes. . Nat. Commun. 5::5378
    [Crossref] [Google Scholar]
  45. 45.
    Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, et al. 1998.. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. . Science 280:(5360):6977
    [Crossref] [Google Scholar]
  46. 46.
    Dyla M, Andersen JL, Kjaergaard M, Birkedal V, Terry DS, et al. 2016.. Engineering a prototypic P-type ATPase Listeria monocytogenes Ca2+-ATPase 1 for single-molecule FRET studies. . Bioconjug. Chem. 27:(9):217687
    [Crossref] [Google Scholar]
  47. 47.
    Dyla M, Kjærgaard M, Poulsen H, Nissen P. 2020.. Structure and mechanism of P-type ATPase ion pumps. . Annu. Rev. Biochem. 89::583603
    [Crossref] [Google Scholar]
  48. 48.
    Dyla M, Terry DS, Kjaergaard M, Sørensen TL-M, Lauwring Andersen J, et al. 2017.. Dynamics of P-type ATPase transport revealed by single-molecule FRET. . Nature 551:(7680):34651
    [Crossref] [Google Scholar]
  49. 49.
    Eid J, Fehr A, Gray J, Luong K, Lyle J, et al. 2009.. Real-time DNA sequencing from single polymerase molecules. . Science 323:(5910):13338
    [Crossref] [Google Scholar]
  50. 50.
    Evans EGB, Millhauser GL. 2015.. Genetic incorporation of the unnatural amino acid p-acetyl phenylalanine into proteins for site-directed spin labeling. . Methods Enzymol. 563::50327
    [Crossref] [Google Scholar]
  51. 51.
    Fitzgerald GA, Terry DS, Warren AL, Quick M, Javitch JA, Blanchard SC. 2019.. Quantifying secondary transport at single-molecule resolution. . Nature 575:(7783):52834
    [Crossref] [Google Scholar]
  52. 52.
    Frauenfeld J, Löving R, Armache J-P, Sonnen AF-P, Guettou F, et al. 2016.. A saposin-lipoprotein nanoparticle system for membrane proteins. . Nat. Methods 13:(4):34551
    [Crossref] [Google Scholar]
  53. 53.
    Fu Y, Zhang J, Lakowicz JR. 2007.. Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle. . J. Fluoresc. 17:(6):81116
    [Crossref] [Google Scholar]
  54. 54.
    Garman EF. 2014.. Developments in X-ray crystallographic structure determination of biological macromolecules. . Science 343:(6175):11028
    [Crossref] [Google Scholar]
  55. 55.
    George N, Pick H, Vogel H, Johnsson N, Johnsson K. 2004.. Specific labeling of cell surface proteins with chemically diverse compounds. . J. Am. Chem. Soc. 126:(29):889697
    [Crossref] [Google Scholar]
  56. 56.
    Girodat D, Pati AK, Terry DS, Blanchard SC, Sanbonmatsu KY. 2020.. Quantitative comparison between sub-millisecond time resolution single-molecule FRET measurements and 10-second molecular simulations of a biosensor protein. . PLOS Comput. Biol. 16:(11):e1008293
    [Crossref] [Google Scholar]
  57. 57.
    Gotfryd K, Boesen T, Mortensen JS, Khelashvili G, Quick M, et al. 2020.. X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release. . Nat. Commun. 11::1005
    [Crossref] [Google Scholar]
  58. 58.
    Götz M, Barth A, Bohr SS-R, Börner R, Chen J, et al. 2022.. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. . Nat. Commun. 13::5402
    [Crossref] [Google Scholar]
  59. 59.
    Gouaux E. 1998.. It's not just a phase: crystallization and X-ray structure determination of bacteriorhodopsin in lipidic cubic phases. . Structure 6:(1):510
    [Crossref] [Google Scholar]
  60. 60.
    Greaves J, Salaun C, Fukata Y, Fukata M, Chamberlain LH. 2008.. Palmitoylation and membrane interactions of the neuroprotective chaperone cysteine-string protein. . J. Biol. Chem. 283:(36):2501426
    [Crossref] [Google Scholar]
  61. 61.
    Gregorio GG, Masureel M, Hilger D, Terry DS, Juette M, et al. 2017.. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. . Nature 547:(7661):6873
    [Crossref] [Google Scholar]
  62. 62.
    Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R. 1996.. Electron-crystallographic refinement of the structure of bacteriorhodopsin. . J. Mol. Biol. 259:(3):393421
    [Crossref] [Google Scholar]
  63. 63.
    Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, et al. 2015.. A general method to improve fluorophores for live-cell and single-molecule microscopy. . Nat. Methods 12:(3):24450
    [Crossref] [Google Scholar]
  64. 64.
    Grouleff J, Søndergaard S, Koldsø H, Schiøtt B. 2015.. Properties of an inward-facing state of LeuT: conformational stability and substrate release. . Biophys. J. 108:(6):139099
    [Crossref] [Google Scholar]
  65. 65.
    Gupta K, Toombes GE, Swartz KJ. 2019.. Exploring structural dynamics of a membrane protein by combining bioorthogonal chemistry and cysteine mutagenesis. . eLife 8::e50776
    [Crossref] [Google Scholar]
  66. 66.
    Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S. 1996.. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. . PNAS 93:(13):626468
    [Crossref] [Google Scholar]
  67. 67.
    Ha T, Tinnefeld P. 2012.. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. . Annu. Rev. Phys. Chem. 63::595617
    [Crossref] [Google Scholar]
  68. 68.
    Hahn L, Carvalho P. 2022.. Making and breaking the inner nuclear membrane proteome. . Curr. Opin. Cell Biol. 78::102115
    [Crossref] [Google Scholar]
  69. 69.
    Hegde RS, Keenan RJ. 2022.. The mechanisms of integral membrane protein biogenesis. . Nat. Rev. Mol. Cell Biol. 23:(2):10724
    [Crossref] [Google Scholar]
  70. 70.
    Hellenkamp B, Schmid S, Doroshenko O, Opanasyuk O, Kühnemuth R, et al. 2018.. Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. . Nat. Methods 15:(9):66976
    [Crossref] [Google Scholar]
  71. 71.
    Heng J, Hu Y, Pérez-Hernández G, Inoue A, Zhao J, et al. 2023.. Function and dynamics of the intrinsically disordered carboxyl terminus of β2 adrenergic receptor. . Nat. Commun. 14::2005
    [Crossref] [Google Scholar]
  72. 72.
    Henzler-Wildman K, Kern D. 2007.. Dynamic personalities of proteins. . Nature 450:(7172):96472
    [Crossref] [Google Scholar]
  73. 73.
    Hilger D, Masureel M, Kobilka BK. 2018.. Structure and dynamics of GPCR signaling complexes. . Nat. Struct. Mol. Biol. 25:(1):412
    [Crossref] [Google Scholar]
  74. 74.
    Holm M, Natchiar SK, Rundlet EJ, Myasnikov AG, Watson ZL, et al. 2023.. mRNA decoding in human is kinetically and structurally distinct from bacteria. . Nature 617:(7959):2007
    [Crossref] [Google Scholar]
  75. 75.
    Huysmans GHM, Baldwin SA, Brockwell DJ, Radford SE. 2010.. The transition state for folding of an outer membrane protein. . PNAS 107:(9):4099104
    [Crossref] [Google Scholar]
  76. 76.
    Huysmans GHM, Ciftci D, Wang X, Blanchard SC, Boudker O. 2021.. The high-energy transition state of the glutamate transporter homologue GltPh. . EMBO J. 40:(1):e105415
    [Crossref] [Google Scholar]
  77. 77.
    Hwang H, Myong S. 2014.. Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. . Chem. Soc. Rev. 43:(4):122129
    [Crossref] [Google Scholar]
  78. 78.
    Iadanza MG, Schiffrin B, White P, Watson MA, Horne JE, et al. 2020.. Distortion of the bilayer and dynamics of the BAM complex in lipid nanodiscs. . Commun. Biol. 3::766
    [Crossref] [Google Scholar]
  79. 79.
    Infield DT, Lueck JD, Galpin JD, Galles GD, Ahern CA. 2018.. Orthogonality of pyrrolysine tRNA in the Xenopus oocyte. . Sci. Rep. 8::5166
    [Crossref] [Google Scholar]
  80. 80.
    Jackson SE, elMasry N, Fersht AR. 1993.. Structure of the hydrophobic core in the transition state for folding of chymotrypsin inhibitor 2: a critical test of the protein engineering method of analysis. . Biochemistry 32:(42):1127078
    [Crossref] [Google Scholar]
  81. 81.
    Jain A, Liu R, Ramani B, Arauz E, Ishitsuka Y, et al. 2011.. Probing cellular protein complexes using single-molecule pull-down. . Nature 473:(7348):48488
    [Crossref] [Google Scholar]
  82. 82.
    Jewel D, Kelemen RE, Huang RL, Zhu Z, Sundaresh B, et al. 2023.. Virus-assisted directed evolution of enhanced suppressor tRNAs in mammalian cells. . Nat. Methods 20:(1):95103
    [Crossref] [Google Scholar]
  83. 83.
    Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T. 2008.. Advances in single-molecule fluorescence methods for molecular biology. . Annu. Rev. Biochem. 77::5176
    [Crossref] [Google Scholar]
  84. 84.
    Joseph D, Pidathala S, Mallela AK, Penmatsa A. 2019.. Structure and gating dynamics of Na+/Cl coupled neurotransmitter transporters. . Front. Mol. Biosci. 6::80
    [Crossref] [Google Scholar]
  85. 85.
    Juette MF, Terry DS, Wasserman MR, Altman RB, Zhou Z, et al. 2016.. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. . Nat. Methods 13:(4):34144
    [Crossref] [Google Scholar]
  86. 86.
    Juette MF, Terry DS, Wasserman MR, Zhou Z, Altman RB, et al. 2014.. The bright future of single-molecule fluorescence imaging. . Curr. Opin. Chem. Biol. 20::10311
    [Crossref] [Google Scholar]
  87. 87.
    Kapanidis AN, Ebright YW, Ebright RH. 2001.. Site-specific incorporation of fluorescent probes into protein: hexahistidine-tag-mediated fluorescent labeling with (Ni2+:nitrilotriacetic acid)n-fluorochrome conjugates. . J. Am. Chem. Soc. 123:(48):1212325
    [Crossref] [Google Scholar]
  88. 88.
    Kapanidis AN, Laurence TA, Lee NK, Margeat E, Kong X, Weiss S. 2005.. Alternating-laser excitation of single molecules. . Acc. Chem. Res. 38:(7):52333
    [Crossref] [Google Scholar]
  89. 89.
    Karnik SS, Sakmar TP, Chen HB, Khorana HG. 1988.. Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin. . PNAS 85:(22):845963
    [Crossref] [Google Scholar]
  90. 90.
    Kasai RS, Kusumi A. 2014.. Single-molecule imaging revealed dynamic GPCR dimerization. . Curr. Opin. Cell Biol. 27::7886
    [Crossref] [Google Scholar]
  91. 91.
    Kazmier K, Claxton DP, Mchaourab HS. 2017.. Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. . Curr. Opin. Struct. Biol. 45::1008
    [Crossref] [Google Scholar]
  92. 92.
    Kazmier K, Sharma S, Quick M, Islam SM, Roux B, et al. 2014.. Conformational dynamics of ligand-dependent alternating access in LeuT. . Nat. Struct. Mol. Biol. 21:(5):47279
    [Crossref] [Google Scholar]
  93. 93.
    Kim Y, Ho SO, Gassman NR, Korlann Y, Landorf EV, et al. 2008.. Efficient site-specific labeling of proteins via cysteines. . Bioconjug. Chem. 19:(3):78691
    [Crossref] [Google Scholar]
  94. 94.
    Kitamura N, Galligan JJ. 2023.. A global view of the human post-translational modification landscape. . Biochem. J. 480:(16):124165
    [Crossref] [Google Scholar]
  95. 95.
    Koehler C, Estrada Girona G, Reinkemeier CD, Lemke EA. 2020.. Inducible genetic code expansion in eukaryotes. . Chembiochemistry 21:(22):321619
    [Crossref] [Google Scholar]
  96. 96.
    Koehler C, Sauter PF, Wawryszyn M, Girona GE, Gupta K, et al. 2016.. Genetic code expansion for multiprotein complex engineering. . Nat. Methods 13:(12):9971000
    [Crossref] [Google Scholar]
  97. 97.
    Kosmidis E, Shuttle CG, Preobraschenski J, Ganzella M, Johnson PJ, et al. 2022.. Regulation of the mammalian-brain V-ATPase through ultraslow mode-switching. . Nature 611:(7937):82734
    [Crossref] [Google Scholar]
  98. 98.
    Krainer G, Keller S, Schlierf M. 2019.. Structural dynamics of membrane-protein folding from single-molecule fret. . Curr. Opin. Struct. Biol. 58::12437
    [Crossref] [Google Scholar]
  99. 99.
    Krishnamurthy H, Gouaux E. 2012.. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. . Nature 481:(7382):46974
    [Crossref] [Google Scholar]
  100. 100.
    Kuhlemann A, Beliu G, Janzen D, Petrini EM, Taban D, et al. 2021.. Genetic code expansion and click-chemistry labeling to visualize GABA-A receptors by super-resolution microscopy. . Front. Synaptic Neurosci. 13::727406
    [Crossref] [Google Scholar]
  101. 101.
    Lajoie MJ, Rovner AJ, Goodman DB, Aerni H-R, Haimovich AD, et al. 2013.. Genomically recoded organisms expand biological functions. . Science 342:(6156):35760
    [Crossref] [Google Scholar]
  102. 102.
    Lamichhane R, Liu JJ, Pljevaljcic G, White KL, van der Schans E, et al. 2015.. Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β2AR. . PNAS 112:(46):1425459
    [Crossref] [Google Scholar]
  103. 103.
    Lang K, Chin JW. 2014.. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. . Chem. Rev. 114:(9):4764806
    [Crossref] [Google Scholar]
  104. 104.
    Lange C, Nett JH, Trumpower BL, Hunte C. 2001.. Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. . EMBO J. 20:(23):6591600
    [Crossref] [Google Scholar]
  105. 105.
    Lee GM, Craik CS. 2009.. Trapping moving targets with small molecules. . Science 324:(5924):21315
    [Crossref] [Google Scholar]
  106. 106.
    Lerner E, Barth A, Hendrix J, Ambrose B, Birkedal V, et al. 2021.. FRET-based dynamic structural biology: challenges, perspectives and an appeal for open-science practices. . eLife 10::e60416
    [Crossref] [Google Scholar]
  107. 107.
    Lerner E, Cordes T, Ingargiola A, Alhadid Y, Chung S, et al. 2018.. Toward dynamic structural biology: two decades of single-molecule Förster resonance energy transfer. . Science 359:(6373):eaan1133
    [Crossref] [Google Scholar]
  108. 108.
    Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. 2003.. Zero-mode waveguides for single-molecule analysis at high concentrations. . Science 299:(5607):68286
    [Crossref] [Google Scholar]
  109. 109.
    Levitz J, Habrian C, Bharill S, Fu Z, Vafabakhsh R, Isacoff EY. 2016.. Mechanism of assembly and cooperativity of homomeric and heteromeric metabotropic glutamate receptors. . Neuron 92:(1):14359
    [Crossref] [Google Scholar]
  110. 110.
    Levring J, Terry DS, Kilic Z, Fitzgerald G, Blanchard SC, Chen J. 2023.. CFTR function, pathology and pharmacology at single-molecule resolution. . Nature 616:(7957):60614
    [Crossref] [Google Scholar]
  111. 111.
    Li Z, Li W, Lu M, Bess J, Chao CW, et al. 2020.. Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. . Nat. Struct. Mol. Biol. 27:(8):72634
    [Crossref] [Google Scholar]
  112. 112.
    Lin C-W, Ting AY. 2006.. Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. . J. Am. Chem. Soc. 128:(14):454243
    [Crossref] [Google Scholar]
  113. 113.
    Liu F, Zhang Z, Csanády L, Gadsby DC, Chen J. 2017.. Molecular structure of the human CFTR ion channel. . Cell 169:(1):8595.e8
    [Crossref] [Google Scholar]
  114. 114.
    Liu W, Brock A, Chen S, Chen S, Schultz PG. 2007.. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. . Nat. Methods 4:(3):23944
    [Crossref] [Google Scholar]
  115. 115.
    Lorent JH, Levental KR, Ganesan L, Rivera-Longsworth G, Sezgin E, et al. 2020.. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. . Nat. Chem. Biol. 16:(6):64452
    [Crossref] [Google Scholar]
  116. 116.
    Lueck JD, Yoon JS, Perales-Puchalt A, Mackey AL, Infield DT, et al. 2019.. Engineered transfer RNAs for suppression of premature termination codons. . Nat. Commun. 10::822
    [Crossref] [Google Scholar]
  117. 117.
    Luong AK, Gradinaru CC, Chandler DW, Hayden CC. 2005.. Simultaneous time- and wavelength-resolved fluorescence microscopy of single molecules. . J. Phys. Chem. B 109:(33):1569198
    [Crossref] [Google Scholar]
  118. 118.
    Lu M, Ma X, Castillo-Menendez LR, Gorman J, Alsahafi N, et al. 2019.. Associating HIV-1 envelope glycoprotein structures with states on the virus observed by smFRET. . Nature 568:(7752):41519
    [Crossref] [Google Scholar]
  119. 119.
    Lu M, Ma X, Reichard N, Terry DS, Arthos J, et al. 2020.. Shedding-resistant HIV-1 envelope glycoproteins adopt downstream conformations that remain responsive to conformation-preferring ligands. . J. Virol. 94:(17):e00597-20
    [Crossref] [Google Scholar]
  120. 120.
    Ma X, Lu M, Gorman J, Terry DS, Hong X, et al. 2018.. HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations. . eLife 7::e34271
    [Crossref] [Google Scholar]
  121. 121.
    Macias-Contreras M, He H, Little KN, Lee JP, Campbell RP, et al. 2020.. SNAP/CLIP-tags and strain-promoted azide-alkyne cycloaddition (SPAAC)/inverse electron demand Diels-Alder (IEDDA) for intracellular orthogonal/bioorthogonal labeling. . Bioconjug. Chem. 31:(5):137081
    [Crossref] [Google Scholar]
  122. 122.
    Magde D, Elson EL, Webb WW. 1974.. Fluorescence correlation spectroscopy. II. An experimental realization. . Biopolymers 13:(1):2961
    [Crossref] [Google Scholar]
  123. 123.
    Majumdar DS, Smirnova I, Kasho V, Nir E, Kong X, et al. 2007.. Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. . PNAS 104:(31):1264045
    [Crossref] [Google Scholar]
  124. 124.
    Malinauskaite L, Quick M, Reinhard L, Lyons JA, Yano H, et al. 2014.. A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. . Nat. Struct. Mol. Biol. 21:(11):100612
    [Crossref] [Google Scholar]
  125. 125.
    Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, et al. 2015.. Structural insights into the dynamic process of β2-adrenergic receptor signaling. . Cell 161:(5):110111
    [Crossref] [Google Scholar]
  126. 126.
    Martin MI, Pati AK, Abeywickrama CS, Bar S, Kilic Z, et al. 2023.. Leveraging Baird aromaticity for advancement of bioimaging applications. . J. Phys. Org. Chem. 36:(1):e4449
    [Crossref] [Google Scholar]
  127. 127.
    Martinac B. 2017.. Single-molecule FRET studies of ion channels. . Prog. Biophys. Mol. Biol. 130:(Pt B):19297
    [Crossref] [Google Scholar]
  128. 128.
    Maslov I, Volkov O, Khorn P, Orekhov P, Gusach A, et al. 2023.. Sub-millisecond conformational dynamics of the A2A adenosine receptor revealed by single-molecule FRET. . Commun. Biol. 6::362
    [Crossref] [Google Scholar]
  129. 129.
    Mazal H, Haran G. 2019.. Single-molecule fret methods to study the dynamics of proteins at work. . Curr. Opin. Biomed. Eng. 12::817
    [Crossref] [Google Scholar]
  130. 130.
    Meehan BM, Landeta C, Boyd D, Beckwith J. 2017.. The disulfide bond formation pathway is essential for anaerobic growth of Escherichia coli. . J. Bacteriol. 199:(16):e00120-17
    [Crossref] [Google Scholar]
  131. 131.
    Meineke B, Heimgärtner J, Caridha R, Block M, Kimler KJ, et al. 2023.. Dual stop codon suppression in mammalian cells with genomically integrated genetic code expansion machinery. . Cell Rep. Methods 3:(11):100626
    [Crossref] [Google Scholar]
  132. 132.
    Minsky M. 1988.. Memoir on inventing the confocal scanning microscope. . Scanning 10:(4):12838
    [Crossref] [Google Scholar]
  133. 133.
    Müller BK, Zaychikov E, Bräuchle C, Lamb DC. 2005.. Pulsed interleaved excitation. . Biophys. J. 89:(5):350822
    [Crossref] [Google Scholar]
  134. 134.
    Mulligan C, Fenollar-Ferrer C, Fitzgerald GA, Vergara-Jaque A, Kaufmann D, et al. 2016.. The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. . Nat. Struct. Mol. Biol. 23:(3):25663
    [Crossref] [Google Scholar]
  135. 135.
    Munro JB, Altman RB, O'Connor N, Blanchard SC. 2007.. Identification of two distinct hybrid state intermediates on the ribosome. . Mol. Cell 25:(4):50517
    [Crossref] [Google Scholar]
  136. 136.
    Munro JB, Gorman J, Ma X, Zhou Z, Arthos J, et al. 2014.. Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. . Science 346:(6210):75963
    [Crossref] [Google Scholar]
  137. 137.
    Munro JB, Sanbonmatsu KY, Spahn CMT, Blanchard SC. 2009.. Navigating the ribosome's metastable energy landscape. . Trends Biochem. Sci. 34:(8):390400
    [Crossref] [Google Scholar]
  138. 138.
    Naganathan AN, Muñoz V. 2010.. Insights into protein folding mechanisms from large scale analysis of mutational effects. . PNAS 107:(19):861116
    [Crossref] [Google Scholar]
  139. 139.
    Namy O, Rousset J-P, Napthine S, Brierley I. 2004.. Reprogrammed genetic decoding in cellular gene expression. . Mol. Cell 13:(2):15768
    [Crossref] [Google Scholar]
  140. 140.
    Neumann S, Fuchs A, Mulkidjanian A, Frishman D. 2010.. Current status of membrane protein structure classification. . Proteins 78:(7):176073
    [Crossref] [Google Scholar]
  141. 141.
    Newcombe EA, Ruff KM, Sethi A, Ormsby AR, Ramdzan YM, et al. 2018.. Tadpole-like conformations of huntingtin exon 1 are characterized by conformational heterogeneity that persists regardless of polyglutamine length. . J. Mol. Biol. 430:(10):144258
    [Crossref] [Google Scholar]
  142. 142.
    Nikić I, Estrada Girona G, Kang JH, Paci G, Mikhaleva S, et al. 2016.. Debugging eukaryotic genetic code expansion for site-specific click-paint super-resolution microscopy. . Angew. Chem. Int. Ed. 55:(52):1617276
    [Crossref] [Google Scholar]
  143. 143.
    Onuchic JN, Wolynes PG. 2004.. Theory of protein folding. . Curr. Opin. Struct. Biol. 14:(1):7075
    [Crossref] [Google Scholar]
  144. 144.
    Overington JP, Al-Lazikani B, Hopkins AL. 2006.. How many drug targets are there?. Nat. Rev. Drug Discov. 5:(12):99396
    [Crossref] [Google Scholar]
  145. 145.
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, et al. 2000.. Crystal structure of rhodopsin: a G protein-coupled receptor. . Science 289:(5480):73945
    [Crossref] [Google Scholar]
  146. 146.
    Pati AK, El Bakouri O, Jockusch S, Zhou Z, Altman RB, et al. 2020.. Tuning the Baird aromatic triplet-state energy of cyclooctatetraene to maximize the self-healing mechanism in organic fluorophores. . PNAS 117:(39):2430515
    [Crossref] [Google Scholar]
  147. 147.
    Pati AK, Kilic Z, Terry DS, Martin MI, Borgia A, et al. 2023.. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. . Nat. Methods. In press
    [Google Scholar]
  148. 148.
    Pebay-Peyroula E, Rummel G, Rosenbusch JP, Landau EM. 1997.. X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. . Science 277:(5332):167681
    [Crossref] [Google Scholar]
  149. 149.
    Pibiri E, Holzmeister P, Lalkens B, Acuna GP, Tinnefeld P. 2014.. Single-molecule positioning in zeromode waveguides by DNA origami nanoadapters. . Nano Lett. 14:(6):3499503
    [Crossref] [Google Scholar]
  150. 150.
    Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, et al. 2023.. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. . arXiv:2302.12455 [q-bio.BM]
  151. 151.
    Qin F. 2007.. Principles of single-channel kinetic analysis. . Methods Mol. Biol. 403::25386
    [Crossref] [Google Scholar]
  152. 152.
    Quick M, Winther A-ML, Shi L, Nissen P, Weinstein H, Javitch JA. 2009.. Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. . PNAS 106:(14):556368
    [Crossref] [Google Scholar]
  153. 153.
    Rashid F, Harris PD, Zaher MS, Sobhy MA, Joudeh LI, et al. 2017.. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1. . eLife 6::e21884
    [Crossref] [Google Scholar]
  154. 154.
    Rasmussen SGF, Choi H-J, Rosenbaum DM, Kobilka TS, Thian FS, et al. 2007.. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. . Nature 450:(7168):38387
    [Crossref] [Google Scholar]
  155. 155.
    Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, et al. 2011.. Crystal structure of the β2 adrenergic receptor-Gs protein complex. . Nature 477:(7366):54955
    [Crossref] [Google Scholar]
  156. 156.
    Reinkemeier CD, Girona GE, Lemke EA. 2019.. Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes. . Science 363:(6434):eaaw2644
    [Crossref] [Google Scholar]
  157. 157.
    Reyes N, Ginter C, Boudker O. 2009.. Transport mechanism of a bacterial homologue of glutamate transporters. . Nature 462:(7275):88085
    [Crossref] [Google Scholar]
  158. 158.
    Roy R, Hohng S, Ha T. 2008.. A practical guide to single-molecule FRET. . Nat. Methods 5:(6):50716
    [Crossref] [Google Scholar]
  159. 159.
    Rundlet EJ, Holm M, Schacherl M, Natchiar SK, Altman RB, et al. 2021.. Structural basis of early translocation events on the ribosome. . Nature 595:(7869):74145
    [Crossref] [Google Scholar]
  160. 160.
    Sadler F, Ma N, Ritt M, Sharma Y, Vaidehi N, Sivaramakrishnan S. 2023.. Autoregulation of GPCR signalling through the third intracellular loop. . Nature 615:(7953):73441
    [Crossref] [Google Scholar]
  161. 161.
    Sako Y, Minoghchi S, Yanagida T. 2000.. Single-molecule imaging of EGFR signalling on the surface of living cells. . Nat. Cell Biol. 2:(3):16872
    [Crossref] [Google Scholar]
  162. 162.
    Sakuragi T, Nagata S. 2023.. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. . Nat. Rev. Mol. Cell Biol. 24:(8):57696
    [Crossref] [Google Scholar]
  163. 163.
    Schiöth HB, Fredriksson R. 2005.. The GRAFS classification system of G-protein coupled receptors in comparative perspective. . Gen. Comp. Endocrinol. 142:(1–2):94101
    [Crossref] [Google Scholar]
  164. 164.
    Schmied WH, Elsässer SJ, Uttamapinant C, Chin JW. 2014.. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. . J. Am. Chem. Soc. 136:(44):1557783
    [Crossref] [Google Scholar]
  165. 165.
    Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, et al. 2021.. Bioorthogonal chemistry. . Nat. Rev. Methods Primers 1::30
    [Crossref] [Google Scholar]
  166. 166.
    Seidel L, Zarzycka B, Zaidi SA, Katritch V, Coin I. 2017.. Structural insight into the activation of a class B G-protein-coupled receptor by peptide hormones in live human cells. . eLife 6::e27711
    [Crossref] [Google Scholar]
  167. 167.
    Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, et al. 2020.. Improved protein structure prediction using potentials from deep learning. . Nature 577:(7792):70610
    [Crossref] [Google Scholar]
  168. 168.
    Serfling R, Lorenz C, Etzel M, Schicht G, Böttke T, et al. 2018.. Designer tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in mammalian cells. . Nucleic Acids Res. 46:(1):110
    [Crossref] [Google Scholar]
  169. 169.
    Shi X, Jung Y, Lin L-J, Liu C, Wu C, et al. 2012.. Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging. . Nat. Methods 9:(5):499503
    [Crossref] [Google Scholar]
  170. 170.
    Sikkema HR, Poolman B. 2021.. In silico method for selecting residue pairs for single-molecule microscopy and spectroscopy. . Sci. Rep. 11::5756
    [Crossref] [Google Scholar]
  171. 171.
    Singh SK, Yamashita A, Gouaux E. 2007.. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. . Nature 448:(7156):95256
    [Crossref] [Google Scholar]
  172. 172.
    Smirnova I, Kasho V, Kaback HR. 2011.. Lactose permease and the alternating access mechanism. . Biochemistry 50:(45):968493
    [Crossref] [Google Scholar]
  173. 173.
    Smock RG, Gierasch LM. 2009.. Sending signals dynamically. . Science 324:(5924):198203
    [Crossref] [Google Scholar]
  174. 174.
    Sohail A, Jayaraman K, Venkatesan S, Gotfryd K, Daerr M, et al. 2016.. The environment shapes the inner vestibule of LeuT. . PLOS Comput. Biol. 12:(11):e1005197
    [Crossref] [Google Scholar]
  175. 175.
    Stalder D, Gershlick DC. 2020.. Direct trafficking pathways from the Golgi apparatus to the plasma membrane. . Semin. Cell Dev. Biol. 107::11225
    [Crossref] [Google Scholar]
  176. 176.
    Stoops EH, Farr GA, Hull M, Caplan MJ. 2014.. SNAP-tag to monitor trafficking of membrane proteins in polarized epithelial cells. . Methods Mol. Biol. 1174::17182
    [Crossref] [Google Scholar]
  177. 177.
    Stryer L, Haugland RP. 1967.. Energy transfer: a spectroscopic ruler. . PNAS 58:(2):71926
    [Crossref] [Google Scholar]
  178. 178.
    Tao X, Zhao C, MacKinnon R. 2023.. Membrane protein isolation and structure determination in cell-derived membrane vesicles. . PNAS 120:(18):e2302325120
    [Crossref] [Google Scholar]
  179. 179.
    Teng KW, Ishitsuka Y, Ren P, Youn Y, Deng X, et al. 2016.. Labeling proteins inside living cells using external fluorophores for microscopy. . eLife 5::e20378
    [Crossref] [Google Scholar]
  180. 180.
    Terry DS, Kolster RA, Quick M, LeVine MV, Khelashvili G, et al. 2018.. A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport. . Nat. Commun. 9::230
    [Crossref] [Google Scholar]
  181. 181.
    Toyoshima C, Iwasawa S, Ogawa H, Hirata A, Tsueda J, Inesi G. 2013.. Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. . Nature 495:(7440):26064
    [Crossref] [Google Scholar]
  182. 182.
    Tsai A, Puglisi JD, Uemura S. 2016.. Probing the translation dynamics of ribosomes using zero-mode waveguides. . Prog. Mol. Biol. Transl. Sci. 139::143
    [Crossref] [Google Scholar]
  183. 183.
    Unger VM, Hargrave PA, Baldwin JM, Schertler GF. 1997.. Arrangement of rhodopsin transmembrane α-helices. . Nature 389:(6647):2036
    [Crossref] [Google Scholar]
  184. 184.
    Vafabakhsh R, Levitz J, Isacoff EY. 2015.. Conformational dynamics of a class C G-protein-coupled receptor. . Nature 524:(7566):497501
    [Crossref] [Google Scholar]
  185. 185.
    Veit S, Paweletz LC, Bohr SS-R, Menon AK, Hatzakis NS, Pomorski TG. 2022.. Single vesicle fluorescence-bleaching assay for multi-parameter analysis of proteoliposomes by total internal reflection fluorescence microscopy. . ACS Appl. Mater. Interfaces 14:(26):2965967
    [Crossref] [Google Scholar]
  186. 186.
    Vinothkumar KR, Henderson R. 2010.. Structures of membrane proteins. . Q. Rev. Biophys. 43:(1):65158
    [Crossref] [Google Scholar]
  187. 187.
    Vyklicky V, Stanley C, Habrian C, Isacoff EY. 2021.. Conformational rearrangement of the NMDA receptor amino-terminal domain during activation and allosteric modulation. . Nat. Commun. 12::2694
    [Crossref] [Google Scholar]
  188. 188.
    Wagner J, Sungkaworn T, Heinze KG, Lohse MJ, Calebiro D. 2015.. Single-molecule fluorescence microscopy for the analysis of fast receptor dynamics. . Methods Mol. Biol. 1335::5366
    [Crossref] [Google Scholar]
  189. 189.
    Walsh SM, Mathiasen S, Christensen SM, Fay JF, King C, et al. 2018.. Single proteoliposome high-content analysis reveals differences in the homo-oligomerization of GPCRs. . Biophys. J. 115:(2):30012
    [Crossref] [Google Scholar]
  190. 190.
    Wang L, Brock A, Herberich B, Schultz PG. 2001.. Expanding the genetic code of Escherichia coli. . Science 292:(5516):498500
    [Crossref] [Google Scholar]
  191. 191.
    Wang L, Pulk A, Wasserman MR, Feldman MB, Altman RB, et al. 2012.. Allosteric control of the ribosome by small-molecule antibiotics. . Nat. Struct. Mol. Biol. 19:(9):95763
    [Crossref] [Google Scholar]
  192. 192.
    Wang S, Brettmann JB, Nichols CG. 2018.. Studying structural dynamics of potassium channels by single-molecule FRET. . Methods Mol. Biol. 1684::16380
    [Crossref] [Google Scholar]
  193. 193.
    Wei S, Thakur N, Ray AP, Jin B, Obeng S, et al. 2022.. Slow conformational dynamics of the human A2A adenosine receptor are temporally ordered. . Structure 30:(3):32937.e5
    [Crossref] [Google Scholar]
  194. 194.
    Weiss S. 1999.. Fluorescence spectroscopy of single biomolecules. . Science 283:(5408):167683
    [Crossref] [Google Scholar]
  195. 195.
    White DS, Chowdhury S, Idikuda V, Zhang R, Retterer ST, et al. 2021.. CAMP binding to closed pacemaker ion channels is non-cooperative. . Nature 595:(7868):60610
    [Crossref] [Google Scholar]
  196. 196.
    White DS, Smith MA, Chanda B, Goldsmith RH. 2023.. Strategies for overcoming the single-molecule concentration barrier. . ACS Meas. Sci. Au 3:(4):23957
    [Crossref] [Google Scholar]
  197. 197.
    Whitford PC, Altman RB, Geggier P, Terry DS, Munro JB, et al. 2011.. Dynamic views of ribosome function: energy landscapes and ensembles. . In Ribosomes, ed. MV Rodnina, W Wintermeyer, R Green , pp. 30319. Berlin:: Springer
    [Google Scholar]
  198. 198.
    Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbonmatsu KY. 2010.. Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. . RNA 16:(6):1196204
    [Crossref] [Google Scholar]
  199. 199.
    Wilmes S, Hafer M, Vuorio J, Tucker JA, Winkelmann H, et al. 2020.. Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. . Science 367:(6478):64352
    [Crossref] [Google Scholar]
  200. 200.
    Wolf S, Sohmen B, Hellenkamp B, Thurn J, Stock G, Hugel T. 2021.. Hierarchical dynamics in allostery following ATP hydrolysis monitored by single molecule FRET measurements and MD simulations. . Chem. Sci. 12:(9):335059
    [Crossref] [Google Scholar]
  201. 201.
    Xu CS, Kim H, Yang H, Hayden CC. 2007.. Multiparameter fluorescence spectroscopy of single quantum dot-dye FRET hybrids. . J. Am. Chem. Soc. 129:(36):110089
    [Crossref] [Google Scholar]
  202. 202.
    Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. 2005.. Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. . Nature 437:(7056):21523
    [Crossref] [Google Scholar]
  203. 203.
    Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S. 2008.. Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode Nε-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. . Chem. Biol. 15:(11):118797
    [Crossref] [Google Scholar]
  204. 204.
    Yang D, Gouaux E. 2021.. Illumination of serotonin transporter mechanism and role of the allosteric site. . Sci. Adv. 7:(49):eabl3857
    [Crossref] [Google Scholar]
  205. 205.
    Yang Z, Xu H, Wang J, Chen W, Zhao M. 2021.. Single-molecule fluorescence techniques for membrane protein dynamics analysis. . Appl. Spectrosc. 75:(5):491505
    [Crossref] [Google Scholar]
  206. 206.
    Yernool D, Boudker O, Jin Y, Gouaux E. 2004.. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. . Nature 431:(7010):81118
    [Crossref] [Google Scholar]
  207. 207.
    Young P, Levring J, Fiedorczuk K, Blanchard SC, Chen J. 2023.. Structural basis for CFTR inhibition by CFTRinh-172. . bioRxiv 2023.10.11.561899. https://doi.org/10.1101/2023.10.11.561899
  208. 208.
    Yu M, Heidari M, Mikhaleva S, Tan PS, Mingu S, et al. 2023.. Visualizing the disordered nuclear transport machinery in situ. . Nature 617:(7959):16269
    [Crossref] [Google Scholar]
  209. 209.
    Zhang Y, Jiao J, Rebane AA. 2016.. Hidden Markov modeling with detailed balance and its application to single protein folding. . Biophys. J. 111:(10):211024
    [Crossref] [Google Scholar]
  210. 210.
    Zhang Y, Yang C, Peng S, Ling J, Chen P, et al. 2023.. General strategy to improve the photon budget of thiol-conjugated cyanine dyes. . J. Am. Chem. Soc. 145:(7):418798
    [Crossref] [Google Scholar]
  211. 211.
    Zhao Y, Terry DS, Shi L, Quick M, Weinstein H, et al. 2011.. Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. . Nature 474:(7349):10913
    [Crossref] [Google Scholar]
  212. 212.
    Zhao Y, Terry D, Shi L, Weinstein H, Blanchard SC, Javitch JA. 2010.. Single-molecule dynamics of gating in a neurotransmitter transporter homologue. . Nature 465:(7295):18893
    [Crossref] [Google Scholar]
  213. 213.
    Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, et al. 2014.. Ultra-stable organic fluorophores for single-molecule research. . Chem. Soc. Rev. 43:(4):104456
    [Crossref] [Google Scholar]
  214. 214.
    Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. 2001.. Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. . Nature 414:(6859):4348
    [Crossref] [Google Scholar]
  215. 215.
    Zhou Z, Zhen J, Karpowich NK, Goetz RM, Law CJ, et al. 2007.. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. . Science 317:(5843):139093
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-070323-024308
Loading
/content/journals/10.1146/annurev-biophys-070323-024308
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error