1932

Abstract

A complete understanding of protein function and dynamics requires the characterization of the multiple thermodynamic states, including the denatured state ensemble (DSE). Whereas residual structure in the DSE (as well as in partially folded states) is pertinent in many biological contexts, here we are interested in how such structure affects protein thermodynamics. We examine issues related to chain collapse in light of new developments, focusing on potential complications arising from differences in the DSE's properties under various conditions. Despite some variability in the degree of collapse and structure in the DSE, stability measurements are remarkably consistent between two standard methods, calorimetry and chemical denaturation, as well as with hydrogen–deuterium exchange. This robustness is due in part to the DSEs obtained with different perturbations being thermodynamically equivalent and hence able to serve as a common reference state. An examination of the properties of the DSE points to it as being a highly expanded ensemble with minimal amounts of stable hydrogen bonded structure. These two features are likely to be critical in the broad and successful application of thermodynamics to protein folding. Our review concludes with a discussion of the impact of these findings on folding mechanisms and pathways.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-080124-123012
2024-12-17
2025-01-14
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-biophys-080124-123012
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error