1932

Abstract

Many biomolecular condensates appear to form via spontaneous or driven processes that have the hallmarks of intracellular phase transitions. This suggests that a common underlying physical framework might govern the formation of functionally and compositionally unrelated biomolecular condensates. In this review, we summarize recent work that leverages a stickers-and-spacers framework adapted from the field of associative polymers for understanding how multivalent protein and RNA molecules drive phase transitions that give rise to biomolecular condensates. We discuss how the valence of stickers impacts the driving forces for condensate formation and elaborate on how stickers can be distinguished from spacers in different contexts. We touch on the impact of sticker- and spacer-mediated interactions on the rheological properties of condensates and show how the model can be mapped to known drivers of different types of biomolecular condensates.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-121219-081629
2020-05-06
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/biophys/49/1/annurev-biophys-121219-081629.html?itemId=/content/journals/10.1146/annurev-biophys-121219-081629&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Abbondanzieri EA, Meyer AS. 2019. More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Curr. Genet. 65:691–94
    [Google Scholar]
  2. 2. 
    Aguzzi A, Altmeyer M. 2016. Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol 26:547–58
    [Google Scholar]
  3. 3. 
    Alberti S. 2017. Phase separation in biology. Curr. Biol. 27:R1097–102
    [Google Scholar]
  4. 4. 
    Alberti S, Gladfelter A, Mittag T 2019. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–34
    [Google Scholar]
  5. 5. 
    Alberti S, Saha S, Woodruff JB, Franzmann TM, Wang J, Hyman AA 2018. A user's guide for phase separation assays with purified proteins. J. Mol. Biol. 430:4806–20
    [Google Scholar]
  6. 6. 
    Alexander EJ, Ghanbari Niaki A, Zhang T, Sarkar J, Liu Y et al. 2018. Ubiquilin 2 modulates ALS/FTD-linked FUS–RNA complex dynamics and stress granule formation. PNAS 115:E11485–94
    [Google Scholar]
  7. 7. 
    Al-Husini N, Tomares DT, Bitar O, Childers WS, Schrader JM 2018. α-Proteobacterial RNA degradosomes assemble liquid-liquid phase-separated RNP bodies. Mol. Cell 71:1027–39.e14
    [Google Scholar]
  8. 8. 
    Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S et al. 2015. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6:8088
    [Google Scholar]
  9. 9. 
    Amaya J, Ryan VH, Fawzi NL 2018. The SH3 domain of Fyn kinase interacts with and induces liquid-liquid phase separation of the low-complexity domain of hnRNPA2. J. Biol. Chem. 293:19522–31
    [Google Scholar]
  10. 10. 
    Aumiller WM Jr., Keating CD. 2016. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat. Chem. 8:129–37
    [Google Scholar]
  11. 11. 
    Aumiller WM Jr., Keating CD. 2017. Experimental models for dynamic compartmentalization of biomolecules in liquid organelles: reversible formation and partitioning in aqueous biphasic systems. Adv. Colloid Interface Sci. 239:75–87
    [Google Scholar]
  12. 12. 
    Banani SF, Lee HO, Hyman AA, Rosen MK 2017. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18:285–98
    [Google Scholar]
  13. 13. 
    Banani SF, Rice AM, Peeples WB, Lin Y, Jain S et al. 2016. Compositional control of phase-separated cellular bodies. Cell 166:651–63
    [Google Scholar]
  14. 14. 
    Banerjee PR, Milin AN, Moosa MM, Onuchic PL, Deniz AA 2017. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets. Angew. Chem. 56:11354–59
    [Google Scholar]
  15. 15. 
    Banjade S, Rosen MK. 2014. Phase transitions of multivalent proteins can promote clustering of membrane receptors. eLife 3:e04123
    [Google Scholar]
  16. 16. 
    Banjade S, Wu Q, Mittal A, Peeples WB, Pappu RV, Rosen MK 2015. Conserved interdomain linker promotes phase separation of the multivalent adaptor protein Nck. PNAS 112:E6426–35
    [Google Scholar]
  17. 17. 
    Berry J, Brangwynne CP, Haataja M 2018. Physical principles of intracellular organization via active and passive phase transitions. Rep. Prog. Phys. 81:046601
    [Google Scholar]
  18. 18. 
    Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP 2015. RNA transcription modulates phase transition-driven nuclear body assembly. PNAS 112:E5237–45
    [Google Scholar]
  19. 19. 
    Bickmore WA. 2013. The spatial organization of the human genome. Annu. Rev. Genom. Hum. Genet. 14:67–84
    [Google Scholar]
  20. 20. 
    Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T et al. 2018. RNA polymerase II clustering through corboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25:833–40
    [Google Scholar]
  21. 21. 
    Boeynaems S, Bogaert E, Kovacs D, Konijnenberg A, Timmerman E et al. 2017. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol. Cell 65:1044–55.e5
    [Google Scholar]
  22. 22. 
    Boeynaems S, Holehouse AS, Weinhardt V, Kovacs D, Van Lindt J et al. 2019. Spontaneous driving forces give rise to protein–RNA condensates with coexisting phases and complex material properties. PNAS 116:7889–98
    [Google Scholar]
  23. 23. 
    Boke E, Ruer M, Wühr M, Coughlin M, Lemaitre R et al. 2016. Amyloid-like self-assembly of a cellular compartment. Cell 166:637–50
    [Google Scholar]
  24. 24. 
    Bolognesi B, Lorenzo Gotor N, Dhar R, Cirillo D, Baldrighi M et al. 2016. A concentration-dependent liquid phase separation can cause toxicity upon increased protein expression. Cell Rep 16:222–31
    [Google Scholar]
  25. 25. 
    Bouchard JJ, Otero JH, Scott DC, Szulc E, Martin EW et al. 2018. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Mol. Cell 72:19–36.e8
    [Google Scholar]
  26. 26. 
    Bracha D, Walls MT, Wei M-T, Zhu L, Kurian M et al. 2018. Mapping local and global liquid phase behavior in living cells using phto-oligomerizable seeds. Cell 175:1467–80.e13
    [Google Scholar]
  27. 27. 
    Brady JP, Farber PJ, Sekhar A, Lin Y-H, Huang R et al. 2017. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation. PNAS 114:E8194–203
    [Google Scholar]
  28. 28. 
    Brangwynne CP. 2013. Phase transitions and size scaling of membrane-less organelles. J. Cell Biol. 203:875–81
    [Google Scholar]
  29. 29. 
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32
    [Google Scholar]
  30. 30. 
    Brangwynne CP, Mitchison TJ, Hyman AA 2011. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. PNAS 108:4334–39
    [Google Scholar]
  31. 31. 
    Brangwynne CP, Tompa P, Pappu RV 2015. Polymer physics of intracellular phase transitions. Nat. Phys. 11:899–904
    [Google Scholar]
  32. 32. 
    Burke KA, Janke AM, Rhine CL, Fawzi NL 2015. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60:231–41
    [Google Scholar]
  33. 33. 
    Burley SK, Petsko GA. 1988. Weakly polar interactions in proteins. Adv. Protein Chem. 39:125–89
    [Google Scholar]
  34. 34. 
    Chen H, Tang AH, Blanpied TA 2018. Subsynaptic spatial organization as a regulator of synaptic strength and plasticity. Curr. Opin. Neurobiol. 51:147–53
    [Google Scholar]
  35. 35. 
    Choi J-M, Dar F, Pappu RV 2019. LASSI: a lattice model for simulating phase transitions of multivalent proteins. PLOS Comput. Biol. 15:e1007028
    [Google Scholar]
  36. 36. 
    Cinar H, Cinar S, Chan HS, Winter R 2018. Pressure-induced dissolution and reentrant formation of condensed, liquid-liquid phase-separated elastomeric α-elastin. Chemistry 24:8286–91
    [Google Scholar]
  37. 37. 
    Courchaine EM, Lu A, Neugebauer KM 2016. Droplet organelles. EMBO J 35:1603–12
    [Google Scholar]
  38. 38. 
    Crick SL, Ruff KM, Garai K, Frieden C, Pappu RV 2013. Unmasking the roles of N- and C-terminal flanking sequences from exon 1 of huntingtin as modulators of polyglutamine aggregation. PNAS 110:20075–80
    [Google Scholar]
  39. 39. 
    Cuylen S, Blaukopf C, Politi AZ, Müller-Reichert T, Neumann B et al. 2016. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535:308–12
    [Google Scholar]
  40. 40. 
    Dao TP, Kolaitis RM, Kim HJ, O'Donovan K, Martyniak B et al. 2018. Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol. Cell 69:965–78.e6
    [Google Scholar]
  41. 41. 
    Dao TP, Martyniak B, Canning AJ, Lei Y, Colicino EG et al. 2019. ALS-linked mutations affect UBQLN2 oligomerization and phase separation in a position- and amino acid-dependent manner. Structure 27:937–51.e5
    [Google Scholar]
  42. 42. 
    Dastidar P. 2019. Designing supramolecular gelators: challenges, frustrations, and hopes. Gels 5:15
    [Google Scholar]
  43. 43. 
    Davey NE, Cyert MS, Moses AM 2015. Short linear motifs: ex nihilo evolution of protein regulation. Cell Commun. Signaling 13:43
    [Google Scholar]
  44. 44. 
    Deshpande S, Brandenburg F, Lau A, Last MGF, Spoelstra WK et al. 2019. Spatiotemporal control of coacervate formation within liposomes. Nat. Commun. 10:1800
    [Google Scholar]
  45. 45. 
    Dias CS, Araújo NAM, Telo da Gama MM 2017. Dynamics of network fluids. Adv. Colloid Interface Sci. 247:258–63
    [Google Scholar]
  46. 46. 
    Dignon GL, Zheng W, Kim YC, Best RB, Mittal J 2018. Sequence determinants of protein phase behavior from a coarse-grained model. PLOS Comput. Biol. 14:e1005941
    [Google Scholar]
  47. 47. 
    Dine E, Gil AA, Uribe G, Brangwynne CP, Toettcher JE 2018. Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst 6:655–63.e5
    [Google Scholar]
  48. 48. 
    Ditlev JA, Case LB, Rosen MK 2018. Who's in and who's out: compositional control of biomolecular condensates. J. Mol. Biol. 430:4666–84
    [Google Scholar]
  49. 49. 
    Du M, Chen ZJ. 2018. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361:704–9
    [Google Scholar]
  50. 50. 
    Dzuricky M, Roberts S, Chilkoti A 2018. Convergence of artificial protein polymers and intrinsically disordered proteins. Biochemistry 57:2405–14
    [Google Scholar]
  51. 51. 
    Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chen CC-H, Eckmann CR et al. 2015. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. PNAS 112:7189–94
    [Google Scholar]
  52. 52. 
    Erdel F, Rippe K. 2018. Formation of chromatin subcompartments by phase separation. Biophys. J. 114:2262–70
    [Google Scholar]
  53. 53. 
    Ermoshkin AV, Olvera de la Cruz M 2003. A modified random phase approximation of polyelectrolyte solutions. Macromolecules 36:7824–32
    [Google Scholar]
  54. 54. 
    Falahati H, Haji-Akbari A. 2019. Thermodynamically driven assemblies and liquid–liquid phase separations in biology. Soft Matter 15:1135–54
    [Google Scholar]
  55. 55. 
    Falahati H, Wieschaus E. 2017. Independent active and thermodynamic processes govern the nucleolus assembly in vivo. PNAS 114:1335–40
    [Google Scholar]
  56. 56. 
    Fei J, Jadaliha M, Harmon TS, Li IT, Hua B et al. 2017. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci. 130:4180–92
    [Google Scholar]
  57. 57. 
    Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L et al. 2016. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–97
    [Google Scholar]
  58. 58. 
    Flory PJ. 1941. Molecular size distribution in three dimensional polymers. I. Gelation. J. Am. Chem. Soc. 63:3083–90
    [Google Scholar]
  59. 59. 
    Flory PJ. 1942. Thermodynamics of high polymer solutions. J. Chem. Phys. 10:51–61
    [Google Scholar]
  60. 60. 
    Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS et al. 2018. Phase separation of a yeast prion protein promotes cellular fitness. Science 359:eaao5654
    [Google Scholar]
  61. 61. 
    Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M et al. 2017. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171:148–62.e19
    [Google Scholar]
  62. 62. 
    Gasior K, Zhao J, McLaughlin G, Forest MG, Gladfelter AS, Newby J 2019. Partial demixing of RNA-protein complexes leads to intradroplet patterning in phase-separated biological condensates. Phys. Rev. E 99:012411
    [Google Scholar]
  63. 63. 
    Gomes E, Shorter J. 2019. The molecular language of membraneless organelles. J. Biol. Chem. 294:7115–27
    [Google Scholar]
  64. 64. 
    Han TW, Kato M, Xie S, Wu LC, Mirzaei H et al. 2012. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149:768–79
    [Google Scholar]
  65. 65. 
    Harmon TS, Holehouse AS, Pappu RV 2018. Differential solvation of intrinsically disordered linkers drives the formation of spatially organized droplets in ternary systems of linear multivalent proteins. New J. Phys. 20:045002
    [Google Scholar]
  66. 66. 
    Harmon TS, Holehouse AS, Rosen MK, Pappu RV 2017. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6:e30294
    [Google Scholar]
  67. 67. 
    Hofweber M, Dormann D. 2019. Friend or foe: post-translational modifications as regulators of phase separation and RNP granule dynamics. J. Biol. Chem. 294:7137–50
    [Google Scholar]
  68. 68. 
    Hofweber M, Hutten S, Bourgeois B, Spreitzer E, Niedner-Boblenz A et al. 2018. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173:706–19.e13
    [Google Scholar]
  69. 69. 
    Honigmann A, Sadeghi S, Keller J, Hell SW, Eggeling C, Vink R 2014. A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife 3:e01671
    [Google Scholar]
  70. 70. 
    Hughes MP, Sawaya MR, Boyer DR, Goldschmidt L, Rodriguez JA et al. 2018. Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science 359:698–701
    [Google Scholar]
  71. 71. 
    Huizar RL, Lee C, Boulgakov AA, Horani A, Tu F et al. 2018. A liquid-like organelle at the root of motile ciliopathy. eLife 7:e38497
    [Google Scholar]
  72. 72. 
    Hyman AA, Weber CA, Jülicher F 2014. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30:39–58
    [Google Scholar]
  73. 73. 
    Jawerth LM, Ijavi M, Ruer M, Saha S, Jahnel M et al. 2018. Salt-dependent rheology and surface tension of protein condensates using optical traps. Phys. Rev. Lett. 121:258101
    [Google Scholar]
  74. 74. 
    Jenal U, Stephens C. 2002. The Caulobacter cell cycle: timing, spatial organization and checkpoints. Curr. Opin. Microbiol. 5:558–63
    [Google Scholar]
  75. 75. 
    Kato M, Han TW, Xie S, Shi K, Du X et al. 2012. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–67
    [Google Scholar]
  76. 76. 
    Kesten H. 2006. What is…percolation. Not. Am. Math. Soc. 53:572–73
    [Google Scholar]
  77. 77. 
    Kim S, Huang J, Lee Y, Dutta S, Yoo HY et al. 2016. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. PNAS 113:E847–53
    [Google Scholar]
  78. 78. 
    Kistler KE, Trcek T, Hurd TR, Chen R, Liang FX et al. 2018. Phase transitioned nuclear Oskar promotes cell division of Drosophila primordial germ cells. eLife 7:e37949
    [Google Scholar]
  79. 79. 
    Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E et al. 2015. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 4:e06807
    [Google Scholar]
  80. 80. 
    Kroschwald S, Munder MC, Maharana S, Franzmann TM, Richter D et al. 2018. Different material states of Pub1 condensates define distinct modes of stress adaptation and recovery. Cell Rep 23:3327–39
    [Google Scholar]
  81. 81. 
    Kwon I, Kato M, Xiang S, Wu L, Theodoropoulos P et al. 2013. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155:1049–60
    [Google Scholar]
  82. 82. 
    Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P et al. 2014. Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science 345:1139–45
    [Google Scholar]
  83. 83. 
    Langdon EM, Qiu Y, Ghanbari Niaki A, McLaughlin GA, Weidmann CA et al. 2018. mRNA structure determines specificity of a polyQ-driven phase separation. Science 360:922–27
    [Google Scholar]
  84. 84. 
    Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB et al. 2017. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–40
    [Google Scholar]
  85. 85. 
    Lee H, DeLoache WC, Dueber JE 2012. Spatial organization of enzymes for metabolic engineering. Metab. Eng. 14:242–51
    [Google Scholar]
  86. 86. 
    Li HR, Chiang WC, Chou PC, Wang WJ, Huang JR 2018. TAR DNA-binding protein 43 (TDP-43) liquid–liquid phase separation is mediated by just a few aromatic residues. J. Biol. Chem. 293:6090–98
    [Google Scholar]
  87. 87. 
    Li P, Banjade S, Cheng H-C, Kim S, Chen B et al. 2012. Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–40
    [Google Scholar]
  88. 88. 
    Lin Y, Currie SL, Rosen MK 2017. Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J. Biol. Chem. 292:19110–20
    [Google Scholar]
  89. 89. 
    Lin Y, McCarty J, Rauch JN, Delaney KT, Kosik KS et al. 2019. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 8:e42571
    [Google Scholar]
  90. 90. 
    Lin Y, Protter DSW, Rosen MK, Parker R 2015. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60:208–19
    [Google Scholar]
  91. 91. 
    Lin YH, Chan HS. 2017. Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys. J. 112:2043–46
    [Google Scholar]
  92. 92. 
    Lin Y-H, Forman-Kay JD, Chan HS 2016. Sequence-specific polyampholyte phase separation in membraneless organelles. Phys. Rev. Lett. 117:178101
    [Google Scholar]
  93. 93. 
    Linsenmeier M, Kopp MRG, Grigolato F, Emmanoulidis L, Liu D et al. 2019. Dynamics of synthetic membraneless organelles in microfluidic droplets. Angew. Chem. 58:14489–94
    [Google Scholar]
  94. 94. 
    Low JT, Weeks KM. 2010. SHAPE-directed RNA secondary structure prediction. Methods 52:150–58
    [Google Scholar]
  95. 95. 
    Lu H, Yu D, Hansen AS, Ganguly S, Liu R et al. 2018. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558:318–23
    [Google Scholar]
  96. 96. 
    Maharana S, Wang J, Papadopoulos DK, Richter D, Pozniakovsky A et al. 2018. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360:918–21
    [Google Scholar]
  97. 97. 
    Mann JR, Gleixner AM, Mauna JC, Gomes E, DeChellis-Marks MR et al. 2019. RNA binding antagonizes neurotoxic phase transitions of TDP-43. Neuron 102:321–38.e8
    [Google Scholar]
  98. 98. 
    Manz BN, Groves JT. 2010. Spatial organization and signal transduction at intercellular junctions. Nat. Rev. Mol. Cell Biol. 11:342–52
    [Google Scholar]
  99. 99. 
    Mao S, Kuldinow D, Haataja MP, Košmrlj A 2019. Phase behavior and morphology of multicomponent liquid mixtures. Soft Matter 15:1297–311
    [Google Scholar]
  100. 100. 
    Martin EW, Mittag T. 2018. Relationship of sequence and phase separation in protein low-complexity regions. Biochemistry 57:2478–87
    [Google Scholar]
  101. 101. 
    Marzahn MR, Marada S, Lee J, Nourse A, Kenrick S et al. 2016. Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J 35:1254–75
    [Google Scholar]
  102. 102. 
    Maucuer A, Desforges B, Joshi V, Boca M, Kretov DA et al. 2018. Microtubules as platforms for probing liquid-liquid phase separation in cells: application to RNA-binding proteins. J. Cell Sci. 131:jcs214692
    [Google Scholar]
  103. 103. 
    McCarty J, Delaney KT, Danielsen SPO, Fredrickson GH, Shea J-E 2019. Complete phase diagram for liquid–liquid phase separation of intrinsically disordered proteins. J. Phys. Chem. Lett. 10:1644–52
    [Google Scholar]
  104. 104. 
    McGurk L, Gomes E, Guo L, Mojsilovic-Petrovic J, Tran V et al. 2018. Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization. Mol. Cell 71:703–17.e9
    [Google Scholar]
  105. 105. 
    Milles S, Salvi N, Blackledge M, Jensen MR 2018. Characterization of intrinsically disordered proteins and their dynamic complexes: from in vitro to cell-like environments. Prog. Nucl. Magn. Reson. Spectrosc. 109:79–100
    [Google Scholar]
  106. 106. 
    Milovanovic D, De Camilli P 2017. Synaptic vesicle clusters at synapses: a distinct liquid phase. Neuron 93:995–1002
    [Google Scholar]
  107. 107. 
    Milovanovic D, Wu Y, Bian X, De Camilli P 2018. A liquid phase of synapsin and lipid vesicles. Science 361:604–7
    [Google Scholar]
  108. 108. 
    Mitrea DM, Cika JA, Guy CS, Ban D, Banerjee PR et al. 2016. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. eLife 5:e13571
    [Google Scholar]
  109. 109. 
    Mitrea DM, Cika JA, Stanley CB, Nourse A, Onuchic PL et al. 2018. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. Nat. Commun. 9:842
    [Google Scholar]
  110. 110. 
    Mitrea DM, Grace CR, Buljan M, Yun M-K, Pytel NJ et al. 2014. Structural polymorphism in the N-terminal oligomerization domain of NPM1. PNAS 111:4466–71
    [Google Scholar]
  111. 111. 
    Mitrea DM, Kriwacki RW. 2016. Phase separation in biology: functional organization of a higher order. Cell Commun. Signal. 14:1
    [Google Scholar]
  112. 112. 
    Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP et al. 2015. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–33
    [Google Scholar]
  113. 113. 
    Monahan Z, Ryan VH, Janke AM, Burke KA, Rhoads SN et al. 2017. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J 36:2951–67
    [Google Scholar]
  114. 114. 
    Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Keating CD, Rivas G 2016. Microenvironments created by liquid-liquid phase transition control the dynamic distribution of bacterial division FtsZ protein. Sci. Rep. 6:35140
    [Google Scholar]
  115. 115. 
    Monterroso B, Zorrilla S, Sobrinos-Sanguino M, Robles-Ramos MA, López-Álvarez M et al. 2019. Bacterial FtsZ protein forms phase-separated condensates with its nucleoid-associated inhibitor SlmA. EMBO Rep 20:e45946
    [Google Scholar]
  116. 116. 
    Muiznieks LD, Cirulis JT, van der Horst A, Reinhardt DP, Wuite GJ et al. 2014. Modulated growth, stability and interactions of liquid-like coacervate assemblies of elastin. Matrix Biol 36:39–50
    [Google Scholar]
  117. 117. 
    Nguemaha V, Zhou HX. 2018. Liquid-liquid phase separation of patchy particles illuminates diverse effects of regulatory components on protein droplet formation. Sci. Rep. 8:6728
    [Google Scholar]
  118. 118. 
    Niewidok B, Igaev M, Pereira da Graca A, Strassner A, Lenzen C et al. 2018. Single-molecule imaging reveals dynamic biphasic partition of RNA-binding proteins in stress granules. J. Cell Biol. 217:1303–18
    [Google Scholar]
  119. 119. 
    Nikolic J, Le Bars R, Lama Z, Scrima N, Lagaudrière-Gesbert C et al. 2017. Negri bodies are viral factories with properties of liquid organelles. Nat. Commun. 8:58
    [Google Scholar]
  120. 120. 
    Nott TJ, Craggs TD, Baldwin AJ 2016. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8:569–75
    [Google Scholar]
  121. 121. 
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E et al. 2015. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57:936–47
    [Google Scholar]
  122. 122. 
    Orlando G, Raimondi D, Tabaro F, Codice F, Moreau Y, Vranken W 2019. Computational identification of prion-like RNA-binding proteins that form liquid phase-separated condensates. Bioinformatics 35:4617–23
    [Google Scholar]
  123. 123. 
    Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A et al. 2016. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein. Mol. Cell 63:72–85
    [Google Scholar]
  124. 124. 
    Pappu RV, Wang X, Vitalis A, Crick SL 2008. A polymer physics perspective on driving forces and mechanisms for protein aggregation. Arch. Biochem. Biophys. 469:132–41
    [Google Scholar]
  125. 125. 
    Papusheva E, Heisenberg CP. 2010. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO J 29:2753–68
    [Google Scholar]
  126. 126. 
    Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M et al. 2015. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–77
    [Google Scholar]
  127. 127. 
    Patel A, Malinovska L, Saha S, Wang J, Alberti S et al. 2017. ATP as a biological hydrotrope. Science 356:753–56
    [Google Scholar]
  128. 128. 
    Petsev DN, Wu X, Galkin O, Vekilov PG 2003. Thermodynamic functions of concentrated protein solutions from phase equilibria. J. Phys. Chem. B 107:3921–26
    [Google Scholar]
  129. 129. 
    Pierce WK, Grace CR, Lee J, Nourse A, Marzahn MR et al. 2016. Multiple weak linear motifs enhance recruitment and processivity in SPOP-mediated substrate ubiquitination. J. Mol. Biol. 428:1256–71
    [Google Scholar]
  130. 130. 
    Pliss A, Levchenko SM, Liu L, Peng X, Ohulchanskyy TY et al. 2019. Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging. Nat. Commun. 10:455
    [Google Scholar]
  131. 131. 
    Posey AE, Ruff KM, Harmon TS, Crick SL, Li A et al. 2018. Profilin reduces aggregation and phases separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers. J. Biol. Chem. 293:3734–46
    [Google Scholar]
  132. 132. 
    Powers SK, Holehouse AS, Korasick DA, Schreiber KH, Clark NM et al. 2019. Nucleo-cytoplasmic partitioning of ARF proteins controls auxin responses in Arabidopsis thaliana. Mol. Cell 76:177–90.e5
    [Google Scholar]
  133. 133. 
    Protter DSW, Parker R. 2016. Principles and properties of stress granules. Trends Cell Biol 26:668–79
    [Google Scholar]
  134. 134. 
    Prusty D, Pryamitsyn V, Olvera de la Cruz M 2018. Thermodynamics of associative polymer blends. Macromolecules 51:5918–32
    [Google Scholar]
  135. 135. 
    Putnam A, Cassani M, Smith J, Seydoux G 2019. A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nat. Struct. Mol. Biol. 26:220–26
    [Google Scholar]
  136. 136. 
    Rai AK, Chen JX, Selbach M, Pelkmans L 2018. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature 559:211–16
    [Google Scholar]
  137. 137. 
    Rao BS, Parker R. 2017. Numerous interactions act redundantly to assemble a tunable size of P bodies Saccharomyces cerevisiae. . PNAS 114:E9569–78
    [Google Scholar]
  138. 138. 
    Razin SV, Gavrilov AA, Yarovaya OV 2010. Transcription factories and spatial organization of eukaryotic genomes. Biochem. Biokhim. 75:1307–15
    [Google Scholar]
  139. 139. 
    Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE et al. 2017. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168:1028–40.e19
    [Google Scholar]
  140. 140. 
    Riback JA, Zhu L, Ferrolino MC, Tolbert M, Mitrea DM et al. 2019. Composition dependent phase separation underlies directional flux through the nucleolus. bioRxiv809210 https://doi.org/10.1101/809210
    [Crossref] [Google Scholar]
  141. 141. 
    Roberts S, Harmon TS, Schaal JL, Miao V, Li K et al. 2018. Injectable tissue integrating networks from recombinant polypeptides with tunable order. Nat. Mater. 17:1154–63
    [Google Scholar]
  142. 142. 
    Rubinstein M, Colby RH. 2003. Polymer Physics Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  143. 143. 
    Rubinstein M, Dobrynin AV. 1997. Solutions of associative polymers. Trends Polymer Sci 5:181–86
    [Google Scholar]
  144. 144. 
    Ruff KM, Harmon TS, Pappu RV 2015. CAMELOT: a machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences. J. Chem. Phys. 143:243123
    [Google Scholar]
  145. 145. 
    Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL et al. 2018. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:eaar3958
    [Google Scholar]
  146. 146. 
    Saito M, Hess D, Eglinger J, Fritsch AW, Kreysing M et al. 2019. Acetylation of intrinsically disordered regions regulates phase separation. Nat. Chem. Biol. 15:51–61
    [Google Scholar]
  147. 147. 
    Salvi N, Abyzov A, Blackledge M 2017. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation. Prog. Nucl. Magn. Reson. Spectrosc. 102–103:43–60
    [Google Scholar]
  148. 148. 
    Šarić A, Buell AK, Meisl G, Michaels TCT, Dobson CM et al. 2016. Physical determinants of the self-replication of protein fibrils. Nat. Phys. 12:874–80
    [Google Scholar]
  149. 149. 
    Sarkar J, Myong S. 2018. Single-molecule and ensemble methods to probe initial stages of RNP granule assembly. Methods Mol. Biol. 1814:325–38
    [Google Scholar]
  150. 150. 
    Schuster BS, Reed EH, Parthasarathy R, Jahnke CN, Caldwell RM et al. 2018. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat. Commun. 9:2985
    [Google Scholar]
  151. 151. 
    Semenov AN, Rubinstein M. 1998. Thermoreversible gelation in solutions of associative polymers. 1. Statics. Macromolecules 31:1373–85
    [Google Scholar]
  152. 152. 
    Shan Z, Tu Y, Yang Y, Liu Z, Zeng M et al. 2018. Basal condensation of Numb and Pon complex via phase transition during Drosophila neuroblast asymmetric division. Nat. Commun. 9:737
    [Google Scholar]
  153. 153. 
    Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP 2017. Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168:159–71.e14
    [Google Scholar]
  154. 154. 
    Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382
    [Google Scholar]
  155. 155. 
    Simon JR, Carroll NJ, Rubinstein M, Chilkoti A, López GP 2017. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nat. Chem. 9:509–15
    [Google Scholar]
  156. 156. 
    Sommer J-U. 2018. Gluonic and regulatory solvents: a paradigm for tunable phase segregation in polymers. Macromolecules 51:3066–74
    [Google Scholar]
  157. 157. 
    Stanek D, Fox AH. 2017. Nuclear bodies: news insights into structure and function. Curr. Opin. Cell Biol. 46:94–101
    [Google Scholar]
  158. 158. 
    Stockmayer WH. 1943. Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11:45–55
    [Google Scholar]
  159. 159. 
    Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH 2017. Phase separation drives heterochromatin domain formation. Nature 547:241–45
    [Google Scholar]
  160. 160. 
    Su X, Ditlev JA, Hui E, Xing W, Banjade S et al. 2016. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352:595–99
    [Google Scholar]
  161. 161. 
    Tang SJ. 2017. Potential role of phase separation of repetitive DNA in chromosomal organization. Genes 8:279
    [Google Scholar]
  162. 162. 
    Taylor JP, Brown RH Jr., Cleveland DW 2016. Decoding ALS: from genes to mechanism. Nature 539:197–206
    [Google Scholar]
  163. 163. 
    Taylor NO, Wei M-T, Stone HA, Brangwynne CP 2019. Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys. J. 117:1285–300
    [Google Scholar]
  164. 164. 
    Ukmar-Godec T, Hutten S, Grieshop MP, Rezaei-Ghaleh N, Cima-Omori MS et al. 2019. Lysine/RNA-interactions drive and regulate biomolecular condensation. Nat. Commun. 10:2909
    [Google Scholar]
  165. 165. 
    Vekilov PG. 2010. Phase transitions of folded proteins. Soft Matter 6:5254–72
    [Google Scholar]
  166. 166. 
    Vernon RM, Chong PA, Tsang B, Kim TH, Bah A et al. 2018. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. eLife 7:e31486
    [Google Scholar]
  167. 167. 
    Vernon RM, Forman-Kay JD. 2019. First-generation predictors of biological protein phase separation. Curr. Opin. Struct. Biol. 58:88–96
    [Google Scholar]
  168. 168. 
    Walter H, Brooks DE. 1995. Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett 361:135–39
    [Google Scholar]
  169. 169. 
    Wang H, Yan X, Aigner H, Bracher A, Nguyen ND et al. 2019. Rubisco condensate formation by CcmM in β-carboxysome biogenesis. Nature 566:131–35
    [Google Scholar]
  170. 170. 
    Wang J, Choi J-M, Holehouse AS, Lee HO, Zhang X et al. 2018. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174:688–99.e16
    [Google Scholar]
  171. 171. 
    Wang N, Liu C. 2019. Implications of liquid-liquid phase separation in plant chromatin organization and transcriptional control. Curr. Opin. Genet. Dev. 55:59–65
    [Google Scholar]
  172. 172. 
    Wang Z, Zhang H. 2019. Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis. Trends Cell Biol 29:417–27
    [Google Scholar]
  173. 173. 
    Wei MT, Elbaum-Garfinkle S, Holehouse AS, Chen CC, Feric M et al. 2017. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles. Nat. Chem. 9:1118–25
    [Google Scholar]
  174. 174. 
    Weirich KL, Banerjee S, Dasbiswas K, Witten TA, Vaikuntanathan S, Gardel ML 2017. Liquid behavior of cross-linked actin bundles. PNAS 114:2131–36
    [Google Scholar]
  175. 175. 
    Wheeler JR, Matheny T, Jain S, Abrisch R, Parker R 2016. Distinct stages in stress granule assembly and disassembly. eLife 5:e18413
    [Google Scholar]
  176. 176. 
    Woodruff JB. 2018. Assembly of mitotic structures through phase separation. J. Mol. Biol. 430:4762–72
    [Google Scholar]
  177. 177. 
    Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA 2017. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169:1066–77.e10
    [Google Scholar]
  178. 178. 
    Wu H, Fuxreiter M. 2016. The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules. Cell 165:1055–66
    [Google Scholar]
  179. 179. 
    Wu X, Cai Q, Shen Z, Chen X, Zeng M et al. 2019. RIM and RIM-BP form presynaptic active-zone-like condensates via phase separation. Mol. Cell 73:971–84.e5
    [Google Scholar]
  180. 180. 
    Wunder T, Cheng SLH, Lai SK, Li HY, Mueller-Cajar O 2018. The phase separation underlying the pyrenoid-based microalgal Rubisco supercharger. Nat. Commun. 9:5076
    [Google Scholar]
  181. 181. 
    Yang Y, Jones HB, Dao TP, Castañeda CA 2019. Single amino acid substitutions in stickers, but not spacers, substantially alter UBQLN2 phase transitions and dense phase material properties. J. Phys. Chem. B 123:3618–29
    [Google Scholar]
  182. 182. 
    Yoo H, Triandafillou C, Drummond DA 2019. Cellular sensing by phase separation: using the process, not just the products. J. Biol. Chem. 294:7151–59
    [Google Scholar]
  183. 183. 
    Zhang H, Elbaum-Garfinkle S, Langdon EM, Taylor N, Occhipinti P et al. 2015. RNA controls polyQ protein phase transitions. Mol. Cell 60:220–30
    [Google Scholar]
  184. 184. 
    Zhou HX, Nguemaha V, Mazarakos K, Qin S 2018. Why do disordered and structured proteins behave differently in phase separation. Trends Biochem. Sci. 43:499–516
    [Google Scholar]
  185. 185. 
    Zwanzig R, Mountain RD. 1965. High-frequency elastic moduli of simple fluids. J. Chem. Phys. 43:4464–71
    [Google Scholar]
  186. 186. 
    Zwicker D, Decker M, Jaensch S, Hyman AA, Jülicher F 2014. Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. PNAS 111:E2636–45
    [Google Scholar]
/content/journals/10.1146/annurev-biophys-121219-081629
Loading
/content/journals/10.1146/annurev-biophys-121219-081629
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error