1932

Abstract

Nucleotide-binding and leucine-rich repeat (NLR) proteins are critical intracellular immune receptors in both animals and plants. Perception of pathogen-derived or stress-associated signals induces NLR oligomerization to form multiprotein complexes called inflammasomes in animals or resistosomes in plants to mediate host immune response. Significant progress has been made during the past few years in our understanding of NLR biology, particularly the structural perspective of these two types of NLR-containing complexes. In this article, we review the latest advances in our structural knowledge of how NLR inflammasomes and resistosomes are activated and assembled and how the structural information provides insight into their distinct mechanisms of action. Commonalities and differences between NLR inflammasomes and resistosomes are also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-092922-073050
2023-05-09
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/biophys/52/1/annurev-biophys-092922-073050.html?itemId=/content/journals/10.1146/annurev-biophys-092922-073050&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L et al. 2019. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. eLife 8:e49956
    [Google Scholar]
  2. 2.
    Ahn H, Lin X, Olave-Achury AC, Derevnina L, Contreras MP et al. 2022. Effector-dependent activation and oligomerization of NRC helper NLRs by Rpi-amr3 and Rpi-amr1. bioRxiv 2022.04.25.489359. https://doi.org/10.1101/2022.04.25.489359
  3. 3.
    Allen IC. 2014. Non-inflammasome forming NLRs in inflammation and tumorigenesis. Front. Immunol. 5:169
    [Google Scholar]
  4. 4.
    Andreeva L, David L, Rawson S, Shen C, Pasricha T et al. 2021. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184:6299–312.e22
    [Google Scholar]
  5. 5.
    Ao K, Li X. 2022. Indirect recognition of pathogen effectors by NLRs. Essays Biochem. 66:485–500
    [Google Scholar]
  6. 6.
    Bi D, Johnson KC, Zhu Z, Huang Y, Chen F et al. 2011. Mutations in an atypical TIR-NB-LRR-LIM resistance protein confer autoimmunity. Front. Plant Sci. 2:71
    [Google Scholar]
  7. 7.
    Bi G, Su M, Li N, Liang Y, Dang S et al. 2021. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184:3528–41.e12
    [Google Scholar]
  8. 8.
    Bi G, Zhou JM. 2021. Regulation of cell death and signaling by pore-forming resistosomes. Annu. Rev. Phytopathol. 59:239–63
    [Google Scholar]
  9. 9.
    Bieri S, Mauch S, Shen QH, Peart J, Devoto A et al. 2004. RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. Plant Cell 16:3480–95
    [Google Scholar]
  10. 10.
    Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL. 2011. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. PNAS 108:16463–68
    [Google Scholar]
  11. 11.
    Burdett H, Kobe B, Anderson PA. 2019. Animal NLRs continue to inform plant NLR structure and function. Arch. Biochem. Biophys. 670:58–68
    [Google Scholar]
  12. 12.
    Castel B, Ngou PM, Cevik V, Redkar A, Kim DS et al. 2019. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. 222:966–80
    [Google Scholar]
  13. 13.
    Cesari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V et al. 2014. The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. EMBO J. 33:1941–59
    [Google Scholar]
  14. 14.
    Chai J, Shi Y. 2014. Apoptosome and inflammasome: conserved machineries for caspase activation. Natl. Sci. Rev. 1:101–18
    [Google Scholar]
  15. 15.
    Chen J, Chen ZJ. 2018. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564:71–76
    [Google Scholar]
  16. 16.
    Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F et al. 2017. Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358:1607–10
    [Google Scholar]
  17. 17.
    Chui AJ, Okondo MC, Rao SD, Gai K, Griswold AR et al. 2019. N-terminal degradation activates the NLRP1B inflammasome. Science 364:82–85
    [Google Scholar]
  18. 18.
    Collier SM, Hamel LP, Moffett P. 2011. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol. Plant Microbe Interact. 24:918–31
    [Google Scholar]
  19. 19.
    Contreras MP, Pai H, Tumtas Y, Duggan C, Yuen ELH et al. 2022. Sensor NLR immune proteins activate oligomerization of their NRC helper. bioRxiv 2022.04.25.489342. https://doi.org/10.1101/2022.04.25.489342
  20. 20.
    Dangl JL, Jones JD. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826–33
    [Google Scholar]
  21. 21.
    Davis BK, Wen H, Ting JP. 2011. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29:707–35
    [Google Scholar]
  22. 22.
    De la Concepcion JC, Franceschetti M, Maqbool A, Saitoh H, Terauchi R et al. 2018. Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nat. Plants 4:576–85
    [Google Scholar]
  23. 23.
    Ding J, Wang K, Liu W, She Y, Sun Q et al. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535:111–16
    [Google Scholar]
  24. 24.
    Dodds PN, Lawrence GJ, Catanzariti AM, Teh T, Wang CI et al. 2006. Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. PNAS 103:8888–93
    [Google Scholar]
  25. 25.
    Dong OX, Tong M, Bonardi V, El Kasmi F, Woloshen V et al. 2016. TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. New Phytol. 210:960–73
    [Google Scholar]
  26. 26.
    Dorstyn L, Akey CW, Kumar S. 2018. New insights into apoptosome structure and function. Cell Death Differ. 25:1194–208
    [Google Scholar]
  27. 27.
    Duxbury Z, Wang S, MacKenzie CI, Tenthorey JL, Zhang X et al. 2020. Induced proximity of a TIR signaling domain on a plant-mammalian NLR chimera activates defense in plants. PNAS 117:18832–39
    [Google Scholar]
  28. 28.
    Duxbury Z, Wu CH, Ding P. 2021. A comparative overview of the intracellular guardians of plants and animals: NLRs in innate immunity and beyond. Annu. Rev. Plant Biol. 72:155–84
    [Google Scholar]
  29. 29.
    Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48:35–44.e6
    [Google Scholar]
  30. 30.
    Feehan JM, Castel B, Bentham AR, Jones JD. 2020. Plant NLRs get by with a little help from their friends. Curr. Opin. Plant Biol. 56:99–108
    [Google Scholar]
  31. 31.
    Förderer A, Li E, Lawson AW, Deng Y, Sun Y et al. 2022. A wheat resistosome defines common principles of immune receptor channels. Nature 610:532–39
    [Google Scholar]
  32. 32.
    Ghimire L, Paudel S, Jin L, Jeyaseelan S 2020. The NLRP6 inflammasome in health and disease. Mucosal Immunol. 13:388–98
    [Google Scholar]
  33. 33.
    Gong Q, Robinson K, Xu C, Huynh PT, Chong KHC et al. 2021. Structural basis for distinct inflammasome complex assembly by human NLRP1 and CARD8. Nat. Commun. 12:188
    [Google Scholar]
  34. 34.
    Grimes CL, de Zoysa Ariyananda L, Melnyk JE, O'Shea EK. 2012. The innate immune protein Nod2 binds directly to MDP, a bacterial cell wall fragment. J. Am. Chem. Soc. 134:13535–37
    [Google Scholar]
  35. 35.
    Guo L, Cesari S, de Guillen K, Chalvon V, Mammri L et al. 2018. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. PNAS 115:11637–42
    [Google Scholar]
  36. 36.
    Hara H, Seregin SS, Yang D, Fukase K, Chamaillard M et al. 2018. The NLRP6 inflammasome recognizes lipoteichoic acid and regulates Gram-positive pathogen infection. Cell 175:1651–64.e14
    [Google Scholar]
  37. 37.
    He WT, Wan H, Hu L, Chen P, Wang X et al. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 25:1285–98
    [Google Scholar]
  38. 38.
    He Y, Hara H, Nunez G. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41:1012–21
    [Google Scholar]
  39. 39.
    He Y, Zeng MY, Yang D, Motro B, Nunez G. 2016. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530:354–57
    [Google Scholar]
  40. 40.
    Hochheiser IV, Pilsl M, Hagelueken G, Moecking J, Marleaux M et al. 2022. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature 604:184–89
    [Google Scholar]
  41. 41.
    Hogrel G, Guild A, Graham S, Rickman H, Grüschow S et al. 2022. Cyclic nucleotide-induced helical structure activates a TIR immune effector. Nature 608:808–12
    [Google Scholar]
  42. 42.
    Hollingsworth LR, David L, Li Y, Griswold AR, Ruan J et al. 2021. Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes. Nat. Commun. 12:189
    [Google Scholar]
  43. 43.
    Hollingsworth LR, Sharif H, Griswold AR, Fontana P, Mintseris J et al. 2021. DPP9 sequesters the C terminus of NLRP1 to repress inflammasome activation. Nature 592:778–83
    [Google Scholar]
  44. 44.
    Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y et al. 2019. NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365:793–99
    [Google Scholar]
  45. 45.
    Hu Z, Chai J. 2016. Structural mechanisms in NLR inflammasome assembly and signaling. Curr. Top. Microbiol. Immunol. 397:23–42
    [Google Scholar]
  46. 46.
    Hu Z, Yan C, Liu P, Huang Z, Ma R et al. 2013. Crystal structure of NLRC4 reveals its autoinhibition mechanism. Science 341:172–75
    [Google Scholar]
  47. 47.
    Hu Z, Zhou Q, Zhang C, Fan S, Cheng W et al. 2015. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350:399–404
    [Google Scholar]
  48. 48.
    Huang M, Zhang X, Toh GA, Gong Q, Wang J et al. 2021. Structural and biochemical mechanisms of NLRP1 inhibition by DPP9. Nature 592:773–77
    [Google Scholar]
  49. 49.
    Huang S, Jia A, Song W, Hessler G, Meng Y et al. 2022. Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. Science 377:eabq3297
    [Google Scholar]
  50. 50.
    Inohara N, Nunez G. 2003. NODs: intracellular proteins involved in inflammation and apoptosis. Nat. Rev. Immunol. 3:371–82
    [Google Scholar]
  51. 51.
    Jacob P, Kim NH, Wu F, El-Kasmi F, Chi Y et al. 2021. Plant “helper” immune receptors are Ca2+-permeable nonselective cation channels. Science 373:420–25
    [Google Scholar]
  52. 52.
    Jia A, Huang S, Song W, Wang J, Meng Y et al. 2022. TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science 377:eabq8180
    [Google Scholar]
  53. 53.
    Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B. 2000. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19:4004–14
    [Google Scholar]
  54. 54.
    Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD et al. 2018. DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat. Med. 24:1151–56
    [Google Scholar]
  55. 55.
    Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  56. 56.
    Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL. 2019. Help wanted: helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50:82–94
    [Google Scholar]
  57. 57.
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–89
    [Google Scholar]
  58. 58.
    Kamitsukasa Y, Nakano K, Murakami K, Hirata K, Yamamoto M et al. 2022. The structure of NLRP9 reveals a unique C-terminal region with putative regulatory function. FEBS Lett. 596:876–85
    [Google Scholar]
  59. 59.
    Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–71
    [Google Scholar]
  60. 60.
    Keestra AM, Winter MG, Auburger JJ, Frassle SP, Xavier MN et al. 2013. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature 496:233–37
    [Google Scholar]
  61. 61.
    Kofoed EM, Vance RE. 2011. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–95
    [Google Scholar]
  62. 62.
    Krasileva KV, Dahlbeck D, Staskawicz BJ. 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22:2444–58
    [Google Scholar]
  63. 63.
    Lapin D, Kovacova V, Sun X, Dongus JA, Bhandari D et al. 2019. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-domain immune receptors. Plant Cell 31:2430–55
    [Google Scholar]
  64. 64.
    Laroui H, Yan Y, Narui Y, Ingersoll SA, Ayyadurai S et al. 2011. L-Ala-γ-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1. J. Biol. Chem. 286:31003–13
    [Google Scholar]
  65. 65.
    Leipe DD, Koonin EV, Aravind L. 2004. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J. Mol. Biol. 343:1–28
    [Google Scholar]
  66. 66.
    Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA et al. 2012. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLOS Pathog. 8:e1002638
    [Google Scholar]
  67. 67.
    Levy M, Shapiro H, Thaiss CA, Elinav E. 2017. NLRP6: a multifaceted innate immune sensor. Trends Immunol. 38:248–60
    [Google Scholar]
  68. 68.
    Lewis JD, Lee AH, Hassan JA, Wan J, Hurley B et al. 2013. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. PNAS 110:18722–27
    [Google Scholar]
  69. 69.
    Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG et al. 2016. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535:153–58
    [Google Scholar]
  70. 70.
    Lolle S, Stevens D, Coaker G. 2020. Plant NLR-triggered immunity: from receptor activation to downstream signaling. Curr. Opin. Immunol. 62:99–105
    [Google Scholar]
  71. 71.
    Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–206
    [Google Scholar]
  72. 72.
    Lu A, Wu H. 2015. Structural mechanisms of inflammasome assembly. FEBS J. 282:435–44
    [Google Scholar]
  73. 73.
    Ma S, Lapin D, Liu L, Sun Y, Song W et al. 2020. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370:eabe3069
    [Google Scholar]
  74. 74.
    Mackey D, Holt BF III, Wiig A, Dangl JL 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–54
    [Google Scholar]
  75. 75.
    Maekawa S, Ohto U, Shibata T, Miyake K, Shimizu T. 2016. Crystal structure of NOD2 and its implications in human disease. Nat. Commun. 7:11813
    [Google Scholar]
  76. 76.
    Maidment JHR, Franceschetti M, Maqbool A, Saitoh H, Jantasuriyarat C et al. 2021. Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, providing a foundation to engineer plant defense. J. Biol. Chem. 296:100371
    [Google Scholar]
  77. 77.
    Manik MK, Shi Y, Li S, Zaydman MA, Damaraju N et al. 2022. Cyclic ADP ribose isomers: production, chemical structures, and immune signaling. Science 377:eadc8969
    [Google Scholar]
  78. 78.
    Maqbool A, Saitoh H, Franceschetti M, Stevenson CE, Uemura A et al. 2015. Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4:e08709
    [Google Scholar]
  79. 79.
    Martel A, Laflamme B, Seto D, Bastedo DP, Dillon MM et al. 2020. Immunodiversity of the Arabidopsis ZAR1 NLR is conveyed by receptor-like cytoplasmic kinase sensors. Front. Plant Sci. 11:1290
    [Google Scholar]
  80. 80.
    Martin R, Qi T, Zhang H, Liu F, King M et al. 2020. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370:eabd9993
    [Google Scholar]
  81. 81.
    Martinon F, Burns K, Tschopp J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10:417–26
    [Google Scholar]
  82. 82.
    Maruta N, Burdett H, Lim BYJ, Hu X, Desa S et al. 2022. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics 74:5–26
    [Google Scholar]
  83. 83.
    Matyszewski M, Zheng W, Lueck J, Antiochos B, Egelman EH, Sohn J. 2018. Cryo-EM structure of the NLRC4(CARD) filament provides insights into how symmetric and asymmetric supramolecular structures drive inflammasome assembly. J. Biol. Chem. 293:20240–48
    [Google Scholar]
  84. 84.
    Meyers BC, Morgante M, Michelmore RW. 2002. TIR-X and TIR-NBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes. Plant J. 32:77–92
    [Google Scholar]
  85. 85.
    Mitchell PS, Sandstrom A, Vance RE. 2019. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr. Opin. Immunol. 60:37–45
    [Google Scholar]
  86. 86.
    Monaghan J, Zipfel C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15:349–57
    [Google Scholar]
  87. 87.
    Montal M. 1995. Design of molecular function: channels of communication. Annu. Rev. Biophys. Biomol. Struct. 24:31–57
    [Google Scholar]
  88. 88.
    Mukhi N, Brown H, Gorenkin D, Ding P, Bentham AR et al. 2021. Perception of structurally distinct effectors by the integrated WRKY domain of a plant immune receptor. PNAS 118:e2113996118
    [Google Scholar]
  89. 89.
    Narusaka M, Toyoda K, Shiraishi T, Iuchi S, Takano Y et al. 2016. Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1. Sci. Rep. 6:18702
    [Google Scholar]
  90. 90.
    Ngou BPM, Ahn HK, Ding P, Jones JDG. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592:110–15
    [Google Scholar]
  91. 91.
    Ngou BPM, Ding P, Jones JDG. 2022. Thirty years of resistance: zig-zag through the plant immune system. Plant Cell 34:1447–78
    [Google Scholar]
  92. 92.
    Nishimura MT, Anderson RG, Cherkis KA, Law TF, Liu QL et al. 2017. TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis. PNAS 114:E2053–62
    [Google Scholar]
  93. 93.
    Ohto U, Kamitsukasa Y, Ishida H, Zhang Z, Murakami K et al. 2022. Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation. PNAS 119:e2121353119
    [Google Scholar]
  94. 94.
    Okondo MC, Johnson DC, Sridharan R, Go EB, Chui AJ et al. 2017. DPP8 and DPP9 inhibition induces pro-caspase-1-dependent monocyte and macrophage pyroptosis. Nat. Chem. Biol. 13:46–53
    [Google Scholar]
  95. 95.
    Pruitt RN, Locci F, Wanke F, Zhang L, Saile SC et al. 2021. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598:495–99
    [Google Scholar]
  96. 96.
    Qi S, Pang Y, Hu Q, Liu Q, Li H et al. 2010. Crystal structure of the Caenorhabditis elegans apoptosome reveals an octameric assembly of CED-4. Cell 141:446–57
    [Google Scholar]
  97. 97.
    Qi T, Seong K, Thomazella DPT, Kim JR, Pham J et al. 2018. NRG1 functions downstream of EDS1 to regulate TIR-NLR-mediated plant immunity in Nicotiana benthamiana. PNAS 115:E10979–87
    [Google Scholar]
  98. 98.
    Rathinam VA, Vanaja SK, Fitzgerald KA. 2012. Regulation of inflammasome signaling. Nat. Immunol. 13:333–42
    [Google Scholar]
  99. 99.
    Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y. 2005. Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–33
    [Google Scholar]
  100. 100.
    Roth C, Ludke D, Klenke M, Quathamer A, Valerius O et al. 2017. The truncated NLR protein TIR-NBS13 is a MOS6/IMPORTIN-alpha3 interaction partner required for plant immunity. Plant J. 92:808–21
    [Google Scholar]
  101. 101.
    Saile SC, Jacob P, Castel B, Jubic LM, Salas-Gonzales I et al. 2020. Two unequally redundant “helper” immune receptor families mediate Arabidopsis thaliana intracellular “sensor” immune receptor functions. PLOS Biol. 18:e3000783
    [Google Scholar]
  102. 102.
    Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN et al. 2013. Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–86
    [Google Scholar]
  103. 103.
    Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE. 2019. Functional degradation: a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 364:eaau1330
    [Google Scholar]
  104. 104.
    Sarris PF, Cevik V, Dagdas G, Jones JD, Krasileva KV. 2016. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 14:8
    [Google Scholar]
  105. 105.
    Saur IM, Bauer S, Kracher B, Lu X, Franzeskakis L et al. 2019. Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism. eLife 8:e44471
    [Google Scholar]
  106. 106.
    Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J et al. 2016. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291:103–9
    [Google Scholar]
  107. 107.
    Schultink A, Qi T, Lee A, Steinbrenner AD, Staskawicz B. 2017. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. Plant J. 92:787–95
    [Google Scholar]
  108. 108.
    Seong K, Seo E, Witek K, Li M, Staskawicz B. 2020. Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species. New Phytol. 227:1530–43
    [Google Scholar]
  109. 109.
    Seto D, Koulena N, Lo T, Menna A, Guttman DS, Desveaux D. 2017. Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related kinases. Nat. Plants 3:17027
    [Google Scholar]
  110. 110.
    Sharif H, Wang L, Wang WL, Magupalli VG, Andreeva L et al. 2019. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570:338–43
    [Google Scholar]
  111. 111.
    Shen C, Li R, Negro R, Cheng J, Vora SM et al. 2021. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184:5759–74.e20
    [Google Scholar]
  112. 112.
    Shen C, Lu A, Xie WJ, Ruan J, Negro R et al. 2019. Molecular mechanism for NLRP6 inflammasome assembly and activation. PNAS 116:2052–57
    [Google Scholar]
  113. 113.
    Shen C, Sharif H, Xia S, Wu H. 2019. Structural and mechanistic elucidation of inflammasome signaling by cryo-EM. Curr. Opin. Struct. Biol. 58:18–25
    [Google Scholar]
  114. 114.
    Shi H, Wang Y, Li X, Zhan X, Tang M et al. 2016. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol. 17:250–58
    [Google Scholar]
  115. 115.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–65
    [Google Scholar]
  116. 116.
    Shi Y, Kerry PS, Nanson JD, Bosanac T, Sasaki Y et al. 2022. Structural basis of SARM1 activation, substrate recognition, and inhibition by small molecules. Mol. Cell 82:1643–59.e10
    [Google Scholar]
  117. 117.
    Sohn KH, Segonzac C, Rallapalli G, Sarris PF, Woo JY et al. 2014. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana. PLOS Genet. 10:e1004655
    [Google Scholar]
  118. 118.
    Steele JFC, Hughes RK, Banfield MJ. 2019. Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor. PLOS ONE 14:e0221226
    [Google Scholar]
  119. 119.
    Swanson KV, Deng M, Ting JP. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19:477–89
    [Google Scholar]
  120. 120.
    Takeda K, Kaisho T, Akira S. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335–76
    [Google Scholar]
  121. 121.
    Takken FL, Albrecht M, Tameling WI. 2006. Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol. 9:383–90
    [Google Scholar]
  122. 122.
    Tenthorey JL, Haloupek N, Lopez-Blanco JR, Grob P, Adamson E et al. 2017. The structural basis of flagellin detection by NAIP5: a strategy to limit pathogen immune evasion. Science 358:888–93
    [Google Scholar]
  123. 123.
    Tian H, Wu Z, Chen S, Ao K, Huang W et al. 2021. Activation of TIR signalling boosts pattern-triggered immunity. Nature 598:500–3
    [Google Scholar]
  124. 124.
    Ting JP, Duncan JA, Lei Y. 2010. How the noninflammasome NLRs function in the innate immune system. Science 327:286–90
    [Google Scholar]
  125. 125.
    Van der Biezen EA, Jones JD 1998. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem. Sci. 23:454–56
    [Google Scholar]
  126. 126.
    van der Hoorn RA, Kamoun S 2008. From Guard to Decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–17
    [Google Scholar]
  127. 127.
    Ve T, Vajjhala PR, Hedger A, Croll T, DiMaio F et al. 2017. Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat. Struct. Mol. Biol. 24:743–51
    [Google Scholar]
  128. 128.
    von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE. 2013. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31:73–106
    [Google Scholar]
  129. 129.
    Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F et al. 2019. TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365:799–803
    [Google Scholar]
  130. 130.
    Wang G, Roux B, Feng F, Guy E, Li L et al. 2015. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18:285–95
    [Google Scholar]
  131. 131.
    Wang J, Hu M, Wang J, Qi J, Han Z et al. 2019. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364:eaav5870
    [Google Scholar]
  132. 132.
    Wang J, Wang J, Hu M, Wu S, Qi J et al. 2019. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364:eaav5868
    [Google Scholar]
  133. 133.
    Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF et al. 2014. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344:299–303
    [Google Scholar]
  134. 134.
    Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B et al. 2011. An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP. Mol. Plant Microbe Interact. 24:897–906
    [Google Scholar]
  135. 135.
    Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R et al. 2017. NLR network mediates immunity to diverse plant pathogens. PNAS 114:8113–18
    [Google Scholar]
  136. 136.
    Wu CH, Krasileva KV, Banfield MJ, Terauchi R, Kamoun S. 2015. The “sensor domains” of plant NLR proteins: more than decoys?. Front. Plant Sci. 6:134
    [Google Scholar]
  137. 137.
    Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y et al. 2021. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593:607–11
    [Google Scholar]
  138. 138.
    Xiong Y, Han Z, Chai J. 2020. Resistosome and inflammasome: platforms mediating innate immunity. Curr. Opin. Plant Biol. 56:47–55
    [Google Scholar]
  139. 139.
    Xu F, Zhu C, Cevik V, Johnson K, Liu Y et al. 2015. Autoimmunity conferred by chs3-2D relies on CSA1, its adjacent TNL-encoding neighbour. Sci. Rep. 5:8792
    [Google Scholar]
  140. 140.
    Yang H, Shi Y, Liu J, Guo L, Zhang X, Yang S 2010. A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. Plant J. 63:283–96
    [Google Scholar]
  141. 141.
    Yang J, Zhao Y, Shi J, Shao F. 2013. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation. PNAS 110:14408–13
    [Google Scholar]
  142. 142.
    Yang X, Yang F, Wang W, Lin G, Hu Z et al. 2018. Structural basis for specific flagellin recognition by the NLR protein NAIP5. Cell Res. 28:35–47
    [Google Scholar]
  143. 143.
    Yu D, Song W, Tan EYJ, Liu L, Cao Y et al. 2022. TIR domains of plant immune receptors are 2′,3′-cAMP/cGMP synthetases mediating cell death. Cell 185:2370–86.e18
    [Google Scholar]
  144. 144.
    Yuan M, Jiang Z, Bi G, Nomura K, Liu M et al. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105–9
    [Google Scholar]
  145. 145.
    Yuan M, Ngou BPM, Ding P, Xin XF. 2021. PTI-ETI crosstalk: an integrative view of plant immunity. Curr. Opin. Plant Biol. 62:102030
    [Google Scholar]
  146. 146.
    Zhang J, Zhou JM. 2010. Plant immunity triggered by microbial molecular signatures. Mol. Plant 3:783–93
    [Google Scholar]
  147. 147.
    Zhang L, Chen S, Ruan J, Wu J, Tong AB et al. 2015. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350:404–9
    [Google Scholar]
  148. 148.
    Zhao Y, Yang J, Shi J, Gong YN, Lu Q et al. 2011. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600
    [Google Scholar]
  149. 149.
    Zhong FL, Robinson K, Teo DET, Tan KY, Lim C et al. 2018. Human DPP9 represses NLRP1 inflammasome and protects against autoinflammatory diseases via both peptidase activity and FIIND domain binding. J. Biol. Chem. 293:18864–78
    [Google Scholar]
  150. 150.
    Zhou JM, Chai J. 2008. Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 11:179–85
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-092922-073050
Loading
/content/journals/10.1146/annurev-biophys-092922-073050
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error