The spread of cancer from a primary tumor to distant organ sites is the most devastating aspect of malignancy. Dissemination to specific organs depends upon blood flow patterns and characteristics of the distant organ environment, such as the vascular architecture, stromal cell content, and the biochemical milieu of growth factors, signaling molecules, and metabolic substrates, which can be permissive or antagonistic to metastatic colonization. Metastatic tumor cells possess intrinsic cellular properties selected for adaptation to specific organ environments, where they co-opt growth and survival signals, undergo metabolic reprogramming, and subvert resident stromal cell activities to promote extravasation, immune evasion, angiogenesis, and overt metastatic growth. Recent work and new experimental models of metastatic organotropism are uncovering crucial details of how malignant cells metastasize to specific tissues, revealing key mediators that prepare metastatic niches in specific organs and identifying new targets that offer attractive options for therapeutic intervention.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS. et al. 2014. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158:1110–22 [Google Scholar]
  2. Aird WC. 2007. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100:158–73 [Google Scholar]
  3. Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ. 2000. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 6:100–2 [Google Scholar]
  4. Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A, Brodt P. 2007. The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am. J. Pathol. 170:1781–92 [Google Scholar]
  5. Balkwill F, Mantovani A. 2001. Inflammation and cancer: back to Virchow. Lancet 357:539–45 [Google Scholar]
  6. Barthel SR, Hays DL, Yazawa EM, Opperman M, Walley KC. et al. 2013. Definition of molecular determinants of prostate cancer cell bone extravasation. Cancer Res 73:942–52 [Google Scholar]
  7. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR. et al. 2009. Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–9 [Google Scholar]
  8. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D. et al. 2010. Accumulation of driver and passenger mutations during tumor progression. PNAS 107:18545–50 [Google Scholar]
  9. Budczies J, von Winterfeld M, Klauschen F, Bockmayr M, Lennerz JK. et al. 2015. The landscape of metastatic progression patterns across major human cancers. Oncotarget 6:570–83 [Google Scholar]
  10. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M. et al. 2012. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22:571–84 [Google Scholar]
  11. Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR. 2004. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104:397–401 [Google Scholar]
  12. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED. et al. 2010. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–13 [Google Scholar]
  13. Celià-Terrassa T, Kang Y. 2016. Distinctive properties of metastasis-initiating cells. Genes Dev 30:892–908 [Google Scholar]
  14. Chen EI, Hewel J, Krueger JS, Tiraby C, Weber MR. et al. 2007. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res 67:1472–86 [Google Scholar]
  15. Chen Q, Zhang XH, Massague J. 2011. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell 20:538–49 [Google Scholar]
  16. Chopra M, Riedel SS, Biehl M, Krieger S, von Krosigk V. et al. 2013. Tumor necrosis factor receptor 2-dependent homeostasis of regulatory T cells as a player in TNF-induced experimental metastasis. Carcinogenesis 34:1296–303 [Google Scholar]
  17. Cohen-Solal JF, Cassard L, Fournier EM, Loncar SM, Fridman WH, Sautes-Fridman C. 2010. Metastatic melanomas express inhibitory low affinity Fc γ receptor and escape humoral immunity. Dermatol. Res. Pract. 2010:657406 [Google Scholar]
  18. Colombo L, Zoia L, Violatto MB, Previdi S, Talamini L. et al. 2015. Organ distribution and bone tropism of cellulose nanocrystals in living mice. Biomacromolecules 16:2862–71 [Google Scholar]
  19. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S. et al. 2013. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J. Clin. Investig. 123:3446–58 [Google Scholar]
  20. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H. et al. 2015. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat. Cell Biol. 17:816–26 [Google Scholar]
  21. Cox TR, Rumney RM, Schoof EM, Perryman L, Hoye AM. et al. 2015. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522:106–10 [Google Scholar]
  22. Dalotto-Moreno T, Croci DO, Cerliani JP, Martinez-Allo VC, Dergan-Dylon S. et al. 2013. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res 73:1107–17 [Google Scholar]
  23. De Palma M, Lewis CE. 2013. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 23:277–86 [Google Scholar]
  24. de Visser KE, Eichten A, Coussens LM. 2006. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 6:24–37 [Google Scholar]
  25. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. 2008. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20 [Google Scholar]
  26. Deneve E, Riethdorf S, Ramos J, Nocca D, Coffy A. et al. 2013. Capture of viable circulating tumor cells in the liver of colorectal cancer patients. Clin. Chem. 59:1384–92 [Google Scholar]
  27. Deng J, Liu Y, Lee H, Herrmann A, Zhang W. et al. 2012. S1PR1–STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 21:642–54 [Google Scholar]
  28. Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J. et al. 2015. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab 22:577–89 [Google Scholar]
  29. Eichbaum C, Meyer AS, Wang N, Bischofs E, Steinborn A. et al. 2011. Breast cancer cell-derived cytokines, macrophages and cell adhesion: implications for metastasis. Anticancer Res 31:3219–27 [Google Scholar]
  30. Ell B, Kang Y. 2012. SnapShot: bone metastasis. Cell 151:690 [Google Scholar]
  31. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C. et al. 2006. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440:1222–26 [Google Scholar]
  32. Esposito M, Kang Y. 2014. Targeting tumor–stromal interactions in bone metastasis. Pharmacol. Ther. 141:222–33 [Google Scholar]
  33. Eyles J, Puaux AL, Wang X, Toh B, Prakash C. et al. 2010. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J. Clin. Investig. 120:2030–39 [Google Scholar]
  34. Fatatis A, Shen F, Zhang Y, Jernigan DL, Feng X. et al. 2016. Novel small-molecule CX3CR1 antagonist impairs metastatic seeding and colonization of breast cancer cells. Mol. Cancer Res. 14:518–27 [Google Scholar]
  35. Fidler IJ. 1970. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J. Natl. Cancer Inst. 45:773–82 [Google Scholar]
  36. Finger EC, Giaccia AJ. 2010. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29:285–93 [Google Scholar]
  37. Fournier PG, Juarez P, Jiang G, Clines GA, Niewolna M. et al. 2015. The TGF-β signaling regulator PMEPA1 suppresses prostate cancer metastases to bone. Cancer Cell 27:809–21 [Google Scholar]
  38. Gil-Bernabe AM, Ferjancic S, Tlalka M, Zhao L, Allen PD. et al. 2012. Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119:3164–75 [Google Scholar]
  39. Grange C, Tapparo M, Collino F, Vitillo L, Damasco C. et al. 2011. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res 71:5346–56 [Google Scholar]
  40. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R. 2011. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20:300–14 [Google Scholar]
  41. Grivennikov SI, Greten FR, Karin M. 2010. Immunity, inflammation, and cancer. Cell 140:883–99 [Google Scholar]
  42. Guise TA, Mohammad KS, Clines G, Stebbins EG, Wong DH. et al. 2006. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin. Cancer Res. 12:Suppl.6213s–16s [Google Scholar]
  43. Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY. et al. 2007. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–70 [Google Scholar]
  44. Hanahan D, Coussens LM. 2012. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–22 [Google Scholar]
  45. Hiratsuka S, Watanabe A, Aburatani H, Maru Y. 2006. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8:1369–75 [Google Scholar]
  46. Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S. et al. 2008. The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 10:1349–55 [Google Scholar]
  47. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A. et al. 2015. Tumour exosome integrins determine organotropic metastasis. Nature 527:329–35 [Google Scholar]
  48. Houshmand P, Zlotnik A. 2003. Targeting tumor cells. Curr. Opin. Cell Biol. 15:640–44 [Google Scholar]
  49. Huang RL, Teo Z, Chong HC, Zhu P, Tan MJ. et al. 2011. ANGPTL4 modulates vascular junction integrity by integrin signaling and disruption of intercellular VE-cadherin and claudin-5 clusters. Blood 118:3990–4002 [Google Scholar]
  50. Jacob LS, Vanharanta S, Obenauf AC, Pirun M, Viale A. et al. 2015. Metastatic competence can emerge with selection of preexisting oncogenic alleles without a need of new mutations. Cancer Res 75:3713–19 [Google Scholar]
  51. Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R. et al. 2001. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment. Blood 98:3143–49 [Google Scholar]
  52. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B. et al. 2005. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer 113:752–60 [Google Scholar]
  53. Joyce JA, Pollard JW. 2009. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9:239–52 [Google Scholar]
  54. Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM. et al. 2003. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–49 [Google Scholar]
  55. Kanojia D, Balyasnikova IV, Morshed RA, Frank RT, Yu D. et al. 2015. Neural stem cells secreting anti-HER2 antibody improve survival in a preclinical model of HER2 overexpressing breast cancer brain metastases. Stem Cells 33:2985–94 [Google Scholar]
  56. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L. et al. 2005. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–27 [Google Scholar]
  57. Karavitis J, Hix LM, Shi YH, Schultz RF, Khazaie K, Zhang M. 2012. Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration. PLOS ONE 7:e46342 [Google Scholar]
  58. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S. et al. 2009. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–6 [Google Scholar]
  59. Kim SW, Choi HJ, Lee HJ, He J, Wu Q. et al. 2014. Role of the endothelin axis in astrocyte- and endothelial cell-mediated chemoprotection of cancer cells. Neuro-Oncology 16:1585–98 [Google Scholar]
  60. Kitamura T, Qian BZ, Pollard JW. 2015. Immune cell promotion of metastasis. Nat. Rev. Immunol. 15:73–86 [Google Scholar]
  61. Korpal M, Kang Y. 2008. The emerging role of miR-200 family of microRNAs in epithelial–mesenchymal transition and cancer metastasis. RNA Biol 5:115–19 [Google Scholar]
  62. Labelle M, Begum S, Hynes RO. 2011. Direct signaling between platelets and cancer cells induces an epithelial–mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–90 [Google Scholar]
  63. Labelle M, Begum S, Hynes RO. 2014. Platelets guide the formation of early metastatic niches. PNAS 111:E3053–61 [Google Scholar]
  64. Lakkaraju A, Rodriguez-Boulan E. 2008. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18:199–209 [Google Scholar]
  65. LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K. et al. 2014. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16:992–1003 [Google Scholar]
  66. Leoni V, Gatta V, Palladini A, Nicoletti G, Ranieri D. et al. 2015. Systemic delivery of HER2-retargeted oncolytic-HSV by mesenchymal stromal cells protects from lung and brain metastases. Oncotarget 6:34774–87 [Google Scholar]
  67. Li BT, Wong MH, Pavlakis N. 2014. Treatment and prevention of bone metastases from breast cancer: a comprehensive review of evidence for clinical practice. J. Clin. Med. 3:1–24 [Google Scholar]
  68. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z. et al. 2007. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat. Cell Biol. 9:218–24 [Google Scholar]
  69. Lin EY, Nguyen AV, Russell RG, Pollard JW. 2001. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193:727–40 [Google Scholar]
  70. Liu Y, Xiang X, Zhuang X, Zhang S, Liu C. et al. 2010. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am. J. Pathol. 176:2490–99 [Google Scholar]
  71. Logothetis CJ, Lin SH. 2005. Osteoblasts in prostate cancer metastasis to bone. Nat. Rev. Cancer 5:21–28 [Google Scholar]
  72. Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E. et al. 2015. Extracellular metabolic energetics can promote cancer progression. Cell 160:393–406 [Google Scholar]
  73. Lu X, Mu E, Wei Y, Riethdorf S, Yang Q. et al. 2011. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20:701–14 [Google Scholar]
  74. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL. et al. 1998. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153:865–73 [Google Scholar]
  75. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA. et al. 2012. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481:85–89 [Google Scholar]
  76. Malladi S, Macalinao DG, Jin X, He L, Basnet H. et al. 2016. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165:45–60 [Google Scholar]
  77. Mantovani A, Allavena P, Sica A, Balkwill F. 2008. Cancer-related inflammation. Nature 454:436–44 [Google Scholar]
  78. Massague J, Obenauf AC. 2016. Metastatic colonization by circulating tumour cells. Nature 529:298–306 [Google Scholar]
  79. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W. et al. 2005a. Genes that mediate breast cancer metastasis to lung. Nature 436:518–24 [Google Scholar]
  80. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD. et al. 2005b. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Investig. 115:44–55 [Google Scholar]
  81. Momeny M, Saunus JM, Marturana F, McCart Reed AE, Black D. et al. 2015. Heregulin–HER3–HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget 6:3932–46 [Google Scholar]
  82. Monteiro AC, Leal AC, Goncalves-Silva T, Mercadante AC, Kestelman F. et al. 2013. T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLOS ONE 8:e68171 [Google Scholar]
  83. Muller A, Homey B, Soto H, Ge N, Catron D. et al. 2001. Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56 [Google Scholar]
  84. Na YR, Yoon YN, Son DI, Seok SH. 2013. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model. PLOS ONE 8:e63451 [Google Scholar]
  85. Nguyen DX, Massague J. 2007. Genetic determinants of cancer metastasis. Nat. Rev. Genet. 8:341–52 [Google Scholar]
  86. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R. et al. 2011. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17:1498–503 [Google Scholar]
  87. O'Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI. et al. 2011. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. PNAS 108:16002–7 [Google Scholar]
  88. Obenauf AC, Massague J. 2015. Surviving at a distance: organ-specific metastasis. Trends Cancer 1:76–91 [Google Scholar]
  89. Olkhanud PB, Baatar D, Bodogai M, Hakim F, Gress R. et al. 2009. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res 69:5996–6004 [Google Scholar]
  90. Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF. et al. 2011. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat. Med. 17:867–74 [Google Scholar]
  91. Pacioni S, D'Alessandris QG, Giannetti S, Morgante L, De Pascalis I. et al. 2015. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Res. Ther. 6:194 [Google Scholar]
  92. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL. et al. 2008. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77 [Google Scholar]
  93. Paget S. 1989 (1889). The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 8:98–101 [Google Scholar]
  94. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ. et al. 2005. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell–mediated elimination of tumor cells. Blood 105:178–85 [Google Scholar]
  95. Pani G, Galeotti T, Chiarugi P. 2010. Metastasis: cancer cell's escape from oxidative stress. Cancer Metastasis Rev 29:351–78 [Google Scholar]
  96. Paolino M, Choidas A, Wallner S, Pranjic B, Uribesalgo I. et al. 2014. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 507:508–12 [Google Scholar]
  97. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B. et al. 2012. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18:883–91 [Google Scholar]
  98. Peinado H, Lavotshkin S, Lyden D. 2011. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 21:139–46 [Google Scholar]
  99. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE. et al. 2015. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527:186–91 [Google Scholar]
  100. Qi J, Chen N, Wang J, Siu CH. 2005. Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the β-catenin signaling pathway. Mol. Biol. Cell 16:4386–97 [Google Scholar]
  101. Quail DF, Joyce JA. 2013. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19:1423–37 [Google Scholar]
  102. Rahn JJ, Chow JW, Horne GJ, Mah BK, Emerman JT. et al. 2005. MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin. Exp. Metastasis 22:475–83 [Google Scholar]
  103. Ren G, Esposito M, Kang Y. 2015. Bone metastasis and the metastatic niche. J. Mol. Med. 93:1203–12 [Google Scholar]
  104. Rodriguez-Torres M, Allan AL. 2016. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin. Exp. Metastasis 33:97–113 [Google Scholar]
  105. Roy LD, Ghosh S, Pathangey LB, Tinder TL, Gruber HE, Mukherjee P. 2011. Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer 11:365 [Google Scholar]
  106. Sansone P, Ceccarelli C, Berishaj M, Chang Q, Rajasekhar VK. et al. 2016. Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat. Commun. 7:10442 [Google Scholar]
  107. Sawant A, Hensel JA, Chanda D, Harris BA, Siegal GP. et al. 2012. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells. J. Immunol. 189:4258–65 [Google Scholar]
  108. Sceneay J, Chow MT, Chen A, Halse HM, Wong CS. et al. 2012. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res 72:3906–11 [Google Scholar]
  109. Schelter F, Grandl M, Seubert B, Schaten S, Hauser S. et al. 2011. Tumor cell–derived Timp-1 is necessary for maintaining metastasis-promoting Met-signaling via inhibition of Adam-10. Clin. Exp. Metastasis 28:793–802 [Google Scholar]
  110. Sethi N, Dai X, Winter CG, Kang Y. 2011. Tumor-derived Jagged1 promotes osteolytic bone metastasis of breast cancer by engaging Notch signaling in bone cells. Cancer Cell 19:192–205 [Google Scholar]
  111. Sevenich L, Bowman RL, Mason SD, Quail DF, Rapaport F. et al. 2014. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat. Cell Biol. 16:876–88 [Google Scholar]
  112. Sevenich L, Joyce JA. 2014. Pericellular proteolysis in cancer. Genes Dev 28:2331–47 [Google Scholar]
  113. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A. et al. 2011. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Investig. 121:1298–312 [Google Scholar]
  114. Smyth MJ, Teng MW, Swann J, Kyparissoudis K, Godfrey DI, Hayakawa Y. 2006. CD4+CD25+ T regulatory cells suppress NK cell–mediated immunotherapy of cancer. J. Immunol. 176:1582–87 [Google Scholar]
  115. Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B. et al. 2012. Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res 72:3919–27 [Google Scholar]
  116. Stayrook KR, Mack JK, Cerabona D, Edwards DF, Bui HH. et al. 2015. TGFβ-mediated induction of SphK1 as a potential determinant in human MDA-MB-231 breast cancer cell bone metastasis. Bonekey Rep 4:719 [Google Scholar]
  117. Tabaries S, Dong Z, Annis MG, Omeroglu A, Pepin F. et al. 2011. Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 30:1318–28 [Google Scholar]
  118. Tabaries S, Dupuy F, Dong Z, Monast A, Annis MG. et al. 2012. Claudin-2 promotes breast cancer liver metastasis by facilitating tumor cell interactions with hepatocytes. Mol. Cell. Biol. 32:2979–91 [Google Scholar]
  119. Tabaries S, Ouellet V, Hsu BE, Annis MG, Rose AA. et al. 2015. Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Res 17:45 [Google Scholar]
  120. Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N. et al. 2001. Involvement of tumor necrosis factor–related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat. Med. 7:94–100 [Google Scholar]
  121. Talmadge JE, Gabrilovich DI. 2013. History of myeloid-derived suppressor cells. Nat. Rev. Cancer 13:739–52 [Google Scholar]
  122. Taranova AG, Maldonado D 3rd, Vachon CM, Jacobsen EA, Abdala-Valencia H. et al. 2008. Allergic pulmonary inflammation promotes the recruitment of circulating tumor cells to the lung. Cancer Res 68:8582–89 [Google Scholar]
  123. Tichet M, Prod'Homme V, Fenouille N, Ambrosetti D, Mallavialle A. et al. 2015. Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis. Nat. Commun. 6:6993 [Google Scholar]
  124. Toh B, Wang X, Keeble J, Sim WJ, Khoo K. et al. 2011. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLOS Biol 9:e1001162 [Google Scholar]
  125. Valastyan S, Weinberg RA. 2011. Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–92 [Google Scholar]
  126. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G. et al. 2006. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res 66:9290–98 [Google Scholar]
  127. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH. et al. 2014. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156:1002–16 [Google Scholar]
  128. van Deventer HW, Palmieri DA, Wu QP, McCook EC, Serody JS. 2013. Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2. J. Immunol. 190:4861–67 [Google Scholar]
  129. van Niel G, Porto-Carreiro I, Simoes S, Raposo G. 2006. Exosomes: a common pathway for a specialized function. J. Biochem. 140:13–21 [Google Scholar]
  130. Vivanco I, Sawyers CL. 2002. The phosphatidylinositol 3-kinase AKT pathway in human cancer. Nat. Rev. Cancer 2:489–501 [Google Scholar]
  131. Wan J, Wen D, Dong L, Tang J, Liu D. et al. 2015. Establishment of monoclonal HCC cell lines with organ site-specific tropisms. BMC Cancer 15:678 [Google Scholar]
  132. Wan L, Pantel K, Kang Y. 2013. Tumor metastasis: moving new biological insights into the clinic. Nat. Med. 19:1450–64 [Google Scholar]
  133. Wang H, Yu C, Gao X, Welte T, Muscarella AM. et al. 2015. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27:193–210 [Google Scholar]
  134. Wang Y, Lei R, Zhuang X, Zhang N, Pan H. et al. 2014. DLC1-dependent parathyroid hormone–like hormone inhibition suppresses breast cancer bone metastasis. J. Clin. Investig. 124:1646–59 [Google Scholar]
  135. Wculek SK, Malanchi I. 2015. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528:413–17 [Google Scholar]
  136. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. 2010. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70:9621–30 [Google Scholar]
  137. Weber GF. 2016. Metabolism in cancer metastasis. Int. J. Cancer 138:2061–66 [Google Scholar]
  138. Weilbaecher KN, Guise TA, McCauley LK. 2011. Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11:411–25 [Google Scholar]
  139. Wollmann G, Drokhlyansky E, Davis JN, Cepko C, van den Pol AN. 2015. Lassa-vesicular stomatitis chimeric virus safely destroys brain tumors. J. Virol. 89:6711–24 [Google Scholar]
  140. Wong M, Pavlakis N. 2011. Optimal management of bone metastases in breast cancer patients. Breast Cancer 3:35–60 [Google Scholar]
  141. Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB. et al. 2009. Induction of myeloid-derived suppressor cells by tumor exosomes. Int. J. Cancer 124:2621–33 [Google Scholar]
  142. Xing F, Kobayashi A, Okuda H, Watabe M, Pai SK. et al. 2013. Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol. Med. 5:384–96 [Google Scholar]
  143. Xu R, Zhang G, Mai J, Deng X, Segura-Ibarra V. et al. 2016. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat. Biotechnol. 34:414–18 [Google Scholar]
  144. Yan HH, Pickup M, Pang Y, Gorska AE, Li Z. et al. 2010. Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res 70:6139–49 [Google Scholar]
  145. Yan L, Cai Q, Xu Y. 2013. The ubiquitin–CXCR4 axis plays an important role in acute lung infection–enhanced lung tumor metastasis. Clin. Cancer Res. 19:4706–16 [Google Scholar]
  146. Yin JJ, Selander K, Chirgwin JM, Dallas M, Grubbs BG. et al. 1999. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Investig. 103:197–206 [Google Scholar]
  147. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q. et al. 2015. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100–4 [Google Scholar]
  148. Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L. et al. 2009. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16:67–78 [Google Scholar]
  149. Zhao L, Lim SY, Gordon-Weeks AN, Tapmeier TT, Im JH. et al. 2013. Recruitment of a myeloid cell subset (CD11b/Gr1mid) via CCL2/CCR2 promotes the development of colorectal cancer liver metastasis. Hepatology 57:829–39 [Google Scholar]
  150. Zhou W, Fong MY, Min Y, Somlo G, Liu L. et al. 2014. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25:501–15 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error