1932

Abstract

Enhancers are noncoding DNA sequences responsible for orchestrating gene expression programs by interacting with transcription factors and chromatin regulators within complex genome structures. However, their fundamental functions can be disrupted by genetic and epigenetic alterations, leading to aberrant enhancer activation or rewiring that contributes to oncogenesis. Analyzing dysregulated enhancer landscapes reveals new subtype-defining genomic features, such as enhancer hijacking, and identifies disease-relevant transcriptional regulators as potential targets for developing enhancer-targeting therapeutic strategies. Here, we delve into evolving concepts and technologies for studying enhancers; discuss how genetic, epigenetic, and topological alterations disrupt enhancer regulation to promote oncogenic gene expression; and underscore the importance of understanding the regulatory principles governing enhancer function to guide therapeutic strategies. Furthermore, we highlight key challenges and emerging opportunities in targeting enhancers and their regulators to improve cancer classification, prognosis, and treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-060324-114306
2025-04-11
2025-06-13
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-060324-114306.html?itemId=/content/journals/10.1146/annurev-cancerbio-060324-114306&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn JH, Davis ES, Daugird TA, Zhao S, Quiroga IY, et al. 2021.. Phase separation drives aberrant chromatin looping and cancer development. . Nature 595::59195
    [Crossref] [Google Scholar]
  2. Akhtar-Zaidi B, Cowper-Sal-lari R, Corradin O, Saiakhova A, Bartels CF, et al. 2012.. Epigenomic enhancer profiling defines a signature of colon cancer. . Science 336::73639
    [Crossref] [Google Scholar]
  3. Aran D, Sabato S, Hellman A. 2013.. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. . Genome Biol. 14::R21
    [Crossref] [Google Scholar]
  4. Bailey SD, Desai K, Kron KJ, Mazrooei P, Sinnott-Armstrong NA, et al. 2016.. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer. . Nat. Genet. 48::126066
    [Crossref] [Google Scholar]
  5. Banerji J, Rusconi S, Schaffner W. 1981.. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. . Cell 27::299308
    [Crossref] [Google Scholar]
  6. Barcenas-Walls JR, Ansaloni F, Herve B, Strandback E, Nyman T, et al. 2024.. Nano-CUT&Tag for multimodal chromatin profiling at single-cell resolution. . Nat. Protoc. 19::791830
    [Crossref] [Google Scholar]
  7. Barshad G, Lewis JJ, Chivu AG, Abuhashem A, Krietenstein N, et al. 2023.. RNA polymerase II dynamics shape enhancer–promoter interactions. . Nat. Genet. 55::137080
    [Crossref] [Google Scholar]
  8. Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y, et al. 2013.. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. . Science 342::25357
    [Crossref] [Google Scholar]
  9. Benoist C, Chambon P. 1981.. In vivo sequence requirements of the SV40 early promoter region. . Nature 290::30410
    [Crossref] [Google Scholar]
  10. Blayney JW, Francis H, Rampasekova A, Camellato B, Mitchell L, et al. 2023.. Super-enhancers include classical enhancers and facilitators to fully activate gene expression. . Cell 186::582639.e18
    [Crossref] [Google Scholar]
  11. Blobel GA, Higgs DR, Mitchell JA, Notani D, Young RA. 2021.. Testing the super-enhancer concept. . Nat. Rev. Genet. 22::74955
    [Crossref] [Google Scholar]
  12. Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T, et al. 2018.. RNA polymerase II clustering through carboxy-terminal domain phase separation. . Nat. Struct. Mol. Biol. 25::83340
    [Crossref] [Google Scholar]
  13. Botten GA, Lee M Jr., Xu J. 2023a.. Dissecting locus-specific chromatin interactions by CRISPR CAPTURE. . Methods Mol. Biol. 2599::6997
    [Crossref] [Google Scholar]
  14. Botten GA, Zhang Y, Dudnyk K, Kim YJ, Liu X, et al. 2023b.. Structural variation cooperates with permissive chromatin to control enhancer hijacking-mediated oncogenic transcription. . Blood 142::33651
    [Crossref] [Google Scholar]
  15. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013.. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. . Nat. Methods 10::121318
    [Crossref] [Google Scholar]
  16. Cejas P, Drier Y, Dreijerink KMA, Brosens LAA, Deshpande V, et al. 2019.. Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors. . Nat. Med. 25::126065
    [Crossref] [Google Scholar]
  17. Chandra B, Michmerhuizen NL, Shirnekhi HK, Tripathi S, Pioso BJ, et al. 2022.. Phase separation mediates NUP98 fusion oncoprotein leukemic transformation. . Cancer Discov. 12::115269
    [Crossref] [Google Scholar]
  18. Chapuy B, McKeown MR, Lin CY, Monti S, Roemer MG, et al. 2013.. Discovery and characterization of super-enhancer-associated dependencies in diffuse large B cell lymphoma. . Cancer Cell 24::77790
    [Crossref] [Google Scholar]
  19. Chen H, Li C, Peng X, Zhou Z, Weinstein JN, Liang H. 2018.. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. . Cell 173::38699.e12
    [Crossref] [Google Scholar]
  20. Chen LF, Lee J, Boettiger A. 2023.. Recent progress and challenges in single-cell imaging of enhancer–promoter interaction. . Curr. Opin. Genet. Dev. 79::102023
    [Crossref] [Google Scholar]
  21. Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, et al. 2014.. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. . Cell 159::112639
    [Crossref] [Google Scholar]
  22. Cho WK, Spille JH, Hecht M, Lee C, Li C, et al. 2018.. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. . Science 361::41215
    [Crossref] [Google Scholar]
  23. Chong S, Graham TGW, Dugast-Darzacq C, Dailey GM, Darzacq X, Tjian R. 2022.. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. . Mol. Cell 82::208497.e5
    [Crossref] [Google Scholar]
  24. Claringbould A, Zaugg JB. 2021.. Enhancers in disease: molecular basis and emerging treatment strategies. . Trends Mol. Med. 27::106073
    [Crossref] [Google Scholar]
  25. Cowper-Sal·lari R, Zhang X, Wright JB, Bailey SD, Cole MD, et al. 2012.. Breast cancer risk–associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression. . Nat. Genet. 44::119198
    [Crossref] [Google Scholar]
  26. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, et al. 2010.. Histone H3K27ac separates active from poised enhancers and predicts developmental state. . PNAS 107::2193136
    [Crossref] [Google Scholar]
  27. Dekker J, Rippe K, Dekker M, Kleckner N. 2002.. Capturing chromosome conformation. . Science 295::130611
    [Crossref] [Google Scholar]
  28. Deng W, Lee J, Wang H, Miller J, Reik A, et al. 2012.. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. . Cell 149::123344
    [Crossref] [Google Scholar]
  29. Di Giacomo D, La Starza R, Gorello P, Pellanera F, Kalender Atak Z, et al. 2021.. 14q32 rearrangements deregulating BCL11B mark a distinct subgroup of T-lymphoid and myeloid immature acute leukemia. . Blood 138::77384
    [Crossref] [Google Scholar]
  30. Dietlein F, Wang AB, Fagre C, Tang A, Besselink NJM, et al. 2022.. Genome-wide analysis of somatic noncoding mutation patterns in cancer. . Science 376::eabg5601
    [Crossref] [Google Scholar]
  31. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, et al. 2012.. Topological domains in mammalian genomes identified by analysis of chromatin interactions. . Nature 485::37680
    [Crossref] [Google Scholar]
  32. Domcke S, Hill AJ, Daza RM, Cao J, O'Day DR, et al. 2020.. A human cell atlas of fetal chromatin accessibility. . Science 370::eaba7612
    [Crossref] [Google Scholar]
  33. Donaldson-Collier MC, Sungalee S, Zufferey M, Tavernari D, Katanayeva N, et al. 2019.. EZH2 oncogenic mutations drive epigenetic, transcriptional, and structural changes within chromatin domains. . Nat. Genet. 51::51728
    [Crossref] [Google Scholar]
  34. Drier Y, Cotton MJ, Williamson KE, Gillespie SM, Ryan RJ, et al. 2016.. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. . Nat. Genet. 48::26572
    [Crossref] [Google Scholar]
  35. Dryden NH, Broome LR, Dudbridge F, Johnson N, Orr N, et al. 2014.. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. . Genome Res. 24::185468
    [Crossref] [Google Scholar]
  36. El Khattabi L, Zhao H, Kalchschmidt J, Young N, Jung S, et al. 2019.. A pliable mediator acts as a functional rather than an architectural bridge between promoters and enhancers. . Cell 178::114558.e20
    [Crossref] [Google Scholar]
  37. Fagan RJ, Dingwall AK. 2019.. COMPASS ascending: emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer. . Cancer Lett. 458::5665
    [Crossref] [Google Scholar]
  38. Fang R, Yu M, Li G, Chee S, Liu T, et al. 2016.. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. . Cell Res. 26::134548
    [Crossref] [Google Scholar]
  39. Field A, Adelman K. 2020.. Evaluating enhancer function and transcription. . Annu. Rev. Biochem. 89::21334
    [Crossref] [Google Scholar]
  40. Flavahan WA, Drier Y, Johnstone SE, Hemming ML, Tarjan DR, et al. 2019.. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. . Nature 575::22933
    [Crossref] [Google Scholar]
  41. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, et al. 2016.. Insulator dysfunction and oncogene activation in IDH mutant gliomas. . Nature 529::11014
    [Crossref] [Google Scholar]
  42. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, et al. 2021.. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. . N. Engl. J. Med. 384::25260
    [Crossref] [Google Scholar]
  43. Fudenberg G, Abdennur N, Imakaev M, Goloborodko A, Mirny LA. 2017.. Emerging evidence of chromosome folding by loop extrusion. . Cold Spring Harb. Symp. Quant. Biol. 82::4555
    [Crossref] [Google Scholar]
  44. Fulco CP, Nasser J, Jones TR, Munson G, Bergman DT, et al. 2019.. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. . Nat. Genet. 51::166469
    [Crossref] [Google Scholar]
  45. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, et al. 2009.. An oestrogen-receptor-α-bound human chromatin interactome. . Nature 462::5864
    [Crossref] [Google Scholar]
  46. Gasperini M, Tome JM, Shendure J. 2020.. Towards a comprehensive catalogue of validated and target-linked human enhancers. . Nat. Rev. Genet. 21::292310
    [Crossref] [Google Scholar]
  47. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, et al. 2014.. Genome-scale CRISPR-mediated control of gene repression and activation. . Cell 159::64761
    [Crossref] [Google Scholar]
  48. Gorbovytska V, Kim SK, Kuybu F, Gotze M, Um D, et al. 2022.. Enhancer RNAs stimulate Pol II pause release by harnessing multivalent interactions to NELF. . Nat. Commun. 13::2429
    [Crossref] [Google Scholar]
  49. Gould SI, Wuest AN, Dong K, Johnson GA, Hsu A, et al. 2024.. High-throughput evaluation of genetic variants with prime editing sensor libraries. . Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02172-9
    [Google Scholar]
  50. Gozdecka M, Meduri E, Mazan M, Tzelepis K, Dudek M, et al. 2018.. UTX-mediated enhancer and chromatin remodeling suppresses myeloid leukemogenesis through noncatalytic inverse regulation of ETS and GATA programs. . Nat. Genet. 50::88394
    [Crossref] [Google Scholar]
  51. Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BA, et al. 2014.. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. . Cell 157::36981
    [Crossref] [Google Scholar]
  52. Haller F, Bieg M, Will R, Korner C, Weichenhan D, et al. 2019.. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. . Nat. Commun. 10::368
    [Crossref] [Google Scholar]
  53. Hanahan D. 2022.. Hallmarks of cancer: new dimensions. . Cancer Discov. 12::3146
    [Crossref] [Google Scholar]
  54. Hay D, Hughes JR, Babbs C, Davies JO, Graham BJ, et al. 2016.. Genetic dissection of the α-globin super-enhancer in vivo. . Nat. Genet. 48::895903
    [Crossref] [Google Scholar]
  55. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, et al. 2007.. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. . Nat. Genet. 39::31118
    [Crossref] [Google Scholar]
  56. Helmsauer K, Valieva ME, Ali S, Chamorro Gonzalez R, Schopflin R, et al. 2020.. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma. . Nat. Commun. 11::5823
    [Crossref] [Google Scholar]
  57. Hemming ML, Lawlor MA, Zeid R, Lesluyes T, Fletcher JA, et al. 2018.. Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. . PNAS 115::E574655
    [Crossref] [Google Scholar]
  58. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, et al. 2013.. Super-enhancers in the control of cell identity and disease. . Cell 155::93447
    [Crossref] [Google Scholar]
  59. Hnisz D, Day DS, Young RA. 2016.. Insulated neighborhoods: structural and functional units of mammalian gene control. . Cell 167::1188200
    [Crossref] [Google Scholar]
  60. Hong JW, Hendrix DA, Levine MS. 2008.. Shadow enhancers as a source of evolutionary novelty. . Science 321::1314
    [Crossref] [Google Scholar]
  61. Hsieh TH, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. 2015.. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. . Cell 162::10819
    [Crossref] [Google Scholar]
  62. Hua P, Badat M, Hanssen LLP, Hentges LD, Crump N, et al. 2021.. Defining genome architecture at base-pair resolution. . Nature 595::12529
    [Crossref] [Google Scholar]
  63. Huang J, Liu X, Li D, Shao Z, Cao H, et al. 2016.. Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. . Dev. Cell 36::923
    [Crossref] [Google Scholar]
  64. Hughes JR, Roberts N, McGowan S, Hay D, Giannoulatou E, et al. 2014.. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. . Nat. Genet. 46::20512
    [Crossref] [Google Scholar]
  65. ICGC/TCGA Pan-Cancer Anal. Whole Genomes Consort. 2020.. Pan-cancer analysis of whole genomes. . Nature 578::8293
    [Crossref] [Google Scholar]
  66. Jaeger MG, Schwalb B, Mackowiak SD, Velychko T, Hanzl A, et al. 2020.. Selective Mediator dependence of cell-type-specifying transcription. . Nat. Genet. 52::71927
    [Crossref] [Google Scholar]
  67. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, et al. 2013.. Mutational landscape and significance across 12 major cancer types. . Nature 502::33339
    [Crossref] [Google Scholar]
  68. Katainen R, Dave K, Pitkänen E, Palin K, Kivioja T, et al. 2015.. CTCF/cohesin-binding sites are frequently mutated in cancer. . Nat. Genet. 47::81821
    [Crossref] [Google Scholar]
  69. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, et al. 2019.. CUT&Tag for efficient epigenomic profiling of small samples and single cells. . Nat. Commun. 10::1930
    [Crossref] [Google Scholar]
  70. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, et al. 2010.. Widespread transcription at neuronal activity-regulated enhancers. . Nature 465::18287
    [Crossref] [Google Scholar]
  71. Kim YJ, Lee M Jr., Lee YT, Jing J, Sanders JT, et al. 2023.. Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions. . Sci. Adv. 9::eadg1123
    [Crossref] [Google Scholar]
  72. Kimura S, Montefiori L, Iacobucci I, Zhao Y, Gao Q, et al. 2022.. Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. . Blood 139::351931
    [Crossref] [Google Scholar]
  73. Kioussis D, Vanin E, deLange T, Flavell RA, Grosveld FG. 1983.. β-Globin gene inactivation by DNA translocation in γβ-thalassaemia. . Nature 306::66266
    [Crossref] [Google Scholar]
  74. Kloetgen A, Thandapani P, Ntziachristos P, Ghebrechristos Y, Nomikou S, et al. 2020.. Three-dimensional chromatin landscapes in T cell acute lymphoblastic leukemia. . Nat. Genet. 52::388400
    [Crossref] [Google Scholar]
  75. Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R, et al. 2016.. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. . Nat. Biotechnol. 34::19298
    [Crossref] [Google Scholar]
  76. Kuppers R, Dalla-Favera R. 2001.. Mechanisms of chromosomal translocations in B cell lymphomas. . Oncogene 20::558094
    [Crossref] [Google Scholar]
  77. Lancho O, Herranz D. 2018.. The MYC enhancer-ome: long-range transcriptional regulation of MYC in cancer. . Trends Cancer 4::81022
    [Crossref] [Google Scholar]
  78. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, et al. 2014.. Discovery and saturation analysis of cancer genes across 21 tumour types. . Nature 505::495501
    [Crossref] [Google Scholar]
  79. Li K, Liu Y, Cao H, Zhang Y, Gu Z, et al. 2020a.. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. . Nat. Commun. 11::485
    [Crossref] [Google Scholar]
  80. Li K, Zhang Y, Liu X, Liu Y, Gu Z, et al. 2020b.. Noncoding variants connect enhancer dysregulation with nuclear receptor signaling in hematopoietic malignancies. . Cancer Discov. 10::72445
    [Crossref] [Google Scholar]
  81. Li Y, Roberts ND, Wala JA, Shapira O, Schumacher SE, et al. 2020.. Patterns of somatic structural variation in human cancer genomes. . Nature 578::11221
    [Crossref] [Google Scholar]
  82. Li Z, Abraham BJ, Berezovskaya A, Farah N, Liu Y, et al. 2017.. APOBEC signature mutation generates an oncogenic enhancer that drives LMO1 expression in T-ALL. . Leukemia 31::205764
    [Crossref] [Google Scholar]
  83. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. 2009.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. . Science 326::28993
    [Crossref] [Google Scholar]
  84. Lin X, Liu Y, Liu S, Zhu X, Wu L, et al. 2022.. Nested epistasis enhancer networks for robust genome regulation. . Science 377::107785
    [Crossref] [Google Scholar]
  85. Liu T, Wang J, Yang H, Jin Q, Wang X, et al. 2023.. Enhancer coamplification and hijacking promote oncogene expression in liposarcoma. . Cancer Res. 83::151730
    [Crossref] [Google Scholar]
  86. Liu X, Chen Y, Zhang Y, Liu Y, Liu N, et al. 2020.. Multiplexed capture of spatial configuration and temporal dynamics of locus-specific 3D chromatin by biotinylated dCas9. . Genome Biol. 21::59
    [Crossref] [Google Scholar]
  87. Liu X, Zhang Y, Chen Y, Li M, Zhou F, et al. 2017.. In situ capture of chromatin interactions by biotinylated dCas9. . Cell 170::102843
    [Crossref] [Google Scholar]
  88. Liu Y, Wu Z, Zhou J, Ramadurai DKA, Mortenson KL, et al. 2021.. A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer. . Nat. Commun. 12::7139
    [Crossref] [Google Scholar]
  89. Liu Z, Chen Y, Xia Q, Liu M, Xu H, et al. 2023.. Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq. . Science 380::107076
    [Crossref] [Google Scholar]
  90. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, et al. 2013.. Selective inhibition of tumor oncogenes by disruption of super-enhancers. . Cell 153::32034
    [Crossref] [Google Scholar]
  91. Lu H, Yu D, Hansen AS, Ganguly S, Liu R, et al. 2018.. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. . Nature 558::31823
    [Crossref] [Google Scholar]
  92. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, et al. 2008.. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. . Cell 132::95870
    [Crossref] [Google Scholar]
  93. Malumbres M. 2014.. Cyclin-dependent kinases. . Genome Biol. 15::122
    [Crossref] [Google Scholar]
  94. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, et al. 2014.. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. . Science 346::137377
    [Crossref] [Google Scholar]
  95. McKeown MR, Corces MR, Eaton ML, Fiore C, Lee E, et al. 2017.. Superenhancer analysis defines novel epigenomic subtypes of non-APL AML, including an RARα dependency targetable by SY-1425, a potent and selective RARα agonist. . Cancer Discov. 7::113653
    [Crossref] [Google Scholar]
  96. Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, et al. 2012.. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. . Nat. Biotechnol. 30::27177
    [Crossref] [Google Scholar]
  97. Montefiori LE, Bendig S, Gu Z, Chen X, Polonen P, et al. 2021.. Enhancer hijacking drives oncogenic BCL11B expression in lineage-ambiguous stem cell leukemia. . Cancer Discov. 11::284667
    [Crossref] [Google Scholar]
  98. Moore JE, Purcaro MJ, Pratt HE, Epstein CB, Shoresh M, et al. 2020.. Expanded encyclopaedias of DNA elements in the human and mouse genomes. . Nature 583::699710
    [Crossref] [Google Scholar]
  99. Morton AR, Dogan-Artun N, Faber ZJ, MacLeod G, Bartels CF, et al. 2019.. Functional enhancers shape extrachromosomal oncogene amplifications. . Cell 179::133041.e13
    [Crossref] [Google Scholar]
  100. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, et al. 2016.. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. . Nat. Methods 13::91922
    [Crossref] [Google Scholar]
  101. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, et al. 2012.. Spatial partitioning of the regulatory landscape of the X-inactivation centre. . Nature 485::38185
    [Crossref] [Google Scholar]
  102. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, et al. 2017.. The whole-genome landscape of medulloblastoma subtypes. . Nature 547::31117
    [Crossref] [Google Scholar]
  103. Northcott PA, Lee C, Zichner T, Stutz AM, Erkek S, et al. 2014.. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. . Nature 511::42834
    [Crossref] [Google Scholar]
  104. Osterwalder M, Barozzi I, Tissieres V, Fukuda-Yuzawa Y, Mannion BJ, et al. 2018.. Enhancer redundancy provides phenotypic robustness in mammalian development. . Nature 554::23943
    [Crossref] [Google Scholar]
  105. Ottema S, Mulet-Lazaro R, Erpelinck-Verschueren C, van Herk S, Havermans M, et al. 2021.. The leukemic oncogene EVI1 hijacks a MYC super-enhancer by CTCF-facilitated loops. . Nat. Commun. 12::5679
    [Crossref] [Google Scholar]
  106. Pacesa M, Pelea O, Jinek M. 2024.. Past, present, and future of CRISPR genome editing technologies. . Cell 187::1076100
    [Crossref] [Google Scholar]
  107. Park PJ. 2009.. ChIP-seq: advantages and challenges of a maturing technology. . Nat. Rev. Genet. 10::66980
    [Crossref] [Google Scholar]
  108. Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, et al. 2013.. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. . PNAS 110::1792126
    [Crossref] [Google Scholar]
  109. Ramasamy S, Aljahani A, Karpinska MA, Cao TBN, Velychko T, et al. 2023.. The Mediator complex regulates enhancer-promoter interactions. . Nat. Struct. Mol. Biol. 30::9911000
    [Crossref] [Google Scholar]
  110. Rheinbay E, Nielsen MM, Abascal F, Wala JA, Shapira O, et al. 2020.. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. . Nature 578::10211
    [Crossref] [Google Scholar]
  111. Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL, et al. 2018.. Coactivator condensation at super-enhancers links phase separation and gene control. . Science 361::eaar3958
    [Crossref] [Google Scholar]
  112. Sabari BR, Dall'Agnese A, Young RA. 2020.. Biomolecular condensates in the nucleus. . Trends Biochem. Sci. 45::96177
    [Crossref] [Google Scholar]
  113. Sahu B, Hartonen T, Pihlajamaa P, Wei B, Dave K, et al. 2022.. Sequence determinants of human gene regulatory elements. . Nat. Genet. 54::28394
    [Crossref] [Google Scholar]
  114. Schmid M, Durussel T, Laemmli UK. 2004.. ChIC and ChEC; genomic mapping of chromatin proteins. . Mol. Cell 16::14757
    [Google Scholar]
  115. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, et al. 2006.. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). . Nat. Genet. 38::134854
    [Crossref] [Google Scholar]
  116. Skene PJ, Henikoff S. 2017.. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. . eLife 6::e21856
    [Crossref] [Google Scholar]
  117. Song H, Liu Y, Tan Y, Zhang Y, Jin W, et al. 2022.. Recurrent noncoding somatic and germline WT1 variants converge to disrupt MYB binding in acute promyelocytic leukemia. . Blood 140::113244
    [Crossref] [Google Scholar]
  118. Song L, Crawford GE. 2010.. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. . Cold Spring Harb. Protoc. 2010.:pdb.prot5384
    [Google Scholar]
  119. Steinhauser S, Silva P, Lenk L, Beder T, Hartmann A, et al. 2023.. Isocitrate dehydrogenase 1 mutation drives leukemogenesis by PDGFRA activation due to insulator disruption in acute myeloid leukemia (AML). . Leukemia 37::13442
    [Crossref] [Google Scholar]
  120. Sze CC, Shilatifard A. 2016.. MLL3/MLL4/COMPASS family on epigenetic regulation of enhancer function and cancer. . Cold Spring Harb. Perspect. Med. 6::a026427
    [Crossref] [Google Scholar]
  121. Takeda DY, Spisak S, Seo JH, Bell C, O'Connor E, et al. 2018.. A somatically acquired enhancer of the androgen receptor is a noncoding driver in advanced prostate cancer. . Cell 174::42232.e13
    [Crossref] [Google Scholar]
  122. Tan J, Shenker-Tauris N, Rodriguez-Hernaez J, Wang E, Sakellaropoulos T, et al. 2023.. Cell-type-specific prediction of 3D chromatin organization enables high-throughput in silico genetic screening. . Nat. Biotechnol. 41::114050
    [Crossref] [Google Scholar]
  123. Trojanowski J, Frank L, Rademacher A, Mücke N, Grigaitis P, Rippe K. 2022.. Transcription activation is enhanced by multivalent interactions independent of phase separation. . Mol. Cell 82::187893.e10
    [Crossref] [Google Scholar]
  124. Trojer P. 2022.. Targeting BET bromodomains in cancer. . Annu. Rev. Cancer Biol. 6::31336
    [Crossref] [Google Scholar]
  125. Uyehara CM, Apostolou E. 2023.. 3D enhancer-promoter interactions and multi-connected hubs: organizational principles and functional roles. . Cell Rep. 42::112068
    [Crossref] [Google Scholar]
  126. Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. 2024.. CRISPR technologies for genome, epigenome and transcriptome editing. . Nat. Rev. Mol. Cell Biol. 25::46487
    [Crossref] [Google Scholar]
  127. Wang Q, Li W, Zhang Y, Yuan X, Xu K, et al. 2009.. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. . Cell 138::24556
    [Crossref] [Google Scholar]
  128. Wang X, Lee RS, Alver BH, Haswell JR, Wang S, et al. 2017.. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. . Nat. Genet. 49::28995
    [Crossref] [Google Scholar]
  129. Wang X, Xu J, Zhang B, Hou Y, Song F, et al. 2021.. Genome-wide detection of enhancer-hijacking events from chromatin interaction data in rearranged genomes. . Nat. Methods 18::66168
    [Crossref] [Google Scholar]
  130. Weischenfeldt J, Dubash T, Drainas AP, Mardin BR, Chen Y, et al. 2017.. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking. . Nat. Genet. 49::6574
    [Crossref] [Google Scholar]
  131. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, et al. 2013.. Master transcription factors and mediator establish super-enhancers at key cell identity genes. . Cell 153::30719
    [Crossref] [Google Scholar]
  132. Wittkopp PJ, Kalay G. 2011.. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. . Nat. Rev. Genet. 13::5969
    [Crossref] [Google Scholar]
  133. Wu S, Bafna V, Chang HY, Mischel PS. 2022.. Extrachromosomal DNA: an emerging hallmark in human cancer. . Annu. Rev. Pathol. 17::36786
    [Crossref] [Google Scholar]
  134. Xu J, Song F, Lyu H, Kobayashi M, Zhang B, et al. 2022.. Subtype-specific 3D genome alteration in acute myeloid leukaemia. . Nature 611::38798
    [Crossref] [Google Scholar]
  135. Yan L, Guo H, Hu B, Li R, Yong J, et al. 2016.. Epigenomic landscape of human fetal brain, heart, and liver. . J. Biol. Chem. 291::438698
    [Crossref] [Google Scholar]
  136. Yang H, Zhang H, Luan Y, Liu T, Yang W, et al. 2022.. Noncoding genetic variation in GATA3 increases acute lymphoblastic leukemia risk through local and global changes in chromatin conformation. . Nat. Genet. 54::17079
    [Crossref] [Google Scholar]
  137. Yang JH, Hansen AS. 2024.. Enhancer selectivity in space and time: from enhancer–promoter interactions to promoter activation. . Nat. Rev. Mol. Cell Biol. 25::57491
    [Crossref] [Google Scholar]
  138. Yang L, Chen F, Zhu H, Chen Y, Dong B, et al. 2021.. 3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. . Nat. Commun. 12::3708
    [Crossref] [Google Scholar]
  139. Yang M, Safavi S, Woodward EL, Duployez N, Olsson-Arvidsson L, et al. 2020.. 13q12.2 deletions in acute lymphoblastic leukemia lead to upregulation of FLT3 through enhancer hijacking. . Blood 136::94656
    [Crossref] [Google Scholar]
  140. Youngblood MW, Erson-Omay Z, Li C, Najem H, Coskun S, et al. 2023.. Super-enhancer hijacking drives ectopic expression of hedgehog pathway ligands in meningiomas. . Nat. Commun. 14::6279
    [Crossref] [Google Scholar]
  141. Zhang S, Ubelmesser N, Barbieri M, Papantonis A. 2023.. Enhancer–promoter contact formation requires RNAPII and antagonizes loop extrusion. . Nat. Genet. 55::83240
    [Crossref] [Google Scholar]
  142. Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H, et al. 2016.. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. . Nat. Genet. 48::17682
    [Crossref] [Google Scholar]
  143. Zhao J, Faryabi RB. 2023.. Spatial promoter–enhancer hubs in cancer: organization, regulation, and function. . Trends Cancer 9::106984
    [Crossref] [Google Scholar]
  144. Zheng B, Gold S, Iwanaszko M, Howard BC, Wang L, Shilatifard A. 2023.. Distinct layers of BRD4-PTEFb reveal bromodomain-independent function in transcriptional regulation. . Mol. Cell 83::2896910.e4
    [Crossref] [Google Scholar]
  145. Zhou J. 2022.. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale. . Nat. Genet. 54::72534
    [Crossref] [Google Scholar]
  146. Zhu Y, Gujar AD, Wong CH, Tjong H, Ngan CY, et al. 2021.. Oncogenic extrachromosomal DNA functions as mobile enhancers to globally amplify chromosomal transcription. . Cancer Cell 39::694707.e7
    [Crossref] [Google Scholar]
  147. Zimmerman MW, Liu Y, He S, Durbin AD, Abraham BJ, et al. 2018.. MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. . Cancer Discov. 8::32035
    [Crossref] [Google Scholar]
  148. Zuo L, Zhang G, Massett M, Cheng J, Guo Z, et al. 2021.. Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. . Nat. Commun. 12::1491
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-060324-114306
Loading
/content/journals/10.1146/annurev-cancerbio-060324-114306
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error