1932

Abstract

Low-molecular-weight oligomers formed from amyloidogenic peptides and proteins have been identified as key cytotoxins across a range of neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Developing therapeutic strategies that target oligomers is therefore emerging as a promising approach for combating protein misfolding diseases. As such, there is a great need to understand the fundamental properties, dynamics, and mechanisms associated with oligomer formation. In this review, we discuss how chemical kinetics provides a powerful tool for studying these systems. We review the chemical kinetics approach to determining the underlying molecular pathways of protein aggregation and discuss its applications to oligomer formation and dynamics. We discuss how this approach can reveal detailed mechanisms of primary and secondary oligomer formation, including the role of interfaces in these processes. We further use this framework to describe the processes of oligomer conversion and dissociation, and highlight the distinction between on-pathway and off-pathway oligomers. Furthermore, we showcase on the basis of experimental data the diversity of pathways leading to oligomer formation in various in vitro and in silico systems. Finally, using the lens of the chemical kinetics framework, we look at the current oligomer inhibitor strategies both in vitro and in vivo.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-080124-122953
2025-05-06
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/biophys/54/1/annurev-biophys-080124-122953.html?itemId=/content/journals/10.1146/annurev-biophys-080124-122953&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, et al. 2010.. Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. . Nat. Struct. Mol. Biol. 17::56167
    [Crossref] [Google Scholar]
  2. 2.
    Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. 1995.. An English translation of Alzheimer's 1907 paper, “Über eine eigenartige Erkrankung der Hirnrinde. .” Clin. Anat. 8::42931
    [Crossref] [Google Scholar]
  3. 3.
    Angelova PR, Choi ML, Berezhnov AV, Horrocks MH, Hughes CD, et al. 2020.. Alpha synuclein aggregation drives ferroptosis: an interplay of iron, calcium, and lipid peroxidation. . Cell Death Differ. 27::278196
    [Crossref] [Google Scholar]
  4. 4.
    Arosio P, Knowles TPJ, Linse S. 2015.. On the lag phase in amyloid fibril formation. . Phys. Chem. Chem. Phys. 17::760618
    [Crossref] [Google Scholar]
  5. 5.
    Arter WE, Xu CK, Castellana-Cruz M, Herling TW, Krainer G, et al. 2020.. Rapid structural, kinetic, and immunochemical analysis of alpha-synuclein oligomers in solution. . Nano Lett. 20:(11):816369
    [Crossref] [Google Scholar]
  6. 6.
    Avaro J, Moon EM, Schulz KG, Rose AL. 2023.. Calcium carbonate prenucleation cluster pathway observed via in situ small-angle X-ray scattering. . J. Phys. Chem. Lett. 14:(19):451723
    [Crossref] [Google Scholar]
  7. 7.
    Barz B, Liao Q, Strodel B. 2018.. Pathways of amyloid-β aggregation depend on oligomer shape. . J. Am. Chem. Soc. 140:(1):31927
    [Crossref] [Google Scholar]
  8. 8.
    Bitan G, Lomakin A, Teplow DB. 2001.. Amyloid β-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. . J. Biol. Chem. 276::3517684
    [Crossref] [Google Scholar]
  9. 9.
    Bongiovanni MN, Godet J, Horrocks MH, Tosatto L, Carr AR, et al. 2016.. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping. . Nat. Commun. 7::13544
    [Crossref] [Google Scholar]
  10. 10.
    Buell AK, Blundell JR, Dobson CM, Welland ME, Terentjev EM, Knowles TPJ. 2010.. Frequency factors in a landscape model of filamentous protein aggregation. . Phys. Rev. Lett. 104::228101
    [Crossref] [Google Scholar]
  11. 11.
    Chen SW, Drakulic S, Deas E, Ouberai MM, Aprile FA, et al. 2015.. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation. . PNAS 112::E19942003
    [Google Scholar]
  12. 12.
    Cheon M, Hall CK, Chang I. 2015.. Structural conversion of Aβ17–42 peptides from disordered oligomers to U-shape protofilaments via multiple kinetic pathways. . PLOS Comput. Biol. 11:(5):e1004258
    [Crossref] [Google Scholar]
  13. 13.
    Cheon M, Kang M, Chang I. 2016.. Polymorphism of fibrillar structures depending on the size of assembled Aβ17–42 peptides. . Sci. Rep. 6::38196
    [Crossref] [Google Scholar]
  14. 14.
    Choi ML, Chappard A, Singh BP, Maclachlan C, Rodrigues M, et al. 2022.. Pathological structural conversion of α-synuclein at the mitochondria induces neuronal toxicity. . Nat. Neurosci. 25::113448
    [Crossref] [Google Scholar]
  15. 15.
    Cohen SIA, Arosio P, Presto J, Kurudenkandy FR, Biverstål H, et al. 2015.. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. . Nat. Struct. Mol. Biol. 22::20713
    [Crossref] [Google Scholar]
  16. 16.
    Cohen SIA, Cukalevski R, Michaels TCT, Šarić A, Törnquist M, et al. 2018.. Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide. . Nat. Chem. 10::52331
    [Crossref] [Google Scholar]
  17. 17.
    Cohen SIA, Linse S, Luheshi LM, Hellstrand E, White DA, et al. 2013.. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. . PNAS 110::975863
    [Crossref] [Google Scholar]
  18. 18.
    Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ. 2011.. Nucleated polymerization with secondary pathways. II. Determination of self-consistent solutions to growth processes described by non-linear master equations. . J. Chem. Phys. 135:(6):065106
    [Crossref] [Google Scholar]
  19. 19.
    Cohen SIA, Vendruscolo M, Welland ME, Dobson CM, Terentjev EM, et al. 2011.. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. . J. Chem. Phys. 135:(6):065105
    [Crossref] [Google Scholar]
  20. 20.
    Colvin MT, Silvers R, Ni QZ, Can TV, Sergeyev I, et al. 2016.. Atomic resolution structure of monomorphic Aβ42 amyloid fibrils. . J. Am. Chem. Soc. 138::966374
    [Crossref] [Google Scholar]
  21. 21.
    Cremades N, Cohen SIA, Deas E, Abramov AY, Chen AY, et al. 2012.. Direct observation of the interconversion of normal and toxic forms of α-synuclein. . Cell 149::104859
    [Crossref] [Google Scholar]
  22. 22.
    Curk S, Krausser J, Meisl G, Frenkel D, Linse S, et al. 2023.. Self-replication of Aβ42 aggregates occurs on small and isolated fibril sites. . PNAS 121:(7):e2220075121
    [Crossref] [Google Scholar]
  23. 23.
    Dasari AKR, Yi S, Coats MF, Wi S, Lim KH. 2022.. Toxic misfolded transthyretin oligomers with different molecular conformations formed through distinct oligomerization pathways. . Biochemistry 61::235865
    [Crossref] [Google Scholar]
  24. 24.
    De S, Wirthensohn DC, Flagmeier P, Hughes C, Aprile FA, Ruggeri FS, et al. 2019.. Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. . Nat. Commun. 10::1541
    [Crossref] [Google Scholar]
  25. 25.
    Dear AJ, Meisl G, Linse S, Mahadevan L. 2023.. Approximate Lie symmetries and singular perturbation theory. . arXiv:2309.05038 [math-ph]
  26. 26.
    Dear AJ, Meisl G, Linse S, Mahadevan L. 2023.. Developing integrated rate laws of complex self-assembly reactions using Lie symmetry: kinetics of Aβ42, Aβ40 and Aβ38 co-aggregation. . arXiv:2309.15932 [physics.chem-ph]
  27. 27.
    Dear AJ, Meisl G, Michaels TCT, Zimmermann MR, Linse S, Knowles TPJ. 2020.. The catalytic nature of protein aggregation. . J. Chem. Phys. 152::045101
    [Crossref] [Google Scholar]
  28. 28.
    Dear AJ, Meisl G, Šarić A, Michaels TCT, Kjaergaard M, et al. 2020.. Identification of on- and off-pathway oligomers in amyloid fibril formation. . Chem. Sci. 11::623647
    [Crossref] [Google Scholar]
  29. 29.
    Dear AJ, Michaels TCT, Meisl G, Klenerman D, Wu S, et al. 2020.. Kinetic diversity of amyloid oligomers. . PNAS 117::1208794
    [Crossref] [Google Scholar]
  30. 30.
    Dear AJ, Šarić A, Michaels TCT, Dobson CM, Knowles TPJ. 2018.. Statistical mechanics of globular oligomer formation by protein molecules. . J. Phys. Chem. B 122::1172130
    [Crossref] [Google Scholar]
  31. 31.
    Dear AJ, Thacker D, Wennmalm S, Ortigosa-Pascual L, Andrzejewska EA, et al. 2024.. Aβ oligomer dissociation is catalyzed by fibril surfaces. . ACS Chem. Neurosci. 15:(11):2296307
    [Crossref] [Google Scholar]
  32. 32.
    Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D. 2011.. Stable prenucleation mineral clusters are liquid-like ionic polymers. . Nat. Commun. 2::590
    [Crossref] [Google Scholar]
  33. 33.
    Dresser L, Hunter P, Yendybayeva F, Hargreaves AL, Howard JAL, et al. 2020.. Amyloid-β oligomerization monitored by single-molecule stepwise photobleaching. . Methods 193::8095
    [Crossref] [Google Scholar]
  34. 34.
    Du F, Yu Q, Kanaan NM, Yan SS. 2022.. Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer's disease. . Hum. Mol. Genet. 31::2498507
    [Crossref] [Google Scholar]
  35. 35.
    Emin D, Zhang YP, Lobanova E, Miller A, Li X, et al. 2022.. Small soluble α-synuclein aggregates are the toxic species in Parkinson's disease. . Nat. Commun. 17::5512
    [Crossref] [Google Scholar]
  36. 36.
    Ferrone FA, Hofrichter J, Eaton WA. 1985.. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. . J. Mol. Biol. 183::61131
    [Crossref] [Google Scholar]
  37. 37.
    Flagmeier P, De S, Michaels TCT, Yang X, Dear AJ, et al. 2020.. Direct measurement of lipid membrane disruption connects kinetics and toxicity of Aβ42 aggregation. . Nat. Struct. Mol. Biol. 27::88691
    [Crossref] [Google Scholar]
  38. 38.
    Flagmeier P, De S, Wirthensohn DC, Lee SF, Vincke C, et al. 2017.. Ultrasensitive measurement of Ca2+ influx into lipid vesicles induced by protein aggregates. . Angew. Chem. Int. Ed. Engl. 56:(27):775054
    [Crossref] [Google Scholar]
  39. 39.
    Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, et al. 2017.. Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. . Science 358::144043
    [Crossref] [Google Scholar]
  40. 40.
    Garcia GA, Cohen SIA, Dobson CM, Knowles TPJ. 2014.. Nucleation-conversion-polymerization reactions of biological macromolecules with prenucleation clusters. . Phys. Rev. E 89::032712
    [Crossref] [Google Scholar]
  41. 41.
    Giehm L, Svergun DI, Otzen DE, Vestergaard B. 2011.. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. . PNAS 108::324651
    [Crossref] [Google Scholar]
  42. 42.
    Glabe CG. 2008.. Structural classification of toxic amyloid oligomers. . J. Biol. Chem. 283::2963943
    [Crossref] [Google Scholar]
  43. 43.
    Haass C, Selkoe DJ. 1993.. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. . Cell 75::103942
    [Crossref] [Google Scholar]
  44. 44.
    Habchi J, Arosio P, Perni M, Costa AR, Yagi-Utsumi M, et al. 2016.. An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer's disease. . Sci. Adv. 2::e1501244
    [Crossref] [Google Scholar]
  45. 45.
    Hampel H, Hardy J, Blennow K, Chen C, Perry G, et al. 2021.. The amyloid-β pathway in Alzheimer's disease. . Mol. Psychiatry 26::5481503
    [Crossref] [Google Scholar]
  46. 46.
    Hasecke F, Miti T, Perez C, Barton J, Schölzel D, et al. 2018.. Origin of metastable oligomers and their effects on amyloid fibril self-assembly. . Chem. Sci. 9::593748
    [Crossref] [Google Scholar]
  47. 47.
    Horrocks MH, Lee SF, Gandhi S, Magdalinou NK, Chen SW, et al. 2016.. Single-molecule imaging of individual amyloid protein aggregates in human biofluids. . ACS Chem. Neurosci. 7::399406
    [Crossref] [Google Scholar]
  48. 48.
    Horrocks MH, Tosatto L, Dear AJ, Garcia GA, Iljina M, et al. 2015.. Fast flow microfluidics and single-molecule fluorescence for the rapid characterization of α-synuclein oligomers. . Anal. Chem. 87::881826
    [Crossref] [Google Scholar]
  49. 49.
    Iljina M, Garcia GA, Horrocks MH, Tosatto L, Choi ML, et al. 2016.. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. . PNAS 113::E120615
    [Crossref] [Google Scholar]
  50. 50.
    Kakkar V, Månsson C, de Mattos EP, Bergink S, van der Zwaag M, et al. 2016.. The S/T-rich motif in the DNAJB6 chaperone delays polyglutamine aggregation and the onset of disease in a mouse model. . Mol. Cell 62::27283
    [Crossref] [Google Scholar]
  51. 51.
    Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, et al. 1987.. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. . Nature 325::73336
    [Crossref] [Google Scholar]
  52. 52.
    Kastanenka KV, Bussiere T, Shakerdge N, Qian F, Weinreb PH, et al. 2016.. Immunotherapy with aducanumab restores calcium homeostasis in Tg2576 mice. . J. Neurosci. 36::1254958
    [Crossref] [Google Scholar]
  53. 53.
    Kelley NW, Vishal V, Krafft GA, Pande VS. 2008.. Simulating oligomerization at experimental concentrations and long timescales: a Markov state model approach. . J. Chem. Phys. 129::214707
    [Crossref] [Google Scholar]
  54. 54.
    Khalil HK. 1996.. Nonlinear Systems. Upper Saddle River, NJ:: Prentice-Hall
    [Google Scholar]
  55. 55.
    Kjaergaard M, Dear AJ, Kundel F, Qamar S, Meisl G, et al. 2018.. Oligomer diversity during the aggregation of the repeat region of tau. . ACS Chem. Neurosci. 9::306071
    [Crossref] [Google Scholar]
  56. 56.
    Knight SD, Presto J, Linse S, Johansson J. 2013.. The BRICHOS domain, amyloid fibril formation, and their relationship. . Biochemistry 52::752331
    [Crossref] [Google Scholar]
  57. 57.
    Knowles TPJ, Waudby CA, Devlin GL, Cohen SIA, Aguzzi A, et al. 2009.. An analytical solution to the kinetics of breakable filament assembly. . Science 326::153337
    [Crossref] [Google Scholar]
  58. 58.
    Knowles TPJ, White DA, Abate AR, Agresti JJ, Cohen SIA, et al. 2011.. Observation of spatial propagation of amyloid assembly from single nuclei. . PNAS 108::1474651
    [Crossref] [Google Scholar]
  59. 59.
    Krausser J, Knowles TPJ, Šarić A. 2020.. Physical mechanisms of amyloid nucleation on fluid membranes. . PNAS 117::3309098
    [Crossref] [Google Scholar]
  60. 60.
    Kreiser RP, Wright AK, Block NR, Hollows JE, Nguyen LT, et al. 2020.. Therapeutic strategies to reduce the toxicity of misfolded protein oligomers. . Int. J. Mol. Sci. 21::8651
    [Crossref] [Google Scholar]
  61. 61.
    Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr. 2002.. Neurodegenerative disease: amyloid pores from pathogenic mutations. . Nature 418::291
    [Crossref] [Google Scholar]
  62. 62.
    Lashuel HA, Overk CR, Oueslati A, Masliah E. 2013.. The many faces of α-synuclein: from structure and toxicity to therapeutic target. . Nat. Rev. Neurosci. 14::3848
    [Crossref] [Google Scholar]
  63. 63.
    Lee J-E, Sang JC, Rodrigues M, Carr AR, Horrocks MH, et al. 2018.. Mapping surface hydrophobicity of α-synuclein oligomers at the nanoscale. . Nano Lett. 18::7494501
    [Crossref] [Google Scholar]
  64. 64.
    Lendel C, Bjerring M, Dubnovitsky A, Kelly RT, Filippov A, et al. 2014.. A hexameric peptide barrel as building block of amyloid-β protofibrils. . Angew. Chem. Int. Ed. Engl. 53::1275660
    [Crossref] [Google Scholar]
  65. 65.
    Limbocker R, Mannini B, Cataldi R, Chhangur S, Wright AK, et al. 2020.. Rationally designed antibodies as research tools to study the structure–toxicity relationship of amyloid-β oligomers. . Int. J. Mol. Sci. 21::4542
    [Crossref] [Google Scholar]
  66. 66.
    Linse S, Scheidt T, Bernfur K, Vendruscolo M, Dobson CM, et al. 2020.. Kinetic fingerprints differentiate the mechanisms of action of anti-Aβ antibodies. . Nat. Struct. Mol. Biol. 27::112533
    [Crossref] [Google Scholar]
  67. 67.
    Lövestam S, Li D, Wagstaff JL, Kotecha A, Kimanius D, et al. 2023.. Disease-specific tau filaments assemble via polymorphic intermediates. . Nature 625::11925
    [Crossref] [Google Scholar]
  68. 68.
    Ludtmann MHR, Angelova PR, Horrocks MH, Choi ML, Rodrigues M, et al. 2018.. α-Synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. . Nat. Commun. 9::2293
    [Crossref] [Google Scholar]
  69. 69.
    McNaught AD, Wilkinson A, eds. 1997.. Compendium of Chemical Terminology. Hoboken, NJ:: Blackwell Sci. Publ. , 2nd ed..
    [Google Scholar]
  70. 70.
    Meisl G, Kirkegaard JB, Arosio P, Michaels TCT, Vendruscolo M, et al. 2016.. Molecular mechanisms of protein aggregation from global fitting of kinetic models. . Nat. Protoc. 11::25272
    [Crossref] [Google Scholar]
  71. 71.
    Meisl G, Rajah L, Cohen SIA, Pfammatter M, Šarić A, et al. 2017.. Scaling behaviour and rate-determining steps in filamentous self-assembly. . Chem. Sci. 8::708797
    [Crossref] [Google Scholar]
  72. 72.
    Meisl G, Xu CK, Taylor JD, Michaels TCT, Levin A, et al. 2022.. Uncovering the universality of self-replication in protein aggregation and its link to disease. . Sci. Adv. 8::eabn6831
    [Crossref] [Google Scholar]
  73. 73.
    Meisl G, Yang X, Hellstrand E, Frohm B, Kirkegaard JB, et al. 2014.. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. . PNAS 111::938489
    [Crossref] [Google Scholar]
  74. 74.
    Meng JX, Zhang Y, Saman D, Haider AM, De S, et al. 2022.. Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses. . Nat. Commun. 13::2692
    [Crossref] [Google Scholar]
  75. 75.
    Michaels TCT, Dear AJ, Cohen SIA, Vendruscolo M, Knowles TPJ. 2022.. Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers. . J. Chem. Phys. 156::164904
    [Crossref] [Google Scholar]
  76. 76.
    Michaels TCT, Dear AJ, Knowles TPJ. 2019.. Universality of filamentous aggregation phenomena. . Phys. Rev. E 99::062415
    [Crossref] [Google Scholar]
  77. 77.
    Michaels TCT, Garcia GA, Knowles TPJ. 2014.. Asymptotic solutions of the Oosawa model for the length distribution of biofilaments. . J. Chem. Phys. 140::194906
    [Crossref] [Google Scholar]
  78. 78.
    Michaels TCT, Lazell HW, Arosio P, Knowles TPJ. 2015.. Dynamics of protein aggregation and oligomer formation governed by secondary nucleation. . J. Chem. Phys. 143::054901
    [Crossref] [Google Scholar]
  79. 79.
    Michaels TCT, Qian D, Šarić A, Vendruscolo M, Linse S, Knowles TPJ. 2023.. Amyloid formation as a protein phase transition. . Nat. Rev. Phys. 5::37997
    [Crossref] [Google Scholar]
  80. 80.
    Michaels TCT, Šarić A, Curk S, Bernfur K, Arosio P, et al. 2020.. Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide. . Nat. Chem. 12::44551
    [Crossref] [Google Scholar]
  81. 81.
    Michaels TCT, Šarić A, Habchi J, Chia S, Meisl G, et al. 2018.. Chemical kinetics for bridging molecular mechanisms and macroscopic measurements of amyloid fibril formation. . Annu. Rev. Phys. Chem. 69::27398
    [Crossref] [Google Scholar]
  82. 82.
    Mitrach F, Schmid M, Toussaint M, Dukic-Stefanovic S, Deuther-Conrad W, et al. 2022.. Amphiphilic anionic oligomer-stabilized calcium phosphate nanoparticles with prospects in siRNA delivery via convection-enhanced delivery. . Pharmaceutics 14:(2):326
    [Crossref] [Google Scholar]
  83. 83.
    Muller P. 1994.. Glossary of terms used in physical organic chemistry (IUPAC recommendations 1994). . Pure Appl. Chem. 66::1077184
    [Crossref] [Google Scholar]
  84. 84.
    Narayan P, Orte A, Clarke RW, Bolognesi B, Hook S, et al. 2011.. The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-β1–40 peptide. . Nat. Struct. Mol. Biol. 19::7983
    [Crossref] [Google Scholar]
  85. 85.
    Oosawa F, Asakura S. 1975.. Thermodynamics of the Polymerization of Protein. Waltham, MA:: Academic
    [Google Scholar]
  86. 86.
    Orte A, Birkett NR, Clarke RW, Devlin GL, Dobson CM, Klenerman D. 2008.. Direct characterization of amyloidogenic oligomers by single-molecule fluorescence. . PNAS 105::1442429
    [Crossref] [Google Scholar]
  87. 87.
    Perni M, Flagmeier PF, Limbocker R, Cascella R, Aprile FA, et al. 2018.. Multistep inhibition of α-synuclein aggregation and toxicity in vitro and in vivo by trodusquemine. . ACS Chem. Biol. 13::230819
    [Crossref] [Google Scholar]
  88. 88.
    Perni M, Galvagnion C, Maltsev A, Meisl G, Müller MBD, et al. 2017.. A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. . PNAS 114::E100917
    [Crossref] [Google Scholar]
  89. 89.
    Pinotsi D, Michel CH, Buell AK, Laine RF, Mahou P, et al. 2016.. Nanoscopic insights into seeding mechanisms and toxicity of α-synuclein species in neurons. . PNAS 113:(14):381519
    [Crossref] [Google Scholar]
  90. 90.
    Ren Y, Sahara N. 2013.. Characteristics of tau oligomers. . Front. Neurol. 4::102
    [Crossref] [Google Scholar]
  91. 91.
    Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. 2024.. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. . Mol. Neurodegener. 19::20
    [Crossref] [Google Scholar]
  92. 92.
    Rodrigues M, Bhattacharjee P, Brinkmalm A, Do DT, Pearson CM, et al. 2022.. Structure-specific amyloid precipitation in biofluids. . Nat. Chem. 14::104553
    [Crossref] [Google Scholar]
  93. 93.
    Ruggeri FS, Šneideris T, Vendruscolo M, Knowles TPJ. 2019.. Atomic force microscopy for single molecule characterization of protein aggregation. . Arch. Biochem. Biophys. 664::13448
    [Crossref] [Google Scholar]
  94. 94.
    Saar KL, Zhang Y, Müller T, Kumar CP, Devenish S, et al. 2018.. On-chip label-free protein analysis with downstream electrodes for direct removal of electrolysis products. . Lab. Chip 18::16270
    [Crossref] [Google Scholar]
  95. 95.
    Sang JC, Lee J-E, Dear AJ, De S, Meisl G, et al. 2019.. Direct observation of prion protein oligomer formation reveals an aggregation mechanism with multiple conformationally distinct species. . Chem. Sci. 10::4588
    [Crossref] [Google Scholar]
  96. 96.
    Šarić A, Buell AK, Meisl G, Michaels TCT, Dobson CM, et al. 2016.. Physical determinants of the self-replication of protein fibrils. . Nat. Phys. 12::87480
    [Crossref] [Google Scholar]
  97. 97.
    Šarić A, Chebaro YC, Knowles TPJ, Frenkel D. 2014.. Crucial role of nonspecific interactions in amyloid nucleation. . PNAS 111:(50):1786974
    [Crossref] [Google Scholar]
  98. 98.
    Šarić A, Michaels TCT, Zaccone A, Knowles TPJ, Frenkel D. 2016.. Kinetics of spontaneous filament nucleation via oligomers: insights from theory and simulation. . J. Chem. Phys. 145:(21):211926
    [Crossref] [Google Scholar]
  99. 99.
    Schmit JD. 2013.. Kinetic theory of amyloid fibril templating. . J. Chem. Phys. 138::185102
    [Crossref] [Google Scholar]
  100. 100.
    Seidel R, Kraffert K, Kabelitz A, Pohl MN, Kraehnert R, et al. 2017.. Detection of the electronic structure of iron-(III)-oxo oligomers forming in aqueous solutions. . Phys. Chem. Chem. Phys. 19::3222634
    [Crossref] [Google Scholar]
  101. 101.
    Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, et al. 2015.. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. . Nature 537::5056
    [Crossref] [Google Scholar]
  102. 102.
    Shammas SL, Garcia GA, Kumar S, Kjaergaard M, Horrocks MH, et al. 2015.. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers. . Nat. Commun. 6::7025
    [Crossref] [Google Scholar]
  103. 103.
    Shea D, Daggett V. 2022.. Amyloid-β oligomers: multiple moving targets. . Biophysica 2::91110
    [Crossref] [Google Scholar]
  104. 104.
    Shen Y, Chen A, Wang W, Shen Y, Ruggeri FS, et al. 2023.. The liquid-to-solid transition of FUS is promoted by the condensate surface. . PNAS 120:(33):e2301366120
    [Crossref] [Google Scholar]
  105. 105.
    Šneiderienė G, Czekalska MA, Xu CK, Jayaram AK, Krainer G, et al. 2024.. α-Synuclein oligomers displace monomeric α-synuclein from lipid membranes. . ACS Nano 18:(27):1746982
    [Crossref] [Google Scholar]
  106. 106.
    Stöhr J, Weinmann N, Wille H, Kaimann T, Nagel-Steger L, et al. 2008.. Mechanisms of prion protein assembly into amyloid. . PNAS 105:(7):240914
    [Crossref] [Google Scholar]
  107. 107.
    Toprakcioglu Z, Kamada A, Michaels TCT, Xie M, Krausser J, et al. 2022.. Adsorption free energy predicts amyloid protein nucleation rates. . PNAS 119::e2109718119
    [Crossref] [Google Scholar]
  108. 108.
    Törnquist M, Cukalevski R, Weininger U, Meisl G, Knowles TPJ, et al. 2020.. Ultrastructural evidence for self-replication of Alzheimer-associated Aβ42 amyloid along the sides of fibrils. . PNAS 117::1126573
    [Crossref] [Google Scholar]
  109. 109.
    Törnquist M, Michaels TCT, Sanagavarapu K, Yang X, Meisl G, et al. 2018.. Secondary nucleation in amyloid formation. . Chem. Commun. 54::866784
    [Crossref] [Google Scholar]
  110. 110.
    Tosatto L, Horrocks MH, Dear AJ, Knowles TPJ, Dalla Serra M, et al. 2015.. Single-molecule FRET studies on alpha-synuclein oligomerization of Parkinson's disease genetically related mutants. . Sci. Rep. 5::16696
    [Crossref] [Google Scholar]
  111. 111.
    Tran L, Basdevant N, Prévost C, Ha-Duong T. 2016.. Structure of ring-shaped Aβ42 oligomers determined by conformational selection. . Sci. Rep. 6::21429
    [Crossref] [Google Scholar]
  112. 112.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, et al. 2002.. Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. . Nature 416::53539
    [Crossref] [Google Scholar]
  113. 113.
    Wei J, Meisl G, Dear AJ, Oosterhuis M, Melki R, et al. 2024.. Kinetic models reveal the interplay of protein production and aggregation. . Chem. Sci. 15::843042
    [Crossref] [Google Scholar]
  114. 114.
    Weidemann A, König G, Bunke D, Fischer P, Salbaum JM, et al. 1989.. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. . Cell 7::11526
    [Crossref] [Google Scholar]
  115. 115.
    Whiten DR, Zuo Y, Calo L, Choi ML, De S, et al. 2018.. Nanoscopic characterization of individual endogenous protein aggregates in human neuronal cells. . ChemBioChem 19::2033
    [Crossref] [Google Scholar]
  116. 116.
    Xu CK, Meisl G, Andrzejewska EA, Krainer G, Dear AJ, et al. 2024.. α-Synuclein oligomers form by secondary nucleation. . Nat. Commun. 15::7083
    [Crossref] [Google Scholar]
  117. 117.
    Xue WF, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE. 2009.. Fibril fragmentation enhances amyloid cytotoxicity. . J. Biol. Chem. 284:(49):3427282
    [Crossref] [Google Scholar]
  118. 118.
    Yang J, Dear AJ, Michaels TCT, Dobson CM, Knowles TPJ, et al. 2018.. Direct observation of oligomerization by single molecule fluorescence reveals a multistep aggregation mechanism for the yeast prion protein Ure2. . J. Am. Chem. Soc. 140::2493503
    [Crossref] [Google Scholar]
  119. 119.
    Yankner BA, Duffy LK, Kirschner DA. 1990.. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. . Science 250::27982
    [Crossref] [Google Scholar]
  120. 120.
    Zhang XQ, Trinh TT, van Santen RA, Jansen APJ. 2011.. Mechanism of the initial stage of silicate oligomerization. . J. Am. Chem. Soc. 133:(17):661325
    [Crossref] [Google Scholar]
  121. 121.
    Zimmermann MR, Bera SC, Meisl G, Dasadhikari S, Ghosh S, et al. 2020.. Mechanism of secondary nucleation at the single fibril level from direct observations of Aβ42 aggregation. . J. Am. Chem. Soc. 143:(40):1662129
    [Crossref] [Google Scholar]
  122. 122.
    Zurlo E, Kumar P, Meisl G, Dear AJ, Mondal D, et al. 2021.. In situ kinetic measurements of α-synuclein aggregation reveal large population of short-lived oligomers. . PLOS ONE 16::e0245548
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-biophys-080124-122953
Loading
/content/journals/10.1146/annurev-biophys-080124-122953
Loading

Data & Media loading...

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error