1932

Abstract

The selective vulnerability of mutated (mut) cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors provides one of the best examples of synthetic lethality that has been translated into the clinic. The success of this approach has led to a paradigm shift, with four PARP inhibitors now approved by the US Food and Drug Administration (FDA) for the treatment of ovarian, breast, prostate, and/or pancreatic cancers with mut. Furthermore, recent preclinical and clinical data suggest that many other types of solid tumors might also benefit from PARP inhibitors, regardless of their mut status. Despite this progress, resistance to PARP inhibitors is frequently observed in the clinic, which is, at least in part, due to the incomplete understanding of the mechanism of action of PARP inhibitors. In this review, we summarize the diverse processes underlying the signaling mechanisms of the PARP enzymes. We also discuss recent progress in utilizing these mechanistic insights for overcoming PARP inhibitor resistance, developing predictive biomarker assays, designing rational combination therapies, and, finally, developing the next-generation PARP1-targeting agents with a more complete and durable therapeutic response.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-042324-103725
2025-04-11
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-042324-103725.html?itemId=/content/journals/10.1146/annurev-cancerbio-042324-103725&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmad T, Kawasumi R, Taniguchi T, Abe T, Terada K, et al. 2023.. The proofreading exonuclease of leading-strand DNA polymerase epsilon prevents replication fork collapse at broken template strands. . Nucleic Acids Res. 51::12288302
    [Crossref] [Google Scholar]
  2. Alhmoud JF, Woolley JF, Al Moustafa A-E, Malki MI. 2020.. DNA damage/repair management in cancers. . Cancers 12::1050
    [Crossref] [Google Scholar]
  3. Augustyn A, Borromeo M, Wang T, Fujimoto J, Shao C, et al. 2014.. ASCL1 is a lineage oncogene providing therapeutic targets for high-grade neuroendocrine lung cancers. . PNAS 111::1478893
    [Crossref] [Google Scholar]
  4. Bardia A, Coates J, Spring L, Sun S, Juric D, et al. 2022.. Sacituzumab Govitecan, combination with PARP inhibitor, Talazoparib, in metastatic triple-negative breast cancer (TNBC): translational investigation. Cancer Res. 82:(Suppl. 12):2638
    [Crossref] [Google Scholar]
  5. Ben-David U, Beroukhim R, Golub TR. 2019.. Genomic evolution of cancer models: perils and opportunities. . Nat. Rev. Cancer 19::97109
    [Crossref] [Google Scholar]
  6. Berek JS, Matulonis UA, Peen U, Ghatage P, Mahner S, et al. 2018.. Safety and dose modification for patients receiving niraparib. . Ann. Oncol. 29::178492. Erratum . 2019.. Ann. Oncol. 30::859
    [Google Scholar]
  7. Bhamidipati D, Haro-Silerio JI, Yap TA, Ngoi N. 2023.. PARP inhibitors: enhancing efficacy through rational combinations. . Br. J. Cancer 129::90416
    [Crossref] [Google Scholar]
  8. Bhat KP, Cortez D. 2018.. RPA and RAD51: fork reversal, fork protection, and genome stability. . Nat. Struct. Mol. Biol. 25::44653
    [Crossref] [Google Scholar]
  9. Blessing C, Mandemaker IK, Gonzalez-Leal C, Preisser J, Schomburg A, Ladurner AG. 2020.. The oncogenic helicase ALC1 regulates PARP inhibitor potency by trapping PARP2 at DNA breaks. . Mol. Cell 80::86275.e6
    [Crossref] [Google Scholar]
  10. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, et al. 2005.. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. . Nature 434::91317
    [Crossref] [Google Scholar]
  11. Burdett NL, Willis MO, Alsop K, Hunt AL, Pandey A, et al. 2023.. Multiomic analysis of homologous recombination-deficient end-stage high-grade serous ovarian cancer. . Nat. Genet. 55::43750
    [Crossref] [Google Scholar]
  12. Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, et al. 2012.. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. . Cancer Discov. 2::798811
    [Crossref] [Google Scholar]
  13. Cancer Discov. 2022.. AZD5305 more tolerable than earlier PARP agents. . Cancer Discov. 12::1602
    [Google Scholar]
  14. Cardillo TM, Sharkey RM, Rossi DL, Arrojo R, Mostafa AA, Goldenberg DM. 2017.. Synthetic lethality exploitation by an anti-trop-2-SN-38 antibody-drug conjugate, IMMU-132, plus PARP inhibitors in BRCA1/2-wild-type triple-negative breast cancer. . Clin. Cancer Res. 23::340515
    [Crossref] [Google Scholar]
  15. Ceccaldi R, Rondinelli B, D'Andrea AD. 2016.. Repair pathway choices and consequences at the double-strand break. . Trends Cell Biol. 26::5264
    [Crossref] [Google Scholar]
  16. Chen J-K, Lin W-L, Chen Z, Liu H-W. 2018.. PARP-1-dependent recruitment of cold-inducible RNA-binding protein promotes double-strand break repair and genome stability. . PNAS 115::E175968
    [Google Scholar]
  17. Chen S-H, Yu X. 2019.. Targeting dePARylation selectively suppresses DNA repair–defective and PARP inhibitor–resistant malignancies. . Sci. Adv. 5::eaav4340
    [Crossref] [Google Scholar]
  18. Christie EL, Fereday S, Doig K, Pattnaik S, Dawson SJ, Bowtell DDL. 2017.. Reversion of BRCA1/2 germline mutations detected in circulating tumor DNA from patients with high-grade serous ovarian cancer. . J. Clin. Oncol. 35::127480
    [Crossref] [Google Scholar]
  19. Clements KE, Thakar T, Nicolae CM, Liang X, Wang H-G, Moldovan G-L. 2018.. Loss of E2F7 confers resistance to poly-ADP-ribose polymerase (PARP) inhibitors in BRCA2-deficient cells. . Nucleic Acids Res. 46::8898907
    [Crossref] [Google Scholar]
  20. Collet L, Hanvic B, Turinetto M, Treilleux I, Chopin N, et al. 2024.. BRCA1/2 alterations and reversion mutations in the area of PARP inhibitors in high grade ovarian cancer: state of the art and forthcoming challenges. . Front. Oncol. 14::1354427
    [Crossref] [Google Scholar]
  21. Cong K, Cantor SB. 2022.. Exploiting replication gaps for cancer therapy. . Mol. Cell 82::236369
    [Crossref] [Google Scholar]
  22. Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, et al. 2021.. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. . Mol. Cell 81::3227
    [Crossref] [Google Scholar]
  23. Dani N, Stilla A, Marchegiani A, Tamburro A, Till S, et al. 2009.. Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-ribosyl proteome. . PNAS 106::424348
    [Crossref] [Google Scholar]
  24. Daniels CM, Ong S-E, Leung AKL. 2017.. ADP-ribosylated peptide enrichment and site identification: the phosphodiesterase-based method. . Methods Mol. Biol. 1608::7993
    [Crossref] [Google Scholar]
  25. Dasovich M, Leung AKL. 2023.. PARPs and ADP-ribosylation: deciphering the complexity with molecular tools. . Mol. Cell 83::155272
    [Crossref] [Google Scholar]
  26. de Bono J, Mateo J, Fizazi K, Saad F, Shore N, et al. 2020.. Olaparib for metastatic castration-resistant prostate cancer. . N. Engl. J. Med. 382::2091102
    [Crossref] [Google Scholar]
  27. Demin AA, Hirota K, Tsuda M, Adamowicz M, Hailstone R, et al. 2021.. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. . Mol. Cell 81::301830.e5
    [Crossref] [Google Scholar]
  28. Deng H, Deng H, Kim C, Li P, Wang X, et al. 2024.. Synthesis of nimbolide and its analogues and their application as poly(ADP-ribose) polymerase-1 trapping inducers. . Nat. Synth. 3::37885
    [Crossref] [Google Scholar]
  29. Dias MP, Moser SC, Ganesan S, Jonkers J. 2021.. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. . Nat. Rev. Clin. Oncol. 18::77391
    [Crossref] [Google Scholar]
  30. Ding L, Kim H-J, Wang Q, Kearns M, Jiang T, et al. 2018.. PARP inhibition elicits STING-dependent antitumor immunity in Brca1-deficient ovarian cancer. . Cell Rep. 25::297280.e5
    [Crossref] [Google Scholar]
  31. Duma L, Ahel I. 2023.. The function and regulation of ADP-ribosylation in the DNA damage response. . Biochem. Soc. Trans. 51::9951008
    [Crossref] [Google Scholar]
  32. Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. 2023.. Antibody–drug conjugates come of age in oncology. . Nat. Rev. Drug Discov. 22::64161
    [Crossref] [Google Scholar]
  33. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, et al. 2008.. Resistance to therapy caused by intragenic deletion in BRCA2. . Nature 451::111115
    [Crossref] [Google Scholar]
  34. Fanucci K, Pilat MJ, Shyr D, Shyr Y, Boerner S, et al. 2023.. Multicenter phase II trial of the PARP inhibitor olaparib in recurrent IDH1- and IDH2-mutant glioma. . Cancer Res. Commun. 3::192201
    [Crossref] [Google Scholar]
  35. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, et al. 2005.. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. . Nature 434::91721
    [Crossref] [Google Scholar]
  36. Farrés J, Llacuna L, Martin-Caballero J, Martínez C, Lozano JJ, et al. 2015.. PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors. . Cell Death Diff. 22::114457
    [Crossref] [Google Scholar]
  37. Fu X, Li P, Zhou Q, He R, Wang G, et al. 2024.. Mechanism of PARP inhibitor resistance and potential overcoming strategies. . Genes Dis. 11::30620
    [Crossref] [Google Scholar]
  38. Gagne JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, et al. 2008.. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. . Nucleic Acids Res. 36::695976
    [Crossref] [Google Scholar]
  39. Gagne JP, Pic E, Isabelle M, Krietsch J, Ethier C, et al. 2012.. Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress. . Nucleic Acids Res. 40::7788805
    [Crossref] [Google Scholar]
  40. Gatti M, Imhof R, Huang Q, Baudis M, Altmeyer M. 2020.. The ubiquitin ligase TRIP12 limits PARP1 trapping and constrains PARP inhibitor efficiency. . Cell Rep. 32::107985
    [Crossref] [Google Scholar]
  41. Ghezraoui H, Oliveira C, Becker JR, Bilham K, Moralli D, et al. 2018.. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ. . Nature 560::12227
    [Crossref] [Google Scholar]
  42. Gibson BA, Conrad LB, Huang D, Kraus WL. 2017.. Generation and characterization of recombinant antibody-like ADP-ribose binding proteins. . Biochemistry 56::630516
    [Crossref] [Google Scholar]
  43. Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, et al. 2016.. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. . Science 353::4550
    [Crossref] [Google Scholar]
  44. Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, et al. 2018.. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. . Cancer Cell 33::107893.e12
    [Crossref] [Google Scholar]
  45. Gozgit JM, Vasbinder MM, Abo RP, Kunii K, Kuplast-Barr KG, et al. 2021.. PARP7 negatively regulates the type I interferon response in cancer cells and its inhibition triggers antitumor immunity. . Cancer Cell 39::121426.e10
    [Crossref] [Google Scholar]
  46. Guillemette S, Serra RW, Peng M, Hayes JA, Konstantinopoulos PA, et al. 2015.. Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4. . Genes Dev. 29::48994
    [Crossref] [Google Scholar]
  47. Gupte R, Nandu T, Kraus WL. 2021.. Nuclear ADP-ribosylation drives IFNγ-dependent STAT1α enhancer formation in macrophages. . Nat. Commun. 12::3931
    [Crossref] [Google Scholar]
  48. Haikarainen T, Krauss S, Lehtio L. 2014.. Tankyrases: structure, function and therapeutic implications in cancer. . Curr. Pharm. Des. 20::647288
    [Crossref] [Google Scholar]
  49. Hanzlikova H, Kalasova I, Demin AA, Pennicott LE, Cihlarova Z, Caldecott KW. 2018.. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. . Mol. Cell 71::31931.e3
    [Crossref] [Google Scholar]
  50. Haynes B, Murai J, Lee JM. 2018.. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition. . Cancer Treat. Rev. 71::17
    [Crossref] [Google Scholar]
  51. Herzog M, Puddu F, Coates J, Geisler N, Forment JV, Jackson SP. 2018.. Detection of functional protein domains by unbiased genome-wide forward genetic screening. . Sci. Rep. 8::6161
    [Crossref] [Google Scholar]
  52. Hopkins TA, Ainsworth WB, Ellis PA, Donawho CK, DiGiammarino EL, et al. 2019.. PARP1 trapping by PARP inhibitors drives cytotoxicity in both cancer cells and healthy bone marrow. . Mol. Cancer Res. 17::40919
    [Crossref] [Google Scholar]
  53. Houl JH, Ye Z, Brosey CA, Balapiti-Modarage LPF, Namjoshi S, et al. 2019.. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. . Nat. Commun. 10::5654
    [Crossref] [Google Scholar]
  54. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, et al. 2009.. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. . Nature 461::61420
    [Crossref] [Google Scholar]
  55. Illuzzi G, Staniszewska AD, Gill SJ, Pike A, McWilliams L, et al. 2022.. Preclinical characterization of AZD5305, a next-generation, highly selective PARP1 inhibitor and trapper. . Clin. Cancer Res. 28::472436
    [Crossref] [Google Scholar]
  56. Jagtap P, Szabo C. 2005.. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. . Nat. Rev. Drug Discov. 4::42140
    [Crossref] [Google Scholar]
  57. Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, et al. 2013.. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. . Cancer Discov. 3::6881
    [Crossref] [Google Scholar]
  58. Jiao S, Xia W, Yamaguchi H, Wei Y, Chen M-K, et al. 2017.. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. . Clin. Cancer Res. 23::371120
    [Crossref] [Google Scholar]
  59. Johannes JW, Balazs A, Barratt D, Bista M, Chuba MD, et al. 2021.. Discovery of 5-{4-[(7-ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl]piperazin-1-yl}-N-methylpyridine-2-carboxamide (AZD5305): a PARP1-DNA trapper with high selectivity for PARP1 over PARP2 and other PARPs. . J. Med. Chem. 64::14498512
    [Crossref] [Google Scholar]
  60. Juhász S, Smith R, Schauer T, Spekhardt D, Mamar H, et al. 2020.. The chromatin remodeler ALC1 underlies resistance to PARP inhibitor treatment. . Sci. Adv. 6::eabb8626
    [Crossref] [Google Scholar]
  61. Jungmichel S, Rosenthal F, Altmeyer M, Lukas J, Hottiger MO, Nielsen ML. 2013.. Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses. . Mol. Cell 52::27285
    [Crossref] [Google Scholar]
  62. Karch KR, Langelier MF, Pascal JM, Garcia BA. 2017.. The nucleosomal surface is the main target of histone ADP-ribosylation in response to DNA damage. . Mol. Biosyst. 13::266071
    [Crossref] [Google Scholar]
  63. Kim C, Wang XD, Jang S, Yu Y. 2023.. PARP1 inhibitors induce pyroptosis via caspase 3-mediated gasdermin E cleavage. . Biochem. Biophys. Res. Commun. 646::7885
    [Crossref] [Google Scholar]
  64. Kim C, Wang XD, Liu Z, Hao J, Wang S, et al. 2024.. Induced degradation of lineage-specific oncoproteins drives the therapeutic vulnerability of small cell lung cancer to PARP inhibitors. . Sci. Adv. 10::eadh2579
    [Crossref] [Google Scholar]
  65. Kim C, Wang XD, Yu Y. 2020.. PARP1 inhibitors trigger innate immunity via PARP1 trapping-induced DNA damage response. . eLife 9::e60637
    [Crossref] [Google Scholar]
  66. Knezevic CE, Wright G, Rix LLR, Kim W, Kuenzi BM, et al. 2016.. Proteome-wide profiling of clinical PARP inhibitors reveals compound-specific secondary targets. . Cell Chem. Biol. 23::1490503
    [Crossref] [Google Scholar]
  67. Kolinjivadi AM, Sannino V, De Antoni A, Zadorozhny K, Kilkenny M, et al. 2017.. Smarcal1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments. . Mol. Cell 67::86781.e7
    [Crossref] [Google Scholar]
  68. Krastev DB, Li S, Sun Y, Wicks AJ, Hoslett G, et al. 2022.. The ubiquitin-dependent ATPase p97 removes cytotoxic trapped PARP1 from chromatin. . Nat. Cell Biol. 24::6273
    [Crossref] [Google Scholar]
  69. Larsen SC, Leutert M, Bilan V, Martello R, Jungmichel S, et al. 2017.. Proteome-wide identification of in vivo ADP-ribose acceptor sites by liquid chromatography-tandem mass spectrometry. . Methods Mol. Biol. 1608::14962
    [Crossref] [Google Scholar]
  70. Lau T, Chan E, Callow M, Waaler J, Boggs J, et al. 2013.. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. . Cancer Res. 73::313244
    [Crossref] [Google Scholar]
  71. Lautier D, Lagueux J, Thibodeau J, Ménard L, Poirier GG. 1993.. Molecular and biochemical features of poly (ADP-ribose) metabolism. . Mol. Cell. Biochem. 122::17193
    [Crossref] [Google Scholar]
  72. Leidecker O, Bonfiglio JJ, Colby T, Zhang Q, Atanassov I, et al. 2016.. Serine is a new target residue for endogenous ADP-ribosylation on histones. . Nat. Chem. Biol. 12::9981000
    [Crossref] [Google Scholar]
  73. Leung AKL. 2020.. Poly(ADP-ribose): a dynamic trigger for biomolecular condensate formation. . Trends Cell Biol. 30::37083
    [Crossref] [Google Scholar]
  74. Li P, Lei Y, Qi J, Liu W, Yao K. 2022.. Functional roles of ADP-ribosylation writers, readers and erasers. . Front. Cell Dev. Biol. 10::941356
    [Crossref] [Google Scholar]
  75. Li P, Zhen Y, Kim C, Liu Z, Hao J, et al. 2023.. Nimbolide targets RNF114 to induce the trapping of PARP1 and synthetic lethality in BRCA-mutated cancer. . Sci. Adv. 9::eadg7752
    [Crossref] [Google Scholar]
  76. Li P, Zhen Y, Yu Y. 2019.. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. . Methods Enzymol. 626::30121
    [Crossref] [Google Scholar]
  77. Lin X, Gupta D, Vaitsiankova A, Bhandari SK, Leung KSK, et al. 2024.. Inactive Parp2 causes Tp53-dependent lethal anemia by blocking replication-associated nick ligation in erythroblasts. . Mol. Cell 84:(20):391631.e7
    [Crossref] [Google Scholar]
  78. Lin X, Jiang W, Rudolph J, Lee BJ, Luger K, Zha S. 2022.. PARP inhibitors trap PARP2 and alter the mode of recruitment of PARP2 at DNA damage sites. . Nucleic Acids Res. 50::395873
    [Crossref] [Google Scholar]
  79. Loehr A, Hussain A, Patnaik A, Bryce AH, Castellano D, et al. 2023.. Emergence of BRCA reversion mutations in patients with metastatic castration-resistant prostate cancer after treatment with rucaparib. . Eur. Urol. 83::2009
    [Crossref] [Google Scholar]
  80. Lok BH, Gardner EE, Schneeberger VE, Ni A, Desmeules P, et al. 2017.. PARP inhibitor activity correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung cancer. . Clin. Cancer Res. 23::52335
    [Crossref] [Google Scholar]
  81. Lomonosov M, Anand S, Sangrithi M, Davies R, Venkitaraman AR. 2003.. Stabilization of stalled DNA replication forks by the BRCA2 breast cancer susceptibility protein. . Genes Dev. 17::301722
    [Crossref] [Google Scholar]
  82. Longarini EJ, Matić I. 2024.. Preserving ester-linked modifications reveals glutamate and aspartate mono-ADP-ribosylation by PARP1 and its reversal by PARG. . Nat. Commun. 15::4239
    [Crossref] [Google Scholar]
  83. Lord CJ, Ashworth A. 2017.. PARP inhibitors: synthetic lethality in the clinic. . Science 355::115258
    [Crossref] [Google Scholar]
  84. LoRusso PM, Li J, Burger A, Heilbrun LK, Sausville EA, et al. 2016.. Phase I safety, pharmacokinetic, and pharmacodynamic study of the poly(ADP-ribose) polymerase (PARP) inhibitor veliparib (ABT-888) in combination with irinotecan in patients with advanced solid tumors. . Clin. Cancer Res. 22::322737
    [Crossref] [Google Scholar]
  85. Luo X, Ryu KW, Kim D-S, Nandu T, Medina CJ, et al. 2017.. PARP-1 controls the adipogenic transcriptional program by PARylating C/EBPβ and modulating its transcriptional activity. . Mol. Cell 65::26071
    [Crossref] [Google Scholar]
  86. Luthi SC, Howald A, Nowak K, Graage R, Bartolomei G, et al. 2021.. Establishment of a mass-spectrometry-based method for the identification of the in vivo whole blood and plasma ADP-ribosylomes. . J. Proteome Res. 20::3090101
    [Crossref] [Google Scholar]
  87. Martins-Neves SR, Paiva-Oliveira DI, Fontes-Ribeiro C, Bovée JVMG, Cleton-Jansen A-M, Gomes CMF. 2018.. IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft. . Cancer Lett. 414::115
    [Crossref] [Google Scholar]
  88. Matic I, Ahel I, Hay RT. 2012.. Reanalysis of phosphoproteomics data uncovers ADP-ribosylation sites. . Nat. Methods 9::77172
    [Crossref] [Google Scholar]
  89. Matthews J. 2017.. AHR toxicity and signaling: role of TIPARP and ADP-ribosylation. . Curr. Opin. Toxicol. 2::5057
    [Crossref] [Google Scholar]
  90. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, et al. 2006.. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. . Cancer Res. 66::810915
    [Crossref] [Google Scholar]
  91. Murai J, Feng Y, Yu GK, Ru Y, Tang S-W, et al. 2016.. Resistance to PARP inhibitors by SLFN11 inactivation can be overcome by ATR inhibition. . Oncotarget 7::7653450
    [Crossref] [Google Scholar]
  92. Murai J, Huang S-Y, Das BB, Renaud A, Zhang Y, et al. 2012.. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. . Cancer Res. 72::558899
    [Crossref] [Google Scholar]
  93. Murai J, Huang S-Y, Renaud A, Zhang Y, Ji J, et al. 2014.. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. . Mol. Cancer Ther. 13::43343
    [Crossref] [Google Scholar]
  94. Neelsen KJ, Lopes M. 2015.. Replication fork reversal in eukaryotes: from dead end to dynamic response. . Nat. Rev. Mol. Cell Biol. 16::20720
    [Crossref] [Google Scholar]
  95. Nguewa PA, Fuertes MA, Valladares B, Alonso C, Pérez JM. 2005.. Poly(ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. . Prog. Biophys. Mol. Biol. 88::14372
    [Crossref] [Google Scholar]
  96. Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, et al. 2018.. The shieldin complex mediates 53BP1-dependent DNA repair. . Nature 560::11721
    [Crossref] [Google Scholar]
  97. Nowak K, Rosenthal F, Karlberg T, Butepage M, Thorsell AG, et al. 2020.. Engineering Af1521 improves ADP-ribose binding and identification of ADP-ribosylated proteins. . Nat. Commun. 11::5199
    [Crossref] [Google Scholar]
  98. O'Sullivan J, Tedim Ferreira M, Gagne JP, Sharma AK, Hendzel MJ, et al. 2019.. Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. . Nat. Commun. 10::1182
    [Crossref] [Google Scholar]
  99. Pantelidou C, Sonzogni O, De Oliveria Taveira M, Mehta AK, Kothari A, et al. 2019.. PARP inhibitor efficacy depends on CD8+ T-cell recruitment via intratumoral STING pathway activation in BRCA-deficient models of triple-negative breast cancer. . Cancer Discov. 9::72237
    [Crossref] [Google Scholar]
  100. Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, et al. 2015.. Whole-genome characterization of chemoresistant ovarian cancer. . Nature 521::48994
    [Crossref] [Google Scholar]
  101. Pei J, Zhang J, Wang X-D, Kim C, Yu Y, Cong Q. 2023.. Impact of Asp/Glu-ADP-ribosylation on protein-protein interaction and protein function. . Proteomics 23::e2200083
    [Crossref] [Google Scholar]
  102. Petropoulos M, Karamichali A, Rossetti GG, Freudenmann A, Iacovino LG, et al. 2024.. Transcription-replication conflicts underlie sensitivity to PARP inhibitors. . Nature 628::43341
    [Crossref] [Google Scholar]
  103. Pettitt SJ, Frankum JR, Punta M, Lise S, Alexander J, et al. 2020.. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. . Cancer Discov. 10::147588
    [Crossref] [Google Scholar]
  104. Pettitt SJ, Krastev DB, Brandsma I, Dréan A, Song F, et al. 2018.. Genome-wide and high-density CRISPR-Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance. . Nat. Commun. 9::1849
    [Crossref] [Google Scholar]
  105. Peyraud F, Italiano A. 2020.. Combined PARP inhibition and immune checkpoint therapy in solid tumors. . Cancers 12::1502
    [Crossref] [Google Scholar]
  106. Pommier Y, O'Connor MJ, de Bono J. 2016.. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. . Sci. Transl. Med. 8::362ps17
    [Crossref] [Google Scholar]
  107. Proia T, Wallez Y, Bashi A, Wilson Z, Randle S, et al. 2022.. Activity and tolerability of combination of trastuzumab deruxtecan with olaparib in preclinical HER2+ and HER2-low breast cancer models. . Cancer Res. 82:(Suppl. 4):P213-18
    [Google Scholar]
  108. Quigley D, Alumkal JJ, Wyatt AW, Kothari V, Foye A, et al. 2017.. Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. . Cancer Discov. 7::9991005
    [Crossref] [Google Scholar]
  109. Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, et al. 2016.. Replication fork stability confers chemoresistance in BRCA-deficient cells. . Nature 535::38287
    [Crossref] [Google Scholar]
  110. Ray Chaudhuri A, Nussenzweig A. 2017.. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. . Nat. Rev. Mol. Cell Biol. 18::61021
    [Crossref] [Google Scholar]
  111. Reiss KA, Mick R, O'Hara MH, Teitelbaum U, Karasic TB, et al. 2021.. Phase II study of maintenance rucaparib in patients with platinum-sensitive advanced pancreatic cancer and a pathogenic germline or somatic variant in BRCA1, BRCA2, or PALB2. . J. Clin. Oncol. 39::2497505
    [Crossref] [Google Scholar]
  112. Riffell JL, Lord CJ, Ashworth A. 2012.. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. . Nat. Rev. Drug Discov. 11::92336
    [Crossref] [Google Scholar]
  113. Saha LK, Murai Y, Saha S, Jo U, Tsuda M, et al. 2021.. Replication-dependent cytotoxicity and Spartan-mediated repair of trapped PARP1–DNA complexes. . Nucleic Acids Res. 49::10493506
    [Crossref] [Google Scholar]
  114. Satoh MS, Lindahl T. 1992.. Role of poly(ADP-ribose) formation in DNA repair. . Nature 356::35658
    [Crossref] [Google Scholar]
  115. Schlacher K, Wu H, Jasin M. 2012.. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. . Cancer Cell 22::10616
    [Crossref] [Google Scholar]
  116. Schreiber V, Dantzer F, Ame JC, de Murcia G. 2006.. Poly(ADP-ribose): novel functions for an old molecule. . Nat. Rev. Mol. Cell Biol. 7::51728
    [Crossref] [Google Scholar]
  117. Schvartzman JM, Forsyth G, Walch H, Chatila W, Taglialatela A, et al. 2023.. Oncogenic IDH mutations increase heterochromatin-related replication stress without impacting homologous recombination. . Mol. Cell 83::234756.e8
    [Crossref] [Google Scholar]
  118. Sgouros G, Bodei L, McDevitt MR, Nedrow JR. 2020.. Radiopharmaceutical therapy in cancer: clinical advances and challenges. . Nat. Rev. Drug Discov. 19::589608
    [Crossref] [Google Scholar]
  119. Shao Z, Lee BJ, Zhang H, Lin X, Li C, et al. 2023.. Inactive PARP1 causes embryonic lethality and genome instability in a dominant-negative manner. . PNAS 120::e2301972120
    [Crossref] [Google Scholar]
  120. Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, et al. 2013.. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. . Clin. Cancer Res. 19::500315
    [Crossref] [Google Scholar]
  121. Shieh WM, Amé J-C, Wilson MV, Wang Z-Q, Koh DW, et al. 1998.. Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. . J. Biol. Chem. 273::3006972
    [Crossref] [Google Scholar]
  122. Staniszewska AD, Yates J, Pike A, Fazenbaker C, Cook K, et al. 2021.. The novel PARP1-selective inhibitor, AZD5305, is efficacious as monotherapy and in combination with standard of care chemotherapy in the in vivo preclinical models. . Cancer Res. 81:(Suppl. 13):1270
    [Crossref] [Google Scholar]
  123. Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, et al. 2017.. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. . Sci. Transl. Med. 9::eaal2463
    [Crossref] [Google Scholar]
  124. Sun C, Chu A, Song R, Liu S, Chai T, et al. 2023.. PARP inhibitors combined with radiotherapy: Are we ready?. Front. Pharmacol. 14::1234973
    [Crossref] [Google Scholar]
  125. Taglialatela A, Alvarez S, Leuzzi G, Sannino V, Ranjha L, et al. 2017.. Restoration of replication fork stability in BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. . Mol. Cell 68::41430.e8
    [Crossref] [Google Scholar]
  126. Tashiro K, Wijngaarden S, Mohapatra J, Rack JGM, Ahel I, et al. 2023.. Chemoenzymatic and synthetic approaches to investigate aspartate- and glutamate-ADP-ribosylation. . J. Am. Chem. Soc. 145::140009
    [Crossref] [Google Scholar]
  127. Teloni F, Altmeyer M. 2016.. Readers of poly(ADP-ribose): designed to be fit for purpose. . Nucleic Acids Res. 44::9931006
    [Crossref] [Google Scholar]
  128. Tufan AB, Lazarow K, Kolesnichenko M, Sporbert A, von Kries JP, Scheidereit C. 2022.. TSG101 associates with PARP1 and is essential for PARylation and DNA damage-induced NF-κB activation. . EMBO J. 41::e110372
    [Crossref] [Google Scholar]
  129. Vivelo CA, Leung AK. 2015.. Proteomics approaches to identify mono-(ADP-ribosyl)ated and poly(ADP-ribosyl)ated proteins. . Proteomics 15::20317
    [Crossref] [Google Scholar]
  130. Vyas S, Chesarone-Cataldo M, Todorova T, Huang Y-H, Chang P. 2013.. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. . Nat. Commun. 4::2240
    [Crossref] [Google Scholar]
  131. Waaler J, Machon O, Tumova L, Dinh H, Korinek V, et al. 2012.. A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. . Cancer Res. 72::282232
    [Crossref] [Google Scholar]
  132. Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, et al. 2012.. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. . Nat. Biotechnol. 30::28388
    [Crossref] [Google Scholar]
  133. Wahner Hendrickson AE, Menefee ME, Hartmann LC, Long HJ, Northfelt DW, et al. 2018.. A phase I clinical trial of the poly(ADP-ribose) polymerase inhibitor veliparib and weekly topotecan in patients with solid tumors. . Clin. Cancer Res. 24::74452
    [Crossref] [Google Scholar]
  134. Waks AG, Cohen O, Kochupurakkal B, Kim D, Dunn CE, et al. 2020.. Reversion and non-reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2-mutant metastatic breast cancer. . Ann. Oncol. 31::59098
    [Crossref] [Google Scholar]
  135. Wallace SR, Chihab LY, Yamasaki M, Yoshinaga BT, Torres YM, et al. 2021.. Rapid analysis of ADP-ribosylation dynamics and site-specificity using TLC-MALDI. . ACS Chem. Biol. 16::213743
    [Crossref] [Google Scholar]
  136. Wang F, Zhao M, Chang B, Zhou Y, Wu X, et al. 2022.. Cytoplasmic PARP1 links the genome instability to the inhibition of antiviral immunity through PARylating cGAS. . Mol. Cell 82::203249.e7
    [Crossref] [Google Scholar]
  137. Wang S, Han L, Han J, Li P, Ding Q, et al. 2019.. Uncoupling of PARP1 trapping and inhibition using selective PARP1 degradation. . Nat. Chem. Biol. 15::122331
    [Crossref] [Google Scholar]
  138. Wang X, Zeng X, Li D, Zhu C, Guo X, et al. 2022.. PARP inhibitors in small cell lung cancer: the underlying mechanisms and clinical implications. . Biomed. Pharmacother. 153::113458
    [Crossref] [Google Scholar]
  139. Wang Z, Sun K, Xiao Y, Feng B, Mikule K, et al. 2019.. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. . Sci. Rep. 9::1853
    [Crossref] [Google Scholar]
  140. Weigelt B, Comino-Méndez I, de Bruijn I, Tian L, Meisel JL, et al. 2017.. Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. . Clin. Cancer Res. 23::670820
    [Crossref] [Google Scholar]
  141. Yamada T, Horimoto H, Kameyama T, Hayakawa S, Yamato H, et al. 2016.. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. . Nat. Immunol. 17::68794
    [Crossref] [Google Scholar]
  142. Yamaguchi H, Du Y, Nakai K, Ding M, Chang SS, et al. 2018.. EZH2 contributes to the response to PARP inhibitors through its PARP-mediated poly-ADP ribosylation in breast cancer. . Oncogene 37::20817
    [Crossref] [Google Scholar]
  143. Yamanaka H, Penning CA, Willis EH, Wasson DB, Carson DA. 1988.. Characterization of human poly(ADP-ribose) polymerase with autoantibodies. . J. Biol. Chem. 263::387983
    [Crossref] [Google Scholar]
  144. Yao D, Arguez MA, He P, Bent AF, Song J. 2021.. Coordinated regulation of plant immunity by poly(ADP-ribosyl)ation and K63-linked ubiquitination. . Mol. Plant 14::2088103
    [Crossref] [Google Scholar]
  145. Yazinski SA, Comaills V, Buisson R, Genois M-M, Nguyen HD, et al. 2017.. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. . Genes Dev. 31::31832
    [Crossref] [Google Scholar]
  146. Yu Y, Qin T. 2024.. Exploration of nimbolide and its analogues as PARP trappers enabled by chemical synthesis. . Nat. Synth. 3::3012
    [Crossref] [Google Scholar]
  147. Zandarashvili L, Langelier M-F, Velagapudi UK, Hancock MA, Steffen JD, et al. 2020.. Structural basis for allosteric PARP-1 retention on DNA breaks. . Science 368::eaax6367
    [Crossref] [Google Scholar]
  148. Zhang Y, Wang J, Ding M, Yu Y. 2013.. Site-specific characterization of the Asp- and Glu-ADP-ribosylated proteome. . Nat. Methods 10::98184
    [Crossref] [Google Scholar]
  149. Zhen Y, Yu Y. 2018.. Proteomic analysis of the downstream signaling network of PARP1. . Biochemistry 57::42940
    [Crossref] [Google Scholar]
  150. Zhen Y, Zhang Y, Yu Y. 2017.. A cell-line-specific atlas of PARP-mediated protein Asp/Glu-ADP-ribosylation in breast cancer. . Cell Rep. 21::232637
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-042324-103725
Loading
/content/journals/10.1146/annurev-cancerbio-042324-103725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error