1932

Abstract

Each cancer is the result of an individually unique evolutionary process. Yet, as demonstrated by extensive genetic analyses of human specimens, the genetic endpoints of cancers across different tissues are remarkably specific, with individual cancer driver genes being typically associated with only a limited set of tumor types. Tissue and cellular contexts thus impose strong and genetically predictable evolutionary constraints on carcinogenesis. Lineage-specific transcription factors, central regulators of organismal development, tissue homeostasis, and regeneration, often also support cancer cell fitness in a lineage-specific manner. In this review, we discuss recent results on the interactions between transcriptional lineage factor programs and oncogenic pathways and how such interactions may determine the oncogenic competence of cancer-associated genetic alterations. These developments are starting to shed light on the molecular basis of tissue specificity in carcinogenesis, with relevance for cancer prevention and therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-060524-105603
2025-04-11
2025-06-20
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-060524-105603.html?itemId=/content/journals/10.1146/annurev-cancerbio-060524-105603&mimeType=html&fmt=ahah

Literature Cited

  1. Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, et al. 2003.. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. . Genes Dev. 17:(24):311226
    [Crossref] [Google Scholar]
  2. Alder O, Cullum R, Lee S, Kan AC, Wei W, et al. 2014.. Hippo signaling influences HNF4A and FOXA2 enhancer switching during hepatocyte differentiation. . Cell Rep. 9:(1):26171
    [Crossref] [Google Scholar]
  3. Al-Ghamdi S, Albasri A, Cachat J, Ibrahem S, Muhammad BA, et al. 2011.. Cten is targeted by Kras signalling to regulate cell motility in the colon and pancreas. . PLOS ONE 6:(6):e20919
    [Crossref] [Google Scholar]
  4. Ali S, Coombes RC. 2002.. Endocrine-responsive breast cancer and strategies for combating resistance. . Nat. Rev. Cancer 2:(2):10112
    [Crossref] [Google Scholar]
  5. Anglesio MS, Papadopoulos N, Ayhan A, Nazeran TM, Noë M, et al. 2017.. Cancer-associated mutations in endometriosis without cancer. . N. Engl. J. Med. 376:(19):183548
    [Crossref] [Google Scholar]
  6. Awad MM, Liu S, Rybkin II, Arbour KC, Dilly J, et al. 2021.. Acquired resistance to KRASG12C inhibition in cancer. . N. Engl. J. Med. 384:(25):238293
    [Crossref] [Google Scholar]
  7. Baggiolini A, Callahan SJ, Montal E, Weiss JM, Trieu T, et al. 2021.. Developmental chromatin programs determine oncogenic competence in melanoma. . Science 373:(6559):eabc1048
    [Crossref] [Google Scholar]
  8. Bahr C, von Paleske L, Uslu VV, Remeseiro S, Takayama N, et al. 2018.. A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. . Nature 553:(7689):51520
    [Crossref] [Google Scholar]
  9. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, et al. 2018.. Comprehensive characterization of cancer driver genes and mutations. . Cell 173:(2):37185.e18
    [Crossref] [Google Scholar]
  10. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, et al. 2009.. Crypt stem cells as the cells-of-origin of intestinal cancer. . Nature 457:(7229):60811
    [Crossref] [Google Scholar]
  11. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, et al. 2016.. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. . Nat. Med. 22:(3):298305
    [Crossref] [Google Scholar]
  12. Biehs B, Dijkgraaf GJP, Piskol R, Alicke B, Boumahdi S, et al. 2018.. A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. . Nature 562:(7727):42933
    [Crossref] [Google Scholar]
  13. Bouchard M, Souabni A, Mandler M, Neubüser A, Busslinger M. 2002.. Nephric lineage specification by Pax2 and Pax8. . Genes Dev. 16:(22):295870
    [Crossref] [Google Scholar]
  14. Camidge DR, Pao W, Sequist LV. 2014.. Acquired resistance to TKIs in solid tumours: learning from lung cancer. . Nat. Rev. Clin. Oncol. 11:(8):47381
    [Crossref] [Google Scholar]
  15. Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL, et al. 2020.. Pan-cancer analysis of whole genomes. . Nature 578:(7793):8293
    [Crossref] [Google Scholar]
  16. Chao EC, Lipkin SM. 2006.. Molecular models for the tissue specificity of DNA mismatch repair-deficient carcinogenesis. . Nucleic Acids Res. 34:(3):84052
    [Crossref] [Google Scholar]
  17. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, et al. 2011.. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. . N. Engl. J. Med. 364:(26):250716
    [Crossref] [Google Scholar]
  18. Cheng H, Fan K, Luo G, Fan Z, Yang C, et al. 2019.. KrasG12D mutation contributes to regulatory T cell conversion through activation of the MEK/ERK pathway in pancreatic cancer. . Cancer Lett. 446::10311
    [Crossref] [Google Scholar]
  19. Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C. 2015.. HNF1B-associated renal and extra-renal disease—an expanding clinical spectrum. . Nat. Rev. Nephrol. 11:(2):10212
    [Crossref] [Google Scholar]
  20. Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, et al. 2018.. The chromatin accessibility landscape of primary human cancers. . Science 362:(6413):eaav1898
    [Crossref] [Google Scholar]
  21. Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, et al. 2016.. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. . Cancer Cell 30:(4):56377
    [Crossref] [Google Scholar]
  22. Dave K, Sur I, Yan J, Zhang J, Kaasinen E, et al. 2017.. Mice deficient of Myc super-enhancer region reveal differential control mechanism between normal and pathological growth. . eLife 6::e23382
    [Crossref] [Google Scholar]
  23. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, et al. 2002.. Mutations of the BRAF gene in human cancer. . Nature 417:(6892):94954
    [Crossref] [Google Scholar]
  24. Diersch S, Wirth M, Schneeweis C, Jors S, Geisler F, et al. 2016.. KrasG12D induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. . Oncogene 35:(29):388086
    [Crossref] [Google Scholar]
  25. Dost AFM, Moye AL, Vedaie M, Tran LM, Fung E, et al. 2020.. Organoids model transcriptional hallmarks of oncogenic KRAS activation in lung epithelial progenitor cells. . Cell Stem Cell 27:(4):66378.e8
    [Crossref] [Google Scholar]
  26. Dow LE, O'Rourke KP, Simon J, Tschaharganeh DF, van Es JH, et al. 2015.. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. . Cell 161:(7):153952
    [Crossref] [Google Scholar]
  27. Escoubet-Lozach L, Benner C, Kaikkonen MU, Lozach J, Heinz S, et al. 2011.. Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. . PLOS Genet. 7:(12):e1002401
    [Crossref] [Google Scholar]
  28. Feldman BJ, Feldman D. 2001.. The development of androgen-independent prostate cancer. . Nat. Rev. Cancer 1:(1):3445
    [Crossref] [Google Scholar]
  29. Finch A, Prescott J, Shchors K, Hunt A, Soucek L, et al. 2006.. Bcl-xL gain of function and p19ARF loss of function cooperate oncogenically with Myc in vivo by distinct mechanisms. . Cancer Cell 10:(2):11320
    [Crossref] [Google Scholar]
  30. Flanagan DJ, Pentinmikko N, Luopajärvi K, Willis NJ, Gilroy K, et al. 2021.. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. . Nature 594:(7863):43035
    [Crossref] [Google Scholar]
  31. Fletcher O, Houlston RS. 2010.. Architecture of inherited susceptibility to common cancer. . Nat. Rev. Cancer 10:(5):35361
    [Crossref] [Google Scholar]
  32. Flier JS, Underhill LH, Dvorak HF. 1986.. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. . N. Engl. J. Med. 315:(26):165059
    [Crossref] [Google Scholar]
  33. Friedberg EC. 2001.. How nucleotide excision repair protects against cancer. . Nat. Rev. Cancer 1:(1):2233
    [Crossref] [Google Scholar]
  34. Fufa TD, Baxter LL, Wedel JC, Gildea DE, Loftus SK, Pavan WJ. 2019.. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. . Epigenet. Chromatin 12:(1):50
    [Crossref] [Google Scholar]
  35. Gardner EE, Earlie EM, Li K, Thomas J, Hubisz MJ, et al. 2024.. Lineage-specific intolerance to oncogenic drivers restricts histological transformation. . Science 383:(6683):eadj1415
    [Crossref] [Google Scholar]
  36. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, et al. 2005.. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. . Nature 436:(7047):11722
    [Crossref] [Google Scholar]
  37. Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, et al. 2010.. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. . Immunity 32:(3):31728
    [Crossref] [Google Scholar]
  38. Grabocka E, Bar-Sagi D. 2016.. Mutant KRAS enhances tumor cell fitness by upregulating stress granules. . Cell 167:(7):180313.e12
    [Crossref] [Google Scholar]
  39. Guerra C, Schuhmacher AJ, Cañamero M, Grippo PJ, Verdaguer L, et al. 2007.. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. . Cancer Cell 11:(3):291302
    [Crossref] [Google Scholar]
  40. Hageman JH, Heinz MC, Kretzschmar K, van der Vaart J, Clevers H, Snippert HJG. 2020.. Intestinal regeneration: regulation by the microenvironment. . Dev. Cell 54:(4):43546
    [Crossref] [Google Scholar]
  41. Halbrook CJ, Wen H-J, Ruggeri JM, Takeuchi KK, Zhang Y, et al. 2017.. Mitogen-activated protein kinase kinase activity maintains acinar-to-ductal metaplasia and is required for organ regeneration in pancreatitis. . Cell Mol. Gastroenterol. Hepatol. 3:(1):99118
    [Crossref] [Google Scholar]
  42. Hanahan D, Weinberg RA. 2011.. Hallmarks of cancer: the next generation. . Cell 144:(5):64674
    [Crossref] [Google Scholar]
  43. He M, Chaurushiya MS, Webster JD, Kummerfeld S, Reja R, et al. 2019.. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. . Science 364:(6437):28385
    [Crossref] [Google Scholar]
  44. He P, Yang JW, Yang VW, Bialkowska AB. 2018.. Krüppel-like factor 5, increased in pancreatic ductal adenocarcinoma, promotes proliferation, acinar-to-ductal metaplasia, pancreatic intraepithelial neoplasia, and tumor growth in mice. . Gastroenterology 154:(5):1494508.e13
    [Crossref] [Google Scholar]
  45. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, et al. 2010.. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. . Mol. Cell 38:(4):57689
    [Crossref] [Google Scholar]
  46. Henley MJ, Koehler AN. 2021.. Advances in targeting ‘undruggable’ transcription factors with small molecules. . Nat. Rev. Drug Discov. 20:(9):66988
    [Crossref] [Google Scholar]
  47. Hill W, Lim EL, Weeden CE, Lee C, Augustine M, et al. 2023.. Lung adenocarcinoma promotion by air pollutants. . Nature 616:(7955):15967
    [Crossref] [Google Scholar]
  48. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, et al. 2003.. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. . Cancer Cell 4:(6):43750
    [Crossref] [Google Scholar]
  49. Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT, et al. 2013.. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. . Nature 504:(7478):13842
    [Crossref] [Google Scholar]
  50. Juul NH, Yoon JK, Martinez MC, Rishi N, Kazadaeva YI, et al. 2023.. KRAS(G12D) drives lepidic adenocarcinoma through stem-cell reprogramming. . Nature 619:(7971):86067
    [Crossref] [Google Scholar]
  51. Kaelin WG. 2007.. Von Hippel-Lindau disease. . Annu. Rev. Pathol. 2::14573
    [Crossref] [Google Scholar]
  52. Kaikkonen MU, Spann NJ, Heinz S, Romanoski CE, Allison KA, et al. 2013.. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. . Mol. Cell 51:(3):31025
    [Crossref] [Google Scholar]
  53. Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, et al. 1997.. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. . Nature 385:(6616):54448
    [Crossref] [Google Scholar]
  54. Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KCQ, et al. 2007.. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. . PNAS 104:(42):1666368
    [Crossref] [Google Scholar]
  55. Kim CK, Saxena M, Maharjan K, Song JJ, Shroyer KR, et al. 2020.. Krüppel-like factor 5 regulates stemness, lineage specification, and regeneration of intestinal epithelial stem cells. . Cell Mol. Gastroenterol. Hepatol. 9:(4):587609
    [Crossref] [Google Scholar]
  56. Köhler C, Nittner D, Rambow F, Radaelli E, Stanchi F, et al. 2017.. Mouse cutaneous melanoma induced by mutant BRaf arises from expansion and dedifferentiation of mature pigmented melanocytes. . Cell Stem Cell 21:(5):67993.e6
    [Crossref] [Google Scholar]
  57. Kong LR, Gupta K, Wu AJ, Perera D, Ivanyi-Nagy R, et al. 2024.. A glycolytic metabolite bypasses “two-hit” tumor suppression by BRCA2. . Cell 187:(9):226987.e16
    [Crossref] [Google Scholar]
  58. Kong X, Kuilman T, Shahrabi A, Boshuizen J, Kemper K, et al. 2017.. Cancer drug addiction is relayed by an ERK2-dependent phenotype switch. . Nature 550:(7675):27074
    [Crossref] [Google Scholar]
  59. Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, et al. 2012.. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. . Cancer Cell 22:(6):73750
    [Crossref] [Google Scholar]
  60. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, et al. 2017.. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. . Science 355:(6320):7883
    [Crossref] [Google Scholar]
  61. Kwei KA, Kim YH, Girard L, Kao J, Pacyna-Gengelbach M, et al. 2008.. Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. . Oncogene 27:(25):363540
    [Crossref] [Google Scholar]
  62. Laurette P, Strub T, Koludrovic D, Keime C, Le Gras S, et al. 2015.. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells. . eLife 4:(4):e06857
    [Crossref] [Google Scholar]
  63. Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, et al. 2016.. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. . Cancer Cell 29:(4):53647
    [Crossref] [Google Scholar]
  64. Lee M, Patel D, Jofre S, Fidvi S, Suhrland M, et al. 2022.. Large cell neuroendocrine carcinoma transformation as a mechanism of acquired resistance to osimertinib in non-small cell lung cancer: case report and literature review. . Clin. Lung Cancer 23:(3):e27682
    [Crossref] [Google Scholar]
  65. Li Y, He Y, Peng J, Su Z, Li Z, et al. 2021.. Mutant Kras co-opts a proto-oncogenic enhancer network in inflammation-induced metaplastic progenitor cells to initiate pancreatic cancer. . Nat. Cancer 2:(1):4965
    [Crossref] [Google Scholar]
  66. Li Z, Zhuang X, Pan CH, Yan Y, Thummalapalli R, et al. 2024.. Alveolar differentiation drives resistance to KRAS inhibition in lung adenocarcinoma. . Cancer Discov. 14:(2):30825
    [Crossref] [Google Scholar]
  67. Lin C, Song H, Huang C, Yao E, Gacayan R, et al. 2012.. Alveolar type II cells possess the capability of initiating lung tumor development. . PLOS ONE 7:(12):e53817
    [Crossref] [Google Scholar]
  68. Lionarons DA, Hancock DC, Rana S, East P, Moore C, et al. 2019.. RAC1P29S induces a mesenchymal phenotypic switch via serum response factor to promote melanoma development and therapy resistance. . Cancer Cell 36:(1):6883.e9
    [Crossref] [Google Scholar]
  69. Little DR, Lynch AM, Yan Y, Akiyama H, Kimura S, Chen J. 2021.. Differential chromatin binding of the lung lineage transcription factor NKX2-1 resolves opposing murine alveolar cell fates in vivo. . Nat. Commun. 12:(1):2509
    [Crossref] [Google Scholar]
  70. Lo Ré AE, Fernández-Barrena MG, Almada LL, Mills LD, Elsawa SF, et al. 2012.. Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-induced autophagy in cancer cells. . J. Biol. Chem. 287:(30):2532534
    [Crossref] [Google Scholar]
  71. Maeda Y, Tsuchiya T, Hao H, Tompkins DH, Xu Y, et al. 2012.. KrasG12D and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung. . J. Clin. Investig. 122:(12):4388400
    [Crossref] [Google Scholar]
  72. Martincorena I. 2019.. Somatic mutation and clonal expansions in human tissues. . Genome Med. 11:(1):35
    [Crossref] [Google Scholar]
  73. Mauduit D, Taskiran II, Minnoye L, de Waegeneer M, Christiaens V, et al. 2021.. Analysis of long and short enhancers in melanoma cell states. . eLife 10::e71735
    [Crossref] [Google Scholar]
  74. McConnell BB, Bialkowska AB, Nandan MO, Ghaleb AM, Gordon FJ, Yang VW. 2009.. Haploinsufficiency of Krüppel-like factor 5 rescues the tumor-initiating effect of the ApcMin mutation in the intestine. . Cancer Res. 69:(10):412533
    [Crossref] [Google Scholar]
  75. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, et al. 2002.. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. . Cell 109:(6):70718
    [Crossref] [Google Scholar]
  76. Means AL, Meszoely IM, Suzuki K, Miyamoto Y, Rustgi AK, et al. 2005.. Pancreatic epithelial plasticity mediated by acinar cell transdifferentiation and generation of nestin-positive intermediates. . Development 132:(16):376776
    [Crossref] [Google Scholar]
  77. Means AL, Ray KC, Singh AB, Washington MK, Whitehead RH, et al. 2003.. Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia. . Gastroenterology 124:(4):102036
    [Crossref] [Google Scholar]
  78. Mollaaghababa R, Pavan WJ. 2003.. The importance of having your SOX on: role of SOX10 in the development of neural crest-derived melanocytes and glia. . Oncogene 22:(20):302434
    [Crossref] [Google Scholar]
  79. Moorman AR, Cambuli F, Benitez EK, Jiang Q, Xie Y, et al. 2023.. Progressive plasticity during colorectal cancer metastasis. . bioRxiv. 2023.08.18.553925. https://doi.org/10.1101/2023.08.18.553925
  80. Morris JP, Cano DA, Sekine S, Wang SC, Hebrok M. 2010.. β-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. . J. Clin. Investig. 120:(2):50820
    [Crossref] [Google Scholar]
  81. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, et al. 2017.. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. . Science 355:(6320):8488
    [Crossref] [Google Scholar]
  82. Mullen AC, Orlando DA, Newman JJ, Lovén J, Kumar RM, et al. 2011.. Master transcription factors determine cell-type-specific responses to TGF-β signaling. . Cell 147:(3):56576
    [Crossref] [Google Scholar]
  83. Murphy DJ, Junttila MR, Pouyet L, Karnezis A, Shchors K, et al. 2008.. Distinct thresholds govern Myc's biological output in vivo. . Cancer Cell 14:(6):44757
    [Crossref] [Google Scholar]
  84. Mzoughi S, Schwarz M, Wang X, Demircioglu D, Ulukaya G, et al. 2023.. A mutation-driven oncofetal regression fuels phenotypic plasticity in colorectal cancer. . bioRxiv. 2023.12.10.570854. https://doi.org/10.1101/2023.12.10.570854
  85. Nandan MO, Ghaleb AM, Bialkowska AB, Yang VW. 2015.. Krüppel-like factor 5 is essential for proliferation and survival of mouse intestinal epithelial stem cells. . Stem Cell Res. 14:(1):1019
    [Crossref] [Google Scholar]
  86. Nandan MO, Ghaleb AM, McConnell BB, Patel NV, Robine S, Yang VW. 2010.. Krüppel-like factor 5 is a crucial mediator of intestinal tumorigenesis in mice harboring combined ApcMin and KRASV12 mutations. . Mol. Cancer 9::63
    [Crossref] [Google Scholar]
  87. Ng-Blichfeldt JP, Stewart BJ, Clatworthy MR, Williams JM, Röper K. 2024.. Identification of a core transcriptional program driving the human renal mesenchymal-to-epithelial transition. . Dev. Cell 59:(5):595612.e8
    [Crossref] [Google Scholar]
  88. Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, et al. 2018.. Somatic activating KRAS mutations in arteriovenous malformations of the brain. . N. Engl. J. Med. 378:(3):25061
    [Crossref] [Google Scholar]
  89. Pacini C, Dempster JM, Boyle I, Gonçalves E, Najgebauer H, et al. 2021.. Integrated cross-study datasets of genetic dependencies in cancer. . Nat. Commun. 12:(1):1661
    [Crossref] [Google Scholar]
  90. Patel SA, Hirosue S, Rodrigues P, Vojtasova E, Richardson EK, et al. 2022.. The renal lineage factor PAX8 controls oncogenic signalling in kidney cancer. . Nature 606:(7916):9991006
    [Crossref] [Google Scholar]
  91. Polyak K, Hahn WC. 2006.. Roots and stems: stem cells in cancer. . Nat. Med. 12:(3):296300
    [Crossref] [Google Scholar]
  92. Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, et al. 2019.. Pan-cancer whole-genome analyses of metastatic solid tumours. . Nature 575:(7781):21016
    [Crossref] [Google Scholar]
  93. Purdue MP, Dutta D, Machiela MJ, Gorman BR, Winter T, et al. 2024.. Multi-ancestry genome-wide association study of kidney cancer identifies 63 susceptibility regions. . Nat. Genet. 56:(5):80918
    [Crossref] [Google Scholar]
  94. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. 2012.. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. . Cancer Cell 21:(6):83647
    [Crossref] [Google Scholar]
  95. Richard G, Dalle S, Monet M, Ligier M, Boespflug A, et al. 2016.. ZEB 1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. . EMBO Mol. Med. 8:(10):114361
    [Crossref] [Google Scholar]
  96. Ridker PM, MacFadyen JG, Thuren T, Everett B, Libby P, et al. 2017.. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. . Lancet 390:(10105):183342
    [Crossref] [Google Scholar]
  97. Robinson D, Van Allen EM, Wu Y-M, Schultz N, Lonigro RJ, et al. 2015.. Integrative clinical genomics of advanced prostate cancer. . Cell 162:(2):454
    [Crossref] [Google Scholar]
  98. Rodrigues P, Patel SA, Harewood L, Olan I, Vojtasova E, et al. 2018.. NF-κB-dependent lymphoid enhancer co-option promotes renal carcinoma metastasis. . Cancer Discov. 8:(7):85065
    [Crossref] [Google Scholar]
  99. Roy R, Chun J, Powell SN. 2012.. BRCA1 and BRCA2: different roles in a common pathway of genome protection. . Nat. Rev. Cancer 12:(1):6878
    [Crossref] [Google Scholar]
  100. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. 1990.. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. . Cell 61:(6):112135
    [Crossref] [Google Scholar]
  101. Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, et al. 2007.. Myc deletion rescues Apc deficiency in the small intestine. . Nature 446:(7136):67679
    [Crossref] [Google Scholar]
  102. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, et al. 2012.. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. . Science 337:(6095):73035
    [Crossref] [Google Scholar]
  103. Schödel J, Bardella C, Sciesielski LK, Brown JM, Pugh CW, et al. 2012.. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. . Nat. Genet. 44:(4):42025, S1–2
    [Crossref] [Google Scholar]
  104. Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, et al. 2012.. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. . Nat. Cell Biol. 14:(8):88290
    [Crossref] [Google Scholar]
  105. Snyder EL, Watanabe H, Magendantz M, Hoersch S, Chen TA, et al. 2013.. Nkx2-1 represses a latent gastric differentiation program in lung adenocarcinoma. . Mol. Cell 50:(2):18599
    [Crossref] [Google Scholar]
  106. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, et al. 2013.. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. . Nature 496:(7443):1015
    [Crossref] [Google Scholar]
  107. Spitz F, Furlong EEM. 2012.. Transcription factors: from enhancer binding to developmental control. . Nat. Rev. Genet. 13:(9):61326
    [Crossref] [Google Scholar]
  108. Steingrímsson E, Copeland NG, Jenkins NA. 2004.. Melanocytes and the microphthalmia transcription factor network. . Annu. Rev. Genet. 38::365411
    [Crossref] [Google Scholar]
  109. Stok C, Kok YP, van den Tempel N, van Vugt MATM. 2021.. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. . Nucleic Acids Res. 49:(8):423957
    [Crossref] [Google Scholar]
  110. Sur IK, Hallikas O, Vähärautio A, Yan J, Turunen M, et al. 2012.. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. . Science 338:(6112):136063
    [Crossref] [Google Scholar]
  111. Tan SLW, Chadha S, Liu Y, Gabasova E, Perera D, et al. 2017.. A class of environmental and endogenous toxins induces BRCA2 haploinsufficiency and genome instability. . Cell 169:(6):110518.e15
    [Crossref] [Google Scholar]
  112. Tanaka H, Yanagisawa K, Shinjo K, Taguchi A, Maeno K, et al. 2007.. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. . Cancer Res. 67:(13):600711
    [Crossref] [Google Scholar]
  113. Tape CJ, Ling S, Dimitriadi M, McMahon KM, Worboys JD, et al. 2016.. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. . Cell 165:(4):91020. Erratum . 2016.. Cell 165:(7):1818
    [Google Scholar]
  114. To MD, Wong CE, Karnezis AN, Del Rosario R, Di Lauro R, Balmain A. 2008.. Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. . Nat. Genet. 40:(10):124044
    [Crossref] [Google Scholar]
  115. Toth A, Kannan P, Snowball J, Kofron M, Wayman JA, et al. 2023.. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific epigenomic state during lung homeostasis and regeneration. . Nat. Commun. 14:(1):8452
    [Crossref] [Google Scholar]
  116. Trompouki E, Bowman TV, Lawton LN, Fan ZP, Wu DC, et al. 2011.. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. . Cell 147:(3):57789
    [Crossref] [Google Scholar]
  117. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, et al. 2017.. Defining a cancer dependency map. . Cell 170:(3):56476.e16
    [Crossref] [Google Scholar]
  118. Turajlic S, Xu H, Litchfield K, Rowan A, Horswell S, et al. 2018.. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx Renal. . Cell 173:(3):595610.e11
    [Crossref] [Google Scholar]
  119. Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, et al. 2009.. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. . Nat. Genet. 41:(8):88590
    [Crossref] [Google Scholar]
  120. van Neerven SM, de Groot NE, Nijman LE, Scicluna BP, van Driel MS, et al. 2021.. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. . Nature 594:(7863):43641
    [Crossref] [Google Scholar]
  121. Vanharanta S, Shu W, Brenet F, Hakimi AA, Heguy A, et al. 2013.. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. . Nat. Med. 19:(1):5056
    [Crossref] [Google Scholar]
  122. Verfaillie A, Imrichova H, Atak ZK, Dewaele M, Rambow F, et al. 2015.. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. . Nat. Commun. 6::6683
    [Crossref] [Google Scholar]
  123. Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A, et al. 2013.. Defining stem cell dynamics in models of intestinal tumor initiation. . Science 342:(6161):99598
    [Crossref] [Google Scholar]
  124. Watson PA, Arora VK, Sawyers CL. 2015.. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. . Nat. Rev. Cancer 15:(12):70111
    [Crossref] [Google Scholar]
  125. Weir BA, Woo MS, Getz G, Perner S, Ding L, et al. 2007.. Characterizing the cancer genome in lung adenocarcinoma. . Nature 450:(7171):89398
    [Crossref] [Google Scholar]
  126. Weiss JM, Hunter MV, Cruz NM, Baggiolini A, Tagore M, et al. 2022.. Anatomic position determines oncogenic specificity in melanoma. . Nature 604:(7905):35461
    [Crossref] [Google Scholar]
  127. Wellbrock C, Rana S, Paterson H, Pickersgill H, Brummelkamp T, Marais R. 2008.. Oncogenic BRAF regulates melanoma proliferation through the lineage specific factor MITF. . PLOS ONE 3:(7):e2734
    [Crossref] [Google Scholar]
  128. Wert SE, Dey CR, Blair PA, Kimura S, Whitsett JA. 2002.. Increased expression of thyroid transcription factor-1 (TTF-1) in respiratory epithelial cells inhibits alveolarization and causes pulmonary inflammation. . Dev. Biol. 242:(2):7587
    [Crossref] [Google Scholar]
  129. Wesolowski L, Ge J, Castillon L, Sesia D, Dyas A, et al. 2023.. The SWI/SNF complex member SMARCB1 supports lineage fidelity in kidney cancer. . iScience 26:(8):107360
    [Crossref] [Google Scholar]
  130. Winslow MM, Dayton TL, Verhaak RGW, Kim-Kiselak C, Snyder EL, et al. 2011.. Suppression of lung adenocarcinoma progression by Nkx2-1. . Nature 473:(7345):1014
    [Crossref] [Google Scholar]
  131. Wouters J, Kalender-Atak Z, Minnoye L, Spanier KI, De Waegeneer M, et al. 2020.. Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. . Nat. Cell Biol. 22:(8):98698
    [Crossref] [Google Scholar]
  132. Xu X, Rock JR, Lu Y, Futtner C, Schwab B, et al. 2012.. Evidence for type II cells as cells of origin of K-Ras–induced distal lung adenocarcinoma. . PNAS 109:(13):491015
    [Crossref] [Google Scholar]
  133. Yamaguchi T, Hosono Y, Yanagisawa K, Takahashi T. 2013.. NKX2-1/TTF-1: an enigmatic oncogene that functions as a double-edged sword for cancer cell survival and progression. . Cancer Cell 23:(6):71823
    [Crossref] [Google Scholar]
  134. Yamaguchi T, Yanagisawa K, Sugiyama R, Hosono Y, Shimada Y, et al. 2012.. NKX2-1/TITF1/TTF-1-induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. . Cancer Cell 21:(3):34861
    [Crossref] [Google Scholar]
  135. Yao W, Rose JL, Wang W, Seth S, Jiang H, et al. 2019.. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. . Nature 568:(7752):41014
    [Crossref] [Google Scholar]
  136. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, et al. 2012.. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. . Cell 149:(3):65670
    [Crossref] [Google Scholar]
  137. Yuan B, Li C, Kimura S, Engelhardt RT, Smith BR, Minoo P. 2000.. Inhibition of distal lung morphogenesis in Nkx2.1(−/−) embryos. . Dev. Dyn. 217:(2):18090
    [Crossref] [Google Scholar]
  138. Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, et al. 2018.. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. . Nature 555:(7695):25155
    [Crossref] [Google Scholar]
  139. Zhang DX, Glass CK. 2013.. Towards an understanding of cell-specific functions of signal-dependent transcription factors. . J. Mol. Endocrinol. 51:(3):T3750
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-060524-105603
Loading
/content/journals/10.1146/annurev-cancerbio-060524-105603
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error