1932

Abstract

Fanconi anemia (FA) is a complex genetic disorder characterized by bone marrow failure (BMF), congenital defects, inability to repair DNA interstrand cross-links (ICLs), and cancer predisposition. FA presents two seemingly opposite characteristics: () massive cell death of the hematopoietic stem and progenitor cell (HSPC) compartment due to extensive genomic instability, leading to BMF, and () uncontrolled cell proliferation leading to FA-associated malignancies. The canonical function of the FA proteins is to collaborate with several other DNA repair proteins to eliminate clastogenic (chromosome-breaking) effects of DNA ICLs. Recent discoveries reveal that the FA pathway functions in a critical tumor-suppressor network to preserve genomic integrity by stabilizing replication forks, mitigating replication stress, and regulating cytokinesis. Homozygous germline mutations (biallelic) in 22 FANC genes cause FA, whereas heterozygous germline mutations in some of the FANC genes (monoallelic), such as and , do not cause FA but significantly increase cancer susceptibility sporadically in the general population. In this review, we discuss our current understanding of the functions of the FA pathway in the maintenance of genomic stability, and we present an overview of the prevalence and clinical relevance of somatic mutations in FA genes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030617-050422
2019-03-04
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/3/1/annurev-cancerbio-030617-050422.html?itemId=/content/journals/10.1146/annurev-cancerbio-030617-050422&mimeType=html&fmt=ahah

Literature Cited

  1. Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS et al. 2012. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br. J. Cancer 107:1776–82
    [Google Scholar]
  2. Alpi AF, Patel KJ 2009. Monoubiquitylation in the Fanconi anemia DNA damage response pathway. DNA Repair 8:430–35
    [Google Scholar]
  3. Andreassen PR, D'Andrea AD, Taniguchi T 2004. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes Dev 18:1958–63
    [Google Scholar]
  4. Auerbach AD. 1993. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp. Hematol. 21:731–33
    [Google Scholar]
  5. Auerbach AD. 2009. Fanconi anemia and its diagnosis. Mutat. Res. 668:4–10
    [Google Scholar]
  6. Bhargava R, Onyango DO, Stark JM 2016. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet 32:566–75
    [Google Scholar]
  7. Birkbak NJ, Wang ZC, Kim JY, Eklund AC, Li Q et al. 2012. Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA-damaging agents. Cancer Discov 2:366–75
    [Google Scholar]
  8. Bluteau D, Masliah-Planchon J, Clairmont C, Rousseau A, Ceccaldi R et al. 2016. Biallelic inactivation of REV7 is associated with Fanconi anemia. J. Clin. Investig. 126:3580–84
    [Google Scholar]
  9. Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J et al. 2015. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 521:537–40
    [Google Scholar]
  10. Bogliolo M, Schuster B, Stoepker C, Derkunt B, Su Y et al. 2013. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet. 92:800–6
    [Google Scholar]
  11. Buisson R, Dion-Cote AM, Coulombe Y, Launay H, Cai H et al. 2010. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 17:1247–1247
    [Google Scholar]
  12. Bunting SF, Callen E, Kozak ML, Kim JM, Wong N et al. 2012. BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair. Mol. Cell 46:125–35
    [Google Scholar]
  13. Burke W, Daly M, Garber J, Botkin J, Kahn MJ et al. 1997. Recommendations for follow-up care of individuals with an inherited predisposition to cancer: II. BRCA1 and BRCA2. JAMA 277:997–1003
    [Google Scholar]
  14. Castella M, Jacquemont C, Thompson EL, Yeo JE, Cheung RS et al. 2015. FANCI regulates recruitment of the FA core complex at sites of DNA damage independently of FANCD2. PLOS Genet 11:e1005563
    [Google Scholar]
  15. Cavanagh H, Rogers KM 2015. The role of BRCA1 and BRCA2 mutations in prostate, pancreatic and stomach cancers. Hered Cancer Clin. Pract. 13:16
    [Google Scholar]
  16. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B et al. 2015. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518:258–62
    [Google Scholar]
  17. Ceccaldi R, Rondinelli B, D'Andrea AD 2016.a Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26:52–64
    [Google Scholar]
  18. Ceccaldi R, Sarangi P, D'Andrea AD 2016.b The Fanconi anaemia pathway: new players and new functions. Nat. Rev. Mol. Cell Biol. 17:337–49
    [Google Scholar]
  19. Chaudhury I, Sareen A, Raghunandan M, Sobeck A 2013. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res 41:6444–59
    [Google Scholar]
  20. Chen YH, Jones MJ, Yin Y, Crist SB, Colnaghi L et al. 2015. ATR-mediated phosphorylation of FANCI regulates dormant origin firing in response to replication stress. Mol. Cell 58:323–38
    [Google Scholar]
  21. Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y et al. 2007. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25:331–43
    [Google Scholar]
  22. Cohn MA, Kowal P, Yang K, Haas W, Huang TT et al. 2007. A UAF1-containing multisubunit protein complex regulates the Fanconi anemia pathway. Mol. Cell 28:786–97
    [Google Scholar]
  23. D'Andrea AD, Grompe M 2003. The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer 3:23–34
    [Google Scholar]
  24. Daley JM, Jimenez-Sainz J, Wang W, Miller AS, Xue X et al. 2017. Enhancement of BLM-DNA2-mediated long-range DNA end resection by CtIP. Cell Rep 21:324–32
    [Google Scholar]
  25. Davies H, Glodzik D, Morganella S, Yates LR, Staaf J et al. 2017. HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 23:517–25
    [Google Scholar]
  26. Dohmen AJC, Qiao X, Duursma A, Wijdeven RH, Lieftink C et al. 2017. Identification of a novel ATM inhibitor with cancer cell specific radiosensitization activity. Oncotarget 8:73925–37
    [Google Scholar]
  27. Domchek SM, Tang J, Stopfer J, Lilli DR, Hamel N et al. 2013. Biallelic deleterious BRCA1 mutations in a woman with early-onset ovarian cancer. Cancer Discov 3:399–405
    [Google Scholar]
  28. Dong J, Zhang T, Ren Y, Wang Z, Ling CC et al. 2017. Inhibiting DNA-PKcs in a non-homologous end-joining pathway in response to DNA double-strand breaks. Oncotarget 8:22662–73
    [Google Scholar]
  29. Duan W, Gao L, Zhao W, Leon M, Sadee W et al. 2013. Assessment of FANCD2 nuclear foci formation in paraffin-embedded tumors: a potential patient-enrichment strategy for treatment with DNA interstrand crosslinking agents. Transl. Res. 161:156–64
    [Google Scholar]
  30. Easton DF, Lesueur F, Decker B, Michailidou K, Li J et al. 2016. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing. J. Med. Genet. 53:298–309
    [Google Scholar]
  31. Elia AE, Wang DC, Willis NA, Boardman AP, Hajdu I et al. 2015. RFWD3-dependent ubiquitination of RPA regulates repair at stalled replication forks. Mol. Cell 60:280–93
    [Google Scholar]
  32. Enoiu M, Jiricny J, Scharer OD 2012. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic Acids Res 40:8953–64
    [Google Scholar]
  33. Feeney L, Munoz IM, Lachaud C, Toth R, Appleton PL et al. 2017. RPA-mediated recruitment of the E3 ligase RFWD3 is vital for interstrand crosslink repair and human health. Mol. Cell 66:610–21.e4
    [Google Scholar]
  34. Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A et al. 2009. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138:78–89
    [Google Scholar]
  35. Ferrone CR, Levine DA, Tang LH, Allen PJ, Jarnagin W et al. 2009. BRCA germline mutations in Jewish patients with pancreatic adenocarcinoma. J. Clin. Oncol. 27:433–38
    [Google Scholar]
  36. Finch AP, Lubinski J, Moller P, Singer CF, Karlan B et al. 2014. Impact of oophorectomy on cancer incidence and mortality in women with a BRCA1 or BRCA2 mutation. J. Clin. Oncol. 32:1547–53
    [Google Scholar]
  37. Finnberg NK, Gokare P, Lev A, Grivennikov SI, MacFarlane AWT et al. 2017. Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget 8:66747–57
    [Google Scholar]
  38. Frohnmayer D, Frohnmayer L, Guinan E, Kennedy T, Larsen K 2014. Fanconi Anemia: Guidelines for Diagnosis and Management Eugene, OR: Fanconi Anemia Res. Fund., 4th ed..
    [Google Scholar]
  39. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I et al. 2012. Molecular mechanisms of cisplatin resistance. Oncogene 31:1869–83
    [Google Scholar]
  40. Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ 2012. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489:571–75
    [Google Scholar]
  41. Garaycoechea JI, Patel KJ 2014. Why does the bone marrow fail in Fanconi anemia. Blood 123:26–34
    [Google Scholar]
  42. Garcia-Rubio ML, Perez-Calero C, Barroso SI, Tumini E, Herrera-Moyano E et al. 2015. The Fanconi Anemia pathway protects genome integrity from R-loops. PLOS Genet 11:e1005674
    [Google Scholar]
  43. Gennery AR, Slatter MA, Bhattacharya A, Barge D, Haigh S et al. 2004. The clinical and biological overlap between Nijmegen Breakage Syndrome and Fanconi anemia. Clin. Immunol. 113:214–19
    [Google Scholar]
  44. Giampietro PF, Adler-Brecher B, Verlander PC, Pavlakis SG, Davis JG, Auerbach AD 1993. The need for more accurate and timely diagnosis in Fanconi anemia: a report from the International Fanconi Anemia Registry. Pediatrics 91:1116–20
    [Google Scholar]
  45. Goodall J, Mateo J, Yuan W, Mossop H, Porta N et al. 2017. Circulating cell-free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov 7:1006–17
    [Google Scholar]
  46. Gordon AN, Fleagle JT, Guthrie D, Parkin DE, Gore ME, Lacave AJ 2001. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J. Clin. Oncol. 19:3312–22
    [Google Scholar]
  47. Graeser M, McCarthy A, Lord CJ, Savage K, Hills M et al. 2010. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 16:6159–68
    [Google Scholar]
  48. Guervilly JH, Renaud E, Takata M, Rosselli F 2011. USP1 deubiquitinase maintains phosphorylated CHK1 by limiting its DDB1-dependent degradation. Hum. Mol. Genet. 20:2171–81
    [Google Scholar]
  49. Gupta R, Somyajit K, Narita T, Maskey E, Stanlie A et al. 2018. DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity. Cell 173:972–88
    [Google Scholar]
  50. Higgins GS, Boulton SJ 2018. Beyond PARP–POLθ as an anticancer target. Science 359:1217–18
    [Google Scholar]
  51. Hira A, Yabe H, Yoshida K, Okuno Y, Shiraishi Y et al. 2013. Variant ALDH2 is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood 122:3206–9
    [Google Scholar]
  52. Hlavin EM, Smeaton MB, Noronha AM, Wilds CJ, Miller PS 2010. Cross-link structure affects replication-independent DNA interstrand cross-link repair in mammalian cells. Biochemistry 49:3977–88
    [Google Scholar]
  53. Hofstatter EW, Domchek SM, Miron A, Garber J, Wang M et al. 2011. PALB2 mutations in familial breast and pancreatic cancer. Fam. Cancer 10:225–31
    [Google Scholar]
  54. Howlett NG, Taniguchi T, Durkin SG, D'Andrea AD, Glover TW 2005. The Fanconi anemia pathway is required for the DNA replication stress response and for the regulation of common fragile site stability. Hum. Mol. Genet. 14:693–701
    [Google Scholar]
  55. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q et al. 2002. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–9
    [Google Scholar]
  56. Huang M, Kim JM, Shiotani B, Yang K, Zou L, D'Andrea AD 2010. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol. Cell 39:259–68
    [Google Scholar]
  57. Huang Y, Li L 2013. DNA crosslinking damage and cancer–a tale of friend and foe. Transl. Cancer Res. 2:144–54
    [Google Scholar]
  58. Inano S, Sato K, Katsuki Y, Kobayashi W, Tanaka H et al. 2017. RFWD3-mediated ubiquitination promotes timely removal of both RPA and RAD51 from DNA damage sites to facilitate homologous recombination. Mol. Cell 66:622–34.e8
    [Google Scholar]
  59. Iqbal J, Nussenzweig A, Lubinski J, Byrski T, Eisen A et al. 2016. The incidence of leukaemia in women with BRCA1 and BRCA2 mutations: an International Prospective Cohort Study. Br. J. Cancer 114:1160–4
    [Google Scholar]
  60. Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A et al. 2008. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 15:1138–46
    [Google Scholar]
  61. Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L et al. 2013. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov 3:68–81
    [Google Scholar]
  62. Kais Z, Rondinelli B, Holmes A, O'Leary C, Kozono D et al. 2016. FANCD2 maintains fork stability in BRCA1/2-deficient tumors and promotes alternative end-joining DNA repair. Cell Rep 15:2488–2488
    [Google Scholar]
  63. Kanchi KL, Johnson KJ, Lu C, McLellan MD, Leiserson MDM et al. 2014. Integrated analysis of germline and somatic variants in ovarian cancer. Nat. Commun. 5:3156
    [Google Scholar]
  64. Kang J, D'Andrea AD, Kozono D 2012. A DNA repair pathway–focused score for prediction of outcomes in ovarian cancer treated with platinum-based chemotherapy. J. Natl. Cancer Inst. 104:670–81
    [Google Scholar]
  65. Karanja KK, Cox SW, Duxin JP, Stewart SA, Campbell JL 2012. DNA2 and EXO1 in replication-coupled, homology-directed repair and in the interplay between HDR and the FA/BRCA network. Cell Cycle 11:3983–96
    [Google Scholar]
  66. Karanja KK, Lee EH, Hendrickson EA, Campbell JL 2014. Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells. Cell Cycle 13:1540–50
    [Google Scholar]
  67. Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M et al. 2015. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33:244–50
    [Google Scholar]
  68. Kiiski JI, Pelttari LM, Khan S, Freysteinsdottir ES, Reynisdottir I et al. 2014. Exome sequencing identifies FANCM as a susceptibility gene for triple-negative breast cancer. PNAS 111:15172–77
    [Google Scholar]
  69. Kim H, Yang K, Dejsuphong D, D'Andrea AD 2012. Regulation of Rev1 by the Fanconi anemia core complex. Nat. Struct. Mol. Biol. 19:164–70
    [Google Scholar]
  70. Kim Y, Lach FP, Desetty R, Hanenberg H, Auerbach AD, Smogorzewska A 2011. Mutations of the SLX4 gene in Fanconi anemia. Nat. Genet. 43:142–46
    [Google Scholar]
  71. Knies K, Inano S, Ramirez MJ, Ishiai M, Surralles J et al. 2017. Biallelic mutations in the ubiquitin ligase RFWD3 cause Fanconi anemia. J. Clin. Investig. 127:3013–27
    [Google Scholar]
  72. Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV et al. 2009. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326:1698–701
    [Google Scholar]
  73. Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH et al. 2017. Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov 7:984–98
    [Google Scholar]
  74. Konstantinopoulos PA, Spentzos D, Karlan BY, Taniguchi T, Fountzilas E et al. 2010. Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer. J. Clin. Oncol. 28:3555–61
    [Google Scholar]
  75. Kottemann MC, Smogorzewska A 2013. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493:356–63
    [Google Scholar]
  76. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM et al. 2017. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317:2402–16
    [Google Scholar]
  77. Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ 2011. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475:53–58
    [Google Scholar]
  78. Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I et al. 2014. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15:852–61
    [Google Scholar]
  79. Lee JM, Nair J, Zimmer A, Lipkowitz S, Annunziata CM et al. 2018. Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild-type recurrent high-grade serous ovarian cancer: a first-in-class proof-of-concept phase 2 study. Lancet Oncol 19:207–15
    [Google Scholar]
  80. Leijen S, van Geel RM, Sonke GS, de Jong D, Rosenberg EH et al. 2016. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J. Clin. Oncol. 34:4354–61
    [Google Scholar]
  81. Levine DA, Argenta PA, Yee CJ, Marshall DS, Olvera N et al. 2003. Fallopian tube and primary peritoneal carcinomas associated with BRCA mutations. J. Clin. Oncol. 21:4222–27
    [Google Scholar]
  82. Liang CC, Zhan B, Yoshikawa Y, Haas W, Gygi SP, Cohn MA 2015. UHRF1 is a sensor for DNA interstrand crosslinks and recruits FANCD2 to initiate the Fanconi anemia pathway. Cell Rep 10:1947–56
    [Google Scholar]
  83. London TB, Barber LJ, Mosedale G, Kelly GP, Balasubramanian S et al. 2008. FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J. Biol. Chem. 283:36132–36132
    [Google Scholar]
  84. Long DT, Joukov V, Budzowska M, Walter JC 2014. BRCA1 promotes unloading of the CMG helicase from a stalled DNA replication fork. Mol. Cell 56:174–85
    [Google Scholar]
  85. Long DT, Raschle M, Joukov V, Walter JC 2011. Mechanism of RAD51-dependent DNA interstrand cross-link repair. Science 333:84–87
    [Google Scholar]
  86. Lossaint G, Larroque M, Ribeyre C, Bec N, Larroque C et al. 2013. FANCD2 binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling. Mol. Cell 51:678–678
    [Google Scholar]
  87. Mahaney BL, Meek K, Lees-Miller SP 2009. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem. J. 417:639–50
    [Google Scholar]
  88. McCauley J, Masand N, McGowan R, Rajagopalan S, Hunter A et al. 2011. X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations. Am. J. Med. Genet. A 155:2370–80
    [Google Scholar]
  89. Medhurst AL, Laghmani EH, Steltenpool J, Ferrer M, Fontaine C et al. 2006. Evidence for subcomplexes in the Fanconi anemia pathway. Blood 108:2072–80
    [Google Scholar]
  90. Meetei AR, de Winter JP, Medhurst AL, Wallisch M, Waisfisz Q et al. 2003. A novel ubiquitin ligase is deficient in Fanconi anemia. Nat. Genet. 35:165–70
    [Google Scholar]
  91. Merajver SD, Frank TS, Xu J, Pham TM, Calzone KA et al. 1995. Germline BRCA1 mutations and loss of the wild-type allele in tumors from families with early onset breast and ovarian cancer. Clin. Cancer Res. 1:5539–44
    [Google Scholar]
  92. Michl J, Zimmer J, Buffa FM, McDermott U, Tarsounas M 2016.a FANCD2 limits replication stress and genome instability in cells lacking BRCA2. Nat. Struct. Mol. Biol. 23:755–57
    [Google Scholar]
  93. Michl J, Zimmer J, Tarsounas M 2016.b Interplay between Fanconi anemia and homologous recombination pathways in genome integrity. EMBO J 35:909–23
    [Google Scholar]
  94. Moldovan GL, D'Andrea AD 2009. How the Fanconi anemia pathway guards the genome. Annu. Rev. Genet. 43:223–49
    [Google Scholar]
  95. Mukhopadhyay A, Elattar A, Cerbinskaite A, Wilkinson SJ, Drew Y et al. 2010. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin. Cancer Res. 16:2344–51
    [Google Scholar]
  96. Murina O, von Aesch C, Karakus U, Ferretti LP, Bolck HA et al. 2014. FANCD2 and CtIP cooperate to repair DNA interstrand crosslinks. Cell Rep 7:1030–38
    [Google Scholar]
  97. Naim V, Rosselli F 2009. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat. Cell Biol. 11:761–68
    [Google Scholar]
  98. Naipal KA, Verkaik NS, Ameziane N, van Deurzen CH, Ter Brugge P et al. 2014. Functional ex vivo assay to select homologous recombination-deficient breast tumors for PARP inhibitor treatment. Clin. Cancer Res. 20:4816–26
    [Google Scholar]
  99. Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL et al. 2011. BLM–DNA2–RPA–MRN and EXO1–BLM–RPA–MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev 25:350–62
    [Google Scholar]
  100. Niraj J, Caron MC, Drapeau K, Berube S, Guitton-Sert L et al. 2017. The identification of FANCD2 DNA binding domains reveals nuclear localization sequences. Nucleic Acids Res 45:8341–57
    [Google Scholar]
  101. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J et al. 2011. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29:3008–3008
    [Google Scholar]
  102. Park JY, Virts EL, Jankowska A, Wiek C, Othman M et al. 2016. Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene. J. Med. Genet. 53:672–80
    [Google Scholar]
  103. Pelttari LM, Heikkinen T, Thompson D, Kallioniemi A, Schleutker J et al. 2011. RAD51C is a susceptibility gene for ovarian cancer. Hum. Mol. Genet. 20:163278–88
    [Google Scholar]
  104. Pogge von Strandmann E, Reinartz S, Wager U, Muller R 2017. Tumor–host cell interactions in ovarian cancer: pathways to therapy failure. Trends Cancer 3:137–48
    [Google Scholar]
  105. Polak P, Kim J, Braunstein LZ, Karlic R, Haradhavala NJ et al. 2017. A mutational signature reveals alterations underlying deficient homologous recombination repair in breast cancer. Nat. Genet. 49:1476–86
    [Google Scholar]
  106. Popova T, Manie E, Rieunier G, Caux-Moncoutier V, Tirapo C et al. 2012. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res 72:5454–62
    [Google Scholar]
  107. Rafnar T, Gudbjartsson DF, Sulem P, Jonasdottir A, Sigurdsson A et al. 2011. Mutations in BRIP1 confer high risk of ovarian cancer. Nat. Genet. 43:1104–7
    [Google Scholar]
  108. Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J et al. 2008. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134:969–80
    [Google Scholar]
  109. Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA et al. 2016. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535:382–87
    [Google Scholar]
  110. Rickman KA, Lach FP, Abhyankar A, Donovan FX, Sanborn EM et al. 2015. Deficiency of UBE2T, the E2 ubiquitin ligase necessary for FANCD2 and FANCI ubiquitination, causes FA-T subtype of Fanconi anemia. Cell Rep 12:35–41
    [Google Scholar]
  111. Ridpath JR, Nakamura A, Tano K, Luke AM, Sonoda E et al. 2007. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res 67:11117–22
    [Google Scholar]
  112. Rohleder F, Huang J, Xue Y, Kuper J, Round A et al. 2016. FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks. Nucleic Acids Res 44:3219–32
    [Google Scholar]
  113. Rondinelli B, Gogola E, Yucel H, Duarte AA, van de Ven M et al. 2017. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat. Cell Biol. 19:1371–1371
    [Google Scholar]
  114. Rosenberg PS, Tamary H, Alter BP 2011. How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel. Am. J. Med. Genet. A 155:1877–83
    [Google Scholar]
  115. Roy U, Scharer OD 2016. Involvement of translesion synthesis DNA polymerases in DNA interstrand crosslink repair. DNA Repair 44:33–41
    [Google Scholar]
  116. Sareen A, Chaudhury I, Adams N, Sobeck A 2012. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase. Nucleic Acids Res 40:8425–39
    [Google Scholar]
  117. Sawyer SL, Tian L, Kahkonen M, Schwartzentruber J, Kircher M et al. 2015. Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype. Cancer Discov 5:135–42
    [Google Scholar]
  118. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M 2011. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–42
    [Google Scholar]
  119. Schlacher K, Wu H, Jasin M 2012. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22:106–16
    [Google Scholar]
  120. Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D et al. 2015. The Fanconi Anemia pathway maintains genome stability by coordinating replication and transcription. Mol. Cell 60:351–61
    [Google Scholar]
  121. Schwarz RF, Ng CK, Cooke SL, Newman S, Temple J et al. 2015. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLOS Med 12:e1001789
    [Google Scholar]
  122. Semlow DR, Zhang J, Budzowska M, Drohat AC, Walter JC 2016. Replication-dependent unhooking of DNA interstrand cross-links by the NEIL3 glycosylase. Cell 167:498–511.e14
    [Google Scholar]
  123. Shen DW, Pouliot LM, Hall MD, Gottesman MM 2012. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev. 64:706–21
    [Google Scholar]
  124. Sims AE, Spiteri E, Sims RJ, Arita AG, Lach FP et al. 2007. FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 14:564–67
    [Google Scholar]
  125. Singh TR, Saro D, Ali AM, Zheng XF, Du CH et al. 2010. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol. Cell 37:879–86
    [Google Scholar]
  126. Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER, Hurov KE et al. 2007. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129:289–301
    [Google Scholar]
  127. Sobeck A, Stone S, Hoatlin ME 2007. DNA structure-induced recruitment and activation of the Fanconi anemia pathway protein FANCD2. Mol. Cell Biol. 27:4283–92
    [Google Scholar]
  128. Solyom S, Winqvist R, Nikkila J, Rapakko K, Hirvikoski P et al. 2011. Screening for large genomic rearrangements in the FANCA gene reveals extensive deletion in a Finnish breast cancer family. Cancer Lett 302:113–18
    [Google Scholar]
  129. Southey MC, Teo ZL, Dowty JG, Odefrey FA, Park DJ et al. 2010. A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res 12:R109
    [Google Scholar]
  130. Stoepker C, Hain K, Schuster B, Hilhorst-Hofstee Y, Rooimans MA et al. 2011. SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat. Genet. 43:138–41
    [Google Scholar]
  131. Stone MP, Cho YJ, Huang H, Kim HY, Kozekov ID et al. 2008. Interstrand DNA cross-links induced by α,β-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc. Chem. Res. 41:793–804
    [Google Scholar]
  132. Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H et al. 2017. Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 18:75–87
    [Google Scholar]
  133. Tischkowitz MD, Sabbaghian N, Hamel N, Borgida A, Rosner C et al. 2009. Analysis of the gene coding for the BRCA2-interacting protein PALB2 in familial and sporadic pancreatic cancer. Gastroenterology 137:1183–86
    [Google Scholar]
  134. Turner N, Tutt A, Ashworth A 2004. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat. Rev. Cancer 4:814–19
    [Google Scholar]
  135. Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW et al. 2010. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–44
    [Google Scholar]
  136. Unno J, Itaya A, Taoka M, Sato K, Tomida J et al. 2014. FANCD2 binds CtIP and regulates DNA-end resection during DNA interstrand crosslink repair. Cell Rep 7:1039–47
    [Google Scholar]
  137. van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F et al. 2015. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–45
    [Google Scholar]
  138. van der Heijden MS, Brody JR, Kern SE 2004. Functional screen of the Fanconi anemia pathway in cancer cells by Fancd2 immunoblot. Cancer Biol. Ther. 3:534–37
    [Google Scholar]
  139. van der Heijden MS, Yeo CJ, Hruban RH, Kern SE 2003. Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res 63:2585–88
    [Google Scholar]
  140. Vaz F, Hanenberg H, Schuster B, Barker K, Wiek C et al. 2010. Mutation of the RAD51C gene in a Fanconi anemia–like disorder. Nat. Genet. 42:406–9
    [Google Scholar]
  141. Virts EL, Jankowska A, Mackay C, Glaas MF, Wiek C et al. 2015. AluY-mediated germline deletion, duplication and somatic stem cell reversion in UBE2T defines a new subtype of Fanconi anemia. Hum. Mol. Genet. 24:5093–108
    [Google Scholar]
  142. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J et al. 2018. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359:920–26
    [Google Scholar]
  143. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M et al. 2012. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov 2:82–93
    [Google Scholar]
  144. Wagner JE, Tolar J, Levran O, Scholl T, Deffenbaugh A et al. 2004. Germline mutations in BRCA2: shared genetic susceptibility to breast cancer, early onset leukemia, and Fanconi anemia. Blood 103:3226–29
    [Google Scholar]
  145. Walden H, Deans AJ 2014. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu. Rev. Biophys. 43:257–78
    [Google Scholar]
  146. Wang AT, Kim T, Wagner JE, Conti BA, Lach FP et al. 2015. A dominant mutation in human RAD51 reveals its function in DNA interstrand crosslink repair independent of homologous recombination. Mol. Cell 59:478–90
    [Google Scholar]
  147. Wang AT, Smogorzewska A 2015. SnapShot: Fanconi anemia and associated proteins. Cell 160:354.e1
    [Google Scholar]
  148. Wang Y, Leung JW, Jiang Y, Lowery MG, Do H et al. 2013. FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions. Mol. Cell 49:997–1009
    [Google Scholar]
  149. Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS et al. 2017. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat. Genet. 49:856–65
    [Google Scholar]
  150. Weigelt B, Comino-Mendez I, de Bruijn I, Tian L, Meisel JL et al. 2017. Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin. Cancer Res. 23:6708–20
    [Google Scholar]
  151. Williams HL, Gottesman ME, Gautier J 2012. Replication-independent repair of DNA interstrand crosslinks. Mol. Cell 47:140–47
    [Google Scholar]
  152. Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M et al. 2015. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521:541–44
    [Google Scholar]
  153. Yan Z, Delannoy M, Ling C, Daee D, Osman F et al. 2010. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 37:865–78
    [Google Scholar]
  154. Yazinski SA, Comaills V, Buisson R, Genois MM, Nguyen HD et al. 2017. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev 31:318–32
    [Google Scholar]
  155. Zhang F, Fan Q, Ren K, Andreassen PR 2009. PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol. Cancer Res. 7:1110–18
    [Google Scholar]
  156. Zhou W, Otto EA, Cluckey A, Airik R, Hurd TW et al. 2012. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat. Genet. 44:910–15
    [Google Scholar]
  157. Zou L, Elledge SJ 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–48
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030617-050422
Loading
/content/journals/10.1146/annurev-cancerbio-030617-050422
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error