1932

Abstract

Cancers, a leading cause of morbidity and mortality worldwide, are undergoing notable shifts in incidence patterns. Cancer subtypes generally associated with advancing age are now increasingly being diagnosed in younger populations, while gender disparities in cancer susceptibility have fluctuated across various malignancies. Some cancer subtypes previously confined to specific geographical populations are now globally prevalent. Remarkably, these changing patterns of cancer incidence have occurred despite relatively stable mutational landscapes specific to each cancer type, highlighting the role of environmental exposures (exposomes) as potential drivers of these trends. Intriguingly, evidence suggests that the exposome may exert some of its influence through nonmutagenic mechanisms, although the precise ways in which environmental carcinogens trigger or promote cancer development remain poorly understood. This review summarizes the current understanding of the mutagenic and nonmutagenic mechanisms through which carcinogens, including tobacco smoke, air pollutants, metals, diet, and alcohol, impact cancer development, as this may help inform precision prevention and public health policy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-060424-052905
2025-04-11
2025-06-15
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-060424-052905.html?itemId=/content/journals/10.1146/annurev-cancerbio-060424-052905&mimeType=html&fmt=ahah

Literature Cited

  1. Abascal F, Harvey LMR, Mitchell E, Lawson ARJ, Lensing SV, et al. 2021.. Somatic mutation landscapes at single-molecule resolution. . Nature 593::40510
    [Crossref] [Google Scholar]
  2. Aksoy M, Erdem S, Dincol G. 1974.. Leukemia in shoe-workers exposed chronically to benzene. . Blood 44:(6):83741
    [Crossref] [Google Scholar]
  3. Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, et al. 2018.. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. . Science 361:(6409):eaao4227
    [Crossref] [Google Scholar]
  4. Alexandrov LB, Ju YS, Haase K, Loo PV, Martincorena I, et al. 2016.. Mutational signatures associated with tobacco smoking in human cancer. . Science 354:(6312):61822
    [Crossref] [Google Scholar]
  5. Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT, et al. 2020.. The repertoire of mutational signatures in human cancer. . Nature 578::94101
    [Crossref] [Google Scholar]
  6. Alonso-Curbelo D, Ho Y-J, Burdziak C, Maag JLV, Morris JP, et al. 2021.. A gene-environment-induced epigenetic program initiates tumorigenesis. . Nature 590:(7847):64248
    [Crossref] [Google Scholar]
  7. Ames BN, Durston WE, Yamasaki E, Lee FD. 1973.. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. . PNAS 70::228185
    [Crossref] [Google Scholar]
  8. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. 2019.. Obesity and cancer risk: emerging biological mechanisms and perspectives. . Metabolism 92::12135
    [Crossref] [Google Scholar]
  9. Balasubramanian A, John T, Adams DJ. 2023.. Breathing in danger: how particulate matter pollution is putting the public at risk of lung cancer. . J. Pathol. 261::14
    [Crossref] [Google Scholar]
  10. Belinsky SA, Klinge DM, Stidley CA, Issa J-P, Herman JG, et al. 2003.. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. . Cancer Res. 63::708993
    [Google Scholar]
  11. Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP. 2007.. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. . Environ. Health Perspect. 115::145459
    [Crossref] [Google Scholar]
  12. Bordonaro M, Lazarova D. 2015.. Hypothesis: Obesity is associated with a lower mutation threshold in colon cancer. . J. Cancer 6::82531
    [Crossref] [Google Scholar]
  13. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, et al. 2024.. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. . CA Cancer J. Clin. 74::22963
    [Crossref] [Google Scholar]
  14. Brown JR, Thornton JL. 1957.. Percivall Pott (1714–1788) and chimney sweepers’ cancer of the scrotum. . Br. J. Ind. Med. 14::6870
    [Google Scholar]
  15. Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL, et al. 2020.. Pan-cancer analysis of whole genomes. . Nature 578:(7793):8293
    [Crossref] [Google Scholar]
  16. Case RAM, Hosker ME. 1954.. Tumour of the urinary bladder as an occupational disease in the rubber industry in England and Wales. . Br. J. Ind. Med. 11:(3):21316
    [Google Scholar]
  17. Cercek A, Chatila WK, Yaeger R, Walch H, Fernandes GDS, et al. 2021.. A comprehensive comparison of early-onset and average-onset colorectal cancers. . J. Natl. Cancer Inst. 113::168392
    [Crossref] [Google Scholar]
  18. Chandrasekaran B, Dahiya NR, Tyagi A, Kolluru V, Saran U, et al. 2020.. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. . Oncogenesis 9::23
    [Crossref] [Google Scholar]
  19. Chao X, Yi L, Lan LL, Wei HY, Wei D. 2020.. Long-term PM2.5 exposure increases the risk of non-small cell lung cancer (NSCLC) progression by enhancing interleukin-17a (IL-17a)-regulated proliferation and metastasis. . Aging 12:(12):11579602
    [Crossref] [Google Scholar]
  20. Chen X, Li H, Guo F, Hoffmeister M, Brenner H. 2022.. Alcohol consumption, polygenic risk score, and early- and late-onset colorectal cancer risk. . eClinicalMedicine 49::101460
    [Crossref] [Google Scholar]
  21. Cullin N, Antunes CA, Straussman R, Stein-Thoeringer CK, Elinav E. 2021.. Microbiome and cancer. . Cancer Cell 39:(10):131741
    [Crossref] [Google Scholar]
  22. Dash S, Aydin Y, Widmer KE, Nayak L. 2020.. Hepatocellular carcinoma mechanisms associated with chronic HCV infection and the impact of direct-acting antiviral treatment. . J. Hepatocell. Carcinoma 7::4576
    [Crossref] [Google Scholar]
  23. de Gruijl FR. 1999.. Skin cancer and solar UV radiation. . Eur. J. Cancer 35::20039
    [Crossref] [Google Scholar]
  24. De Lorenzo BHP, Novaes E Brito RR, Paslar Leal T, Piqueira Garcia N, Martins Dos Santos RM, et al. 2018.. Chronic sleep restriction impairs the antitumor immune response in mice. . NeuroImmunoModulation 25:(2):5967
    [Crossref] [Google Scholar]
  25. Din S, Wong K, Mueller MF, Oniscu A, Hewinson J, et al. 2018.. Mutational analysis identifies therapeutic biomarkers in inflammatory bowel disease-associated colorectal cancers. . Clin. Cancer Res. 24::513342
    [Crossref] [Google Scholar]
  26. Ding N, Cheng Y, Liu H, Wu Y, Weng Y, et al. 2023.. Fusobacterium nucleatum infection induces malignant proliferation of esophageal squamous cell carcinoma cell by putrescine production. . Microbiol. Spectr. 11:(2):e02759-22
    [Google Scholar]
  27. Diwan BA, Sipowicz M, Logsdon D, Gorelick P, Anver MR, et al. 2008.. Marked liver tumorigenesis by Helicobacter hepaticus requires perinatal exposure. . Environ. Health Perspect. 116::135256
    [Crossref] [Google Scholar]
  28. Doll R, Hill B. 1952.. A study of the aetiology of carcinoma of the lung. . Br. Med. J. 2:(4682):127186
    [Crossref] [Google Scholar]
  29. dos Santos W, Diaz-Gay M, Moody S, Senkin S, Abedi-Ardekani B, et al. 2024.. Abstract LB134: Mutational signatures in colorectal cancer from 11 countries reveal new insights in early-onset colorectal cancer. . Cancer Res. 84:(Suppl. 7):LB134
    [Crossref] [Google Scholar]
  30. Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, . 2007.. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. . Environ. Health Perspect. 115:(1):8086
    [Crossref] [Google Scholar]
  31. Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, et al. 2017.. Microbes and cancer. . Annu. Rev. Immunol. 35::199228
    [Crossref] [Google Scholar]
  32. Fardini Y, Dehennaut V, Lefebvre T, Issad T. 2013.. O-GlcNAcylation: a new cancer hallmark?. Front. Endocrinol. 4::99
    [Crossref] [Google Scholar]
  33. Feinberg AP, Tycko B. 2004.. The history of cancer epigenetics. . Nat. Rev. Cancer 4:(2):14353
    [Crossref] [Google Scholar]
  34. Freire de Melo F, Marques HS, Rocha Pinheiro SL, Lemos FFB, Silva Luz M, et al. 2022.. Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: a critical-reflective analysis. . World J. Clin. Oncol. 13::86679
    [Crossref] [Google Scholar]
  35. Gaddameedhi S, Selby CP, Kaufmann WK, Smart RC, Sancar A. 2011.. Control of skin cancer by the circadian rhythm. . PNAS 108:(46):1879095
    [Crossref] [Google Scholar]
  36. Gilligan MM, Gartung A, Sulciner ML, Norris PC, Sukhatme VP, et al. 2019.. Aspirin-triggered proresolving mediators stimulate resolution in cancer. . PNAS 116:(13):629297
    [Crossref] [Google Scholar]
  37. Guo H, Liu H, Wu H, Cui H, Fang J, et al. 2019.. Nickel carcinogenesis mechanism: DNA damage. . Int. J. Mol. Sci. 20::4690
    [Crossref] [Google Scholar]
  38. Hadadi E, Taylor W, Li X-M, Aslan Y, Villote M, et al. 2020.. Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. . Nat. Commun. 11:(1):3193
    [Crossref] [Google Scholar]
  39. Hartwig A. 2010.. Mechanisms in cadmium-induced carcinogenicity: recent insights. . Biometals 23::95160
    [Crossref] [Google Scholar]
  40. He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW, et al. 2019.. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. . Gut 68::289300
    [Crossref] [Google Scholar]
  41. Herman JG, Baylin SB. 2003.. Gene silencing in cancer in association with promoter hypermethylation. . New Engl. J. Med. 349:(21):204254
    [Crossref] [Google Scholar]
  42. Hill J. 1761.. Cautions Against the Immoderate Use of Snuff: Founded on the Known Qualities of the Tobacco Plant; and the Effects It Must Produce When This Way Taken into the Body: And Enforced by Instances of Persons Who Have Perished Miserably of Diseases, Occasioned, or Rendered Incurable, by Its Use. London:
    [Google Scholar]
  43. Hill W, Lim EL, Weeden CE, Lee C, Augustine M, et al. 2023.. Lung adenocarcinoma promotion by air pollutants. . Nature 616:(7955):15967
    [Crossref] [Google Scholar]
  44. Hofmann S, Krajewski M, Scherer C, Scholz V, Mordhorst V, et al. 2018.. Complex lipid metabolic remodeling is required for efficient hepatitis C virus replication. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863:(9):104156
    [Crossref] [Google Scholar]
  45. Hong Y-S, Song K-H, Chung J-Y. 2014.. Health effects of chronic arsenic exposure. . J. Prev. Med. Public Health 47::24552
    [Crossref] [Google Scholar]
  46. Hu X, Biswas A, Sharma A, Sarkodie H, Tran I, et al. 2021.. Mutational signatures associated with exposure to carcinogenic microplastic compounds bisphenol A and styrene oxide. . NAR Cancer 3::zcab004
    [Crossref] [Google Scholar]
  47. Huang W, Bai L, Tang H. 2023.. Epstein-Barr virus infection: the micro and macro worlds. . Virol. J. 20::220
    [Crossref] [Google Scholar]
  48. Huff J. 1993.. Chemicals and cancer in humans: first evidence in experimental animals. . Environ. Health Perspect. 100::20110
    [Crossref] [Google Scholar]
  49. IARC (Int. Agency Res. Cancer) Work. Group Eval. Carcinog. Risks Hum. 2012a.. Arsenic, Metals, Fibres, and Dusts. IARC Monogr. Eval. Carcinog . Risks Hum. 100C. Lyon, Fr.:: IARC
    [Google Scholar]
  50. IARC (Int. Agency Res. Cancer) Work. Group Eval. Carcinog. Risks Hum. 2012b.. Biological Agents. IARC Mongr. Eval. Carcinog. Risks Hum . 100B. Lyon, Fr:.: IARC
    [Google Scholar]
  51. Islami F, Sauer AG, Gapstur SM, Jemal A. 2019.. Proportion of cancer cases attributable to excess body weight by US state, 2011–2015. . JAMA Oncol. 5::38492
    [Crossref] [Google Scholar]
  52. Izumi S, Imai K, Nakachi K. 2004.. Excess concordance of cancer incidence and lifestyles in married couples (Japan): survival analysis of paired rate data. . Cancer Causes Control 15:(6):55158
    [Crossref] [Google Scholar]
  53. Jeong S, Park SA, Park I, Kim P, Cho NH, et al. 2019.. PM2.5 exposure in the respiratory system induces distinct inflammatory signaling in the lung and the liver of mice. . J. Immunol. Res. 2019::3486841
    [Crossref] [Google Scholar]
  54. Jiao L, Duan Z, Sangi-Haghpeykar H, Hale L, White DL, El-Serag HB. 2013.. Sleep duration and incidence of colorectal cancer in postmenopausal women. . Br. J. Cancer 108:(1):21321
    [Crossref] [Google Scholar]
  55. Jones PA, Baylin SB. 2007.. The epigenomics of cancer. . Cell 128:(4):68392
    [Crossref] [Google Scholar]
  56. Ko JM-Y, Guo C, Liu C, Ning L, Dai W, et al. 2022.. Clonal relationship and alcohol consumption-associated mutational signature in synchronous hypopharyngeal tumours and oesophageal squamous cell carcinoma. . Br. J. Cancer 127:(12):216674
    [Crossref] [Google Scholar]
  57. Kucab JE, Zou X, Morganella S, Joel M, Nanda AS, et al. 2019.. A compendium of mutational signatures of environmental agents. . Cell 177::82136.e16
    [Crossref] [Google Scholar]
  58. Labbé DP, Zadra G, Yang M, Reyes JM, Lin CY, et al. 2019.. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. . Nat. Commun. 10::4358
    [Crossref] [Google Scholar]
  59. Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, . 2023.. The Minderoo-Monaco Commission on Plastics and Human Health. . Ann. Glob. Health 89:(1):23
    [Crossref] [Google Scholar]
  60. Lazarova D, Bordonaro M. 2022.. Hypothesis: mutations and immunosurveillance in obesity-associated colorectal cancer. . J. Cancer 13::304450
    [Crossref] [Google Scholar]
  61. Lee KWK, Pausova Z. 2013.. Cigarette smoking and DNA methylation. . Front. Genet. 4::132
    [Google Scholar]
  62. Lehoux M, D'Abramo CM, Archambault J. 2009.. Molecular mechanisms of human papillomavirus-induced carcinogenesis. . Public Health Genom. 12::26880
    [Crossref] [Google Scholar]
  63. Leong MML, Cheung AKL, Dai W, Tsao SW, Tsang CM, et al. 2019.. EBV infection is associated with histone bivalent switch modifications in squamous epithelial cells. . PNAS 116::1414453
    [Crossref] [Google Scholar]
  64. Li D, Xi W, Zhang Z, Ren L, Deng C, et al. 2020.. Oral microbial community analysis of the patients in the progression of liver cancer. . Microb. Pathog. 149::104479
    [Crossref] [Google Scholar]
  65. Li R, Grimm SA, Chrysovergis K, Kosak J, Wang X, et al. 2014.. Obesity, rather than diet, drives epigenomic alterations in colonic epithelium resembling cancer progression. . Cell Metab. 19:(4):70211
    [Crossref] [Google Scholar]
  66. Li XC, Wang MY, Yang M, Dai HJ, Zhang BF, et al. 2018.. A mutational signature associated with alcohol consumption and prognostically significantly mutated driver genes in esophageal squamous cell carcinoma. . Ann. Oncol. 29:(4):93844
    [Crossref] [Google Scholar]
  67. Li Y, Boehning DF, Qian T, Popov VL, Weinman SA. 2007.. Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity. . FASEB J. 21:(10):247485
    [Crossref] [Google Scholar]
  68. Lu H, Ren Z, Li A, Li J, Xu S, et al. 2019.. Tongue coating microbiome data distinguish patients with pancreatic head cancer from healthy controls. . J. Oral Microbiol. 11:(1):1563409
    [Crossref] [Google Scholar]
  69. Luojus MK, Lehto SM, Tolmunen T, Erkkilä AT, Kauhanen J. 2014.. Sleep duration and incidence of lung cancer in ageing men. . BMC Public Health 14:(1):295
    [Crossref] [Google Scholar]
  70. Manić L, Wallace D, Onganer PU, Taalab YM, Farooqi AA, et al. 2022.. Epigenetic mechanisms in metal carcinogenesis. . Toxicol. Rep. 9::77887
    [Crossref] [Google Scholar]
  71. Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL. 2011.. Arsenic exposure and the induction of human cancers. . J. Toxicol. 2011::431287
    [Crossref] [Google Scholar]
  72. Martinez-Zamudio R, Ha HC. 2011.. Environmental epigenetics in metal exposure. . Epigenetics 6::82027
    [Crossref] [Google Scholar]
  73. Meyenberg M, Hakobyan A, Papac-Milicevic N, Göderle L, Langner FL, et al. 2023.. Mutational landscape of intestinal crypt cells after long-term in vivo exposure to high fat diet. . Sci. Rep. 13::13964
    [Crossref] [Google Scholar]
  74. Michaud DS, Izard J, Wilhelm-Benartzi CS, You D-H, Grote VA, et al. 2013.. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. . Gut 62:(12):176470
    [Crossref] [Google Scholar]
  75. Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga Y, Ito M, et al. 2015.. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. . Oncotarget 6:(9):720920
    [Crossref] [Google Scholar]
  76. Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, et al. 2021.. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. . Nat. Genet. 53::155363
    [Crossref] [Google Scholar]
  77. Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R, et al. 2021.. The mutational landscape of human somatic and germline cells. . Nature 597::38186
    [Crossref] [Google Scholar]
  78. Moreno-Gonzalez M, Beraza N. 2021.. The role of the microbiome in liver cancer. . Cancers 13:(10):2330
    [Crossref] [Google Scholar]
  79. Murata M. 2018.. Inflammation and cancer. . Environ. Health Prev. Med. 23:(1):50
    [Crossref] [Google Scholar]
  80. Naglić DT, Mandić A, Milankov A, Pejaković S, Janičić S, et al. 2024.. Metabolic dysregulation in obese women and the carcinogenesis of gynecological tumors: a review. . Biomol. Biomed. 24:(4):78797
    [Crossref] [Google Scholar]
  81. Natl. Acad. Sci. Eng. Med. 2022.. Companion Animals as Sentinels for Predicting Environmental Exposure Effects on Aging and Cancer Susceptibility in Humans: Proceedings of a Workshop. Washington, DC:: Natl. Acad. Press
    [Google Scholar]
  82. Nomburg J, Bullman S, Nasrollahzadeh D, Collisson EA, Abedi-Ardekani B, et al. 2022.. An international report on bacterial communities in esophageal squamous cell carcinoma. . Int. J. Cancer 151:(11):194759
    [Crossref] [Google Scholar]
  83. Okwan-Duodu D, Umpierrez GE, Brawley OW, Diaz R. 2013.. Obesity-driven inflammation and cancer risk: role of myeloid derived suppressor cells and alternately activated macrophages. . Am. J. Cancer Res. 3:(1):2133
    [Google Scholar]
  84. Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow S-N, et al. 2009.. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. . Lancet 374::30114
    [Crossref] [Google Scholar]
  85. Pearce N, Blair A, Vineis P, Ahrens W, Andersen A, et al. 2015.. IARC monographs: 40 years of evaluating carcinogenic hazards to humans. . Environ. Health Perspect. 123::50714
    [Crossref] [Google Scholar]
  86. Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, et al. 2020.. Mutational signature in colorectal cancer caused by genotoxic pks+E. coli. . Nature 580::26973
    [Crossref] [Google Scholar]
  87. Pott P. 1775.. Chirurgical Observations Relative to the Cataract, the Polypus of the Nose, the Cancer of the Scrotum, the Different Kinds of Ruptures, and the Mortification of the Toes and Feet. London:: T.J. Carnegy
    [Google Scholar]
  88. Qin Y, Roberts JD, Grimm SA, Lih FB, Deterding LJ, et al. 2018.. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. . Genome Biol. 19:(1):7
    [Crossref] [Google Scholar]
  89. Riva L, Pandiri AR, Li YR, Droop A, Hewinson J, et al. 2020.. The mutational signature profile of known and suspected human carcinogens in mice. . Nat. Genet. 52:(11):118997
    [Crossref] [Google Scholar]
  90. Rothwell PM, Fowkes FGR, Belch JF, Ogawa H, Warlow CP, Meade TW. 2011.. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. . Lancet 377:(9759):3141
    [Crossref] [Google Scholar]
  91. Rumgay H, Murphy N, Ferrari P, Soerjomataram I. 2021.. Alcohol and cancer: epidemiology and biological mechanisms. . Nutrients 13:(9):3173
    [Crossref] [Google Scholar]
  92. Sancar A, Lindsey-Boltz LA, Kang T-H, Reardon JT, Lee JH, Ozturk N. 2010.. Circadian clock control of the cellular response to DNA damage. . FEBS Lett. 584:(12):261825
    [Crossref] [Google Scholar]
  93. Santibáñez-Andrade M, Chirino YI, González-Ramírez I, Sánchez-Pérez Y, García-Cuellar CM. 2019.. Deciphering the code between air pollution and disease: the effect of particulate matter on cancer hallmarks. . Int. J. Mol. Sci. 21::136
    [Crossref] [Google Scholar]
  94. Sapundzhiev N, Werner JA. 2003.. Nasal snuff: historical review and health related aspects. . J. Laryngol. Otol. 117::68691
    [Crossref] [Google Scholar]
  95. Saraiva MR, Rosa I, Claro I. 2023.. Early-onset colorectal cancer: a review of current knowledge. . World J. Gastroenterol. 29::1289303
    [Crossref] [Google Scholar]
  96. Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. 2021.. The microbiome and human cancer. . Science 371:(6536):eabc4552
    [Crossref] [Google Scholar]
  97. Shapiro H, Goldenberg K, Ratiner K, Elinav E. 2022.. Smoking-induced microbial dysbiosis in health and disease. . Clin. Sci. 136:(18):137187
    [Crossref] [Google Scholar]
  98. Sinicrope FA. 2022.. Increasing incidence of early-onset colorectal cancer. . N. Engl. J. Med. 386::154758
    [Crossref] [Google Scholar]
  99. Sitkin S, Lazebnik L, Avalueva E, Kononova S, Vakhitov T. 2022.. Gastrointestinal microbiome and Helicobacter pylori: eradicate, leave it as it is, or take a personalized benefit-risk approach?. World J. Gastroenterol. 28:(7):76674
    [Crossref] [Google Scholar]
  100. Smith CJ, Hansch C. 2000.. The relative toxicity of compounds in mainstream cigarette smoke condensate. . Food Chem. Toxicol. 38:(7):63746
    [Crossref] [Google Scholar]
  101. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI. 2007.. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. . Nat. Med. 13:(10):121118
    [Crossref] [Google Scholar]
  102. Speer RM, Nandi SP, Cooper KL, Zhou X, Yu H, et al. 2023.. Arsenic is a potent co-mutagen of ultraviolet light. . Commun. Biol. 6::1273
    [Crossref] [Google Scholar]
  103. Stone TW, McPherson M, Darlington LG. 2018.. Obesity and cancer: existing and new hypotheses for a causal connection. . EBioMedicine 30::1428
    [Crossref] [Google Scholar]
  104. Sung H, Siegel RL, Torre LA, Pearson-Stuttard J, Islami F, et al. 2019.. Global patterns in excess body weight and the associated cancer burden. . CA Cancer J. Clin. 69::88112
    [Crossref] [Google Scholar]
  105. Swanton C, Bernard E, Abbosh C, André F, Auwerx J, et al. 2024.. Embracing cancer complexity: hallmarks of systemic disease. . Cell 187::1589616
    [Crossref] [Google Scholar]
  106. Teschendorff AE, Yang Z, Wong A, Pipinikas CP, Jiao Y, et al. 2015.. Correlation of smoking-associated DNA methylation changes in buccal cells with DNA methylation changes in epithelial cancer. . JAMA Oncol. 1::47685
    [Crossref] [Google Scholar]
  107. Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, et al. 2010.. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. . Oncogene 29::564350
    [Crossref] [Google Scholar]
  108. Tuzcuoğlu P, Özden S. 2020.. Global DNA hypomethylation and Rassf1a and c-myc promoter hypermethylation in rat kidney cells after bisphenol A exposure. . Turk. J. Pharm. Sci. 17::33742
    [Crossref] [Google Scholar]
  109. US Food Drug Adm. 2012.. International Conference on Harmonisation; guidance on S2(R1) genotoxicity testing and data interpretation for pharmaceuticals intended for human use; availability. Notice. . Fed. Regist. 77::3374849
    [Google Scholar]
  110. Veiel O. 1877.. On the effect of light upon the skin and its connection with the development of skin diseases. . Arch. Dermatol. Syph. 1877::21736
    [Google Scholar]
  111. Vineis P, Schatzkin A, Potter JD. 2010.. Models of carcinogenesis: an overview. . Carcinogenesis 31:(10):17039
    [Crossref] [Google Scholar]
  112. Wang P, Ren F-M, Lin Y, Su F-X, Jia W-H, et al. 2015.. Night-shift work, sleep duration, daytime napping, and breast cancer risk. . Sleep Med. 16:(4):46268
    [Crossref] [Google Scholar]
  113. Wei R, Li P, He F, Wei G, Zhou Z, et al. 2020.. Comprehensive analysis reveals distinct mutational signature and its mechanistic insights of alcohol consumption in human cancers. . Brief. Bioinform. 22:(3):bbaa066
    [Crossref] [Google Scholar]
  114. Wei Y, Yazdi MD, Ma T, Castro E, Liu CS, et al. 2023.. Additive effects of 10-year exposures to PM2.5 and NO2 and primary cancer incidence in American older adults. . Environ. Epidemiol. 7::e265
    [Crossref] [Google Scholar]
  115. Wogan GN, Edwards GS, Newberne PM. 1964.. Induction of primary hepatic cancer in the rat with aflatoxin B1. . Cancer Res. 24:(12):240411
    [Google Scholar]
  116. Wong K, Abascal F, Ludwig L, Aupperle-Lellbach H, Grassinger J, et al. 2023.. Cross-species oncogenomics offers insight into human muscle-invasive bladder cancer. . Genome Biol. 24::191
    [Crossref] [Google Scholar]
  117. Wroblewski LE, Peek RMJ, Wilson KT. 2010.. Helicobacter pylori and gastric cancer: factors that modulate disease risk. . Clin. Microbiol. Rev. 23::71339
    [Crossref] [Google Scholar]
  118. Wu N, Feng Y-Q, Lyu N, Wang D, Yu W-D, Hu Y-F. 2022.. Fusobacterium nucleatum promotes colon cancer progression by changing the mucosal microbiota and colon transcriptome in a mouse model. . World J. Gastroenterol. 28:(18):198195
    [Crossref] [Google Scholar]
  119. Wu S, Bai YN, Pu HQ, He J, Zheng TZ, et al. 2015.. Dynamic changes in DNA damage and repair biomarkers with employment length among nickel smelting workers. . Biomed. Environ. Sci. 28::67982
    [Google Scholar]
  120. Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, et al. 2020.. The cancer microbiome: Distinguishing direct and indirect effects requires a systemic view. . Trends Cancer 6:(3):192204
    [Crossref] [Google Scholar]
  121. Yu T, Guo F, Yu Y, Sun T, Ma D, et al. 2017.. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. . Cell 170::54863.e16
    [Crossref] [Google Scholar]
  122. Zhang Q, Salnikow K, Kluz T, Chen LC, Su WC, Costa M. 2003.. Inhibition and reversal of nickel-induced transformation by the histone deacetylase inhibitor trichostatin A. . Toxicol. Appl. Pharmacol. 192::20111
    [Crossref] [Google Scholar]
  123. Zhao J, Xu L, Sun J, Song M, Wang L, et al. 2023.. Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. . BMJ Oncol. 2:(1):e000049
    [Crossref] [Google Scholar]
  124. Zong Z, Zhou F, Zhang L. 2023.. The fungal mycobiome: a new hallmark of cancer revealed by pan-cancer analyses. . Signal Transduct. Target. Ther. 8:(1):50
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-060424-052905
Loading
/content/journals/10.1146/annurev-cancerbio-060424-052905
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error