1932

Abstract

A surge of recent studies have identified B cells as pivotal contributors to shaping the tumor microenvironment (TME) within solid tumors. B cells can both directly and indirectly antagonize tumor growth via antibody production, antigen presentation, and cytokine secretion, potentially through the formation of tertiary lymphoid structures. However, certain B cell states have demonstrated the ability to promote tumor growth via immunoregulatory mechanisms such as the production of immunosuppressive cytokines and the expression of immune checkpoints, both of which dampen T cell–dependent antitumor responses. Here, we discuss the dichotomy of B cell function in solid tumors, underscoring both the pro- and antitumor roles that B cells play in the TME. Furthermore, we summarize ongoing efforts to reprogram protumorigenic B cells and/or to promote the activity and abundance of effector B cells as potential immunotherapy approaches in solid tumors.

Keyword(s): B cellscancerimmunotherapy
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-060624-045703
2025-04-11
2025-06-24
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-060624-045703.html?itemId=/content/journals/10.1146/annurev-cancerbio-060624-045703&mimeType=html&fmt=ahah

Literature Cited

  1. Aizik L, Dror Y, Taussig D, Barzel A, Carmi Y, Wine Y. 2021.. Antibody repertoire analysis of tumor-infiltrating B cells reveals distinct signatures and distributions across tissues. . Front. Immunol. 12::705381
    [Crossref] [Google Scholar]
  2. Allen CDC, Ansel KM, Low C, Lesley R, Tamamura H, et al. 2004.. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. . Nat. Immunol. 5::94352
    [Crossref] [Google Scholar]
  3. Andreu P, Johansson M, Affara NI, Pucci F, Tan T, et al. 2010.. FcRγ activation regulates inflammation-associated squamous carcinogenesis. . Cancer Cell 17::12134
    [Google Scholar]
  4. Asanprakit W, Lobo DN, Eremin O, Bennett AJ. 2023.. Expression of polymeric immunoglobulin receptor (PIGR) and the effect of PIGR overexpression on breast cancer cells. . Sci. Rep. 13::16606
    [Crossref] [Google Scholar]
  5. Benitez A, Weldon AJ, Tatosyan L, Velkuru V, Lee S, et al. 2014.. Differences in mouse and human nonmemory B cell pools. . J. Immunol. 192::461019
    [Crossref] [Google Scholar]
  6. Beurskens FJ, van Schaarenburg RA, Trouw LA. 2015.. C1q, antibodies and anti-C1q autoantibodies. . Mol. Immunol. 68::613
    [Crossref] [Google Scholar]
  7. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, et al. 2013.. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. . Immunity 39::78295
    [Crossref] [Google Scholar]
  8. Biswas S, Mandal G, Anadon CM, Chaurio RA, Lopez-Bailon LU, et al. 2023.. Targeting intracellular oncoproteins with dimeric IgA promotes expulsion from the cytoplasm and immune-mediated control of epithelial cancers. . Immunity 56::257083.e6
    [Crossref] [Google Scholar]
  9. Biswas S, Mandal G, Payne KK, Anadon CM, Gatenbee CD, et al. 2021.. IgA transcytosis and antigen recognition govern ovarian cancer immunity. . Nature 591::46470
    [Crossref] [Google Scholar]
  10. Bod L, Kye Y-C, Shi J, Torlai Triglia E, Schnell A, et al. 2023.. B-cell-specific checkpoint molecules that regulate anti-tumour immunity. . Nature 619::34856
    [Crossref] [Google Scholar]
  11. Bodogai M, Lee Chang C, Wejksza K, Lai J, Merino M, et al. 2013.. Anti-CD20 antibody promotes cancer escape via enrichment of tumor-evoked regulatory B cells expressing low levels of CD20 and CD137L. . Cancer Res. 73::212738
    [Crossref] [Google Scholar]
  12. Bohlson SS, Fraser DA, Tenner AJ. 2007.. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. . Mol. Immunol. 44::3343
    [Crossref] [Google Scholar]
  13. Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, et al. 2017.. Antigen-presenting intratumoral B cells affect CD4+ TIL phenotypes in non-small cell lung cancer patients. . Cancer Immunol. Res. 5::898907
    [Crossref] [Google Scholar]
  14. Byrne KT, Leisenring NH, Bajor DL, Vonderheide RH. 2016.. CSF-1R-dependent lethal hepatotoxicity when agonistic CD40 antibody is given before but not after chemotherapy. . J. Immunol. 197::17987
    [Crossref] [Google Scholar]
  15. Cappell KM, Kochenderfer JN. 2023.. Long-term outcomes following CAR T cell therapy: what we know so far. . Nat. Rev. Clin. Oncol. 20::35971
    [Crossref] [Google Scholar]
  16. Carter NA, Rosser EC, Mauri C. 2012.. Interleukin-10 produced by B cells is crucial for the suppression of Th17/Th1 responses, induction of T regulatory type 1 cells and reduction of collagen-induced arthritis. . Arthritis Res. Ther. 14::R32
    [Crossref] [Google Scholar]
  17. Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, et al. 2021.. Immunosuppressive mechanisms of regulatory B cells. . Front. Immunol. 12::611795
    [Crossref] [Google Scholar]
  18. Chen C, Ma J, Pi C, Huang W, Zhang T, et al. 2023.. PPARδ inhibition blocks the induction and function of tumor-induced IL-10+ regulatory B cells and enhances cancer immunotherapy. . Cell Discov. 9::54
    [Crossref] [Google Scholar]
  19. Chen C, Zhang Y, Wu X, Shen J. 2024.. The role of tertiary lymphoid structure and B cells in nasopharyngeal carcinoma: based on bioinformatics and experimental verification. . Transl. Oncol. 41::101885
    [Crossref] [Google Scholar]
  20. Chen J, Tan Y, Sun F, Hou L, Zhang C, et al. 2020.. Single-cell transcriptome and antigen-immunoglobin analysis reveals the diversity of B cells in non-small cell lung cancer. . Genome Biol. 21::152
    [Crossref] [Google Scholar]
  21. Chen K, Wang Q, Li M, Guo H, Liu W, et al. 2021.. Single-cell RNA-seq reveals dynamic change in tumor microenvironment during pancreatic ductal adenocarcinoma malignant progression. . EBioMedicine 66::103315
    [Crossref] [Google Scholar]
  22. Chen S-C, Vassileva G, Kinsley D, Holzmann S, Manfra D, et al. 2002.. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. . J. Immunol. 168::10018
    [Crossref] [Google Scholar]
  23. Chen Z, Zhu Y, Du R, Pang N, Zhang F, et al. 2019.. Role of regulatory B cells in the progression of cervical cancer. . Mediators Inflamm. 2019::6519427
    [Google Scholar]
  24. Cheong T-C, Compagno M, Chiarle R. 2016.. Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system. . Nat. Commun. 7::10934
    [Crossref] [Google Scholar]
  25. Cho BC, Rodriguez-Abreu D, Hussein M, Cobo M, Patel A, et al. 2021.. LBA2 updated analysis and patient-reported outcomes (PROs) from CITYSCAPE: a randomised, double-blind, phase II study of the anti-TIGIT antibody tiragolumab + atezolizumab (TA) versus placebo + atezolizumab (PA) as first-line treatment for PD-L1+ NSCLC. . Ann. Oncol. 32::S1428
    [Crossref] [Google Scholar]
  26. Cho K-A, Lee J-K, Kim Y-H, Park M, Woo S-Y, Ryu K-H. 2017.. Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. . Cell Mol. Immunol. 14::895908
    [Crossref] [Google Scholar]
  27. Churov A, Zhulai G. 2021.. Targeting adenosine and regulatory T cells in cancer immunotherapy. . Hum. Immunol. 82::27078
    [Crossref] [Google Scholar]
  28. Clark EA. 2014.. A short history of the B-cell-associated surface molecule CD40. . Front. Immunol. 5::472
    [Crossref] [Google Scholar]
  29. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, et al. 2007.. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. . Nature 450::56669
    [Crossref] [Google Scholar]
  30. Cui C, Wang J, Fagerberg E, Chen PM, Connolly KA, et al. 2021.. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. . Cell 184::610118.e13
    [Crossref] [Google Scholar]
  31. Curigliano G, Gelderblom H, Mach N, Doi T, Tai D, et al. 2021.. Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors. . Clin. Cancer Res. 27::362029
    [Crossref] [Google Scholar]
  32. de Visser KE, Korets LV, Coussens LM. 2005.. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. . Cancer Cell 7::41123
    [Google Scholar]
  33. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, et al. 2007.. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. . J. Exp. Med. 204::125765
    [Crossref] [Google Scholar]
  34. Delvecchio FR, Fincham REA, Spear S, Clear A, Roy-Luzarraga M, et al. 2021.. Pancreatic cancer chemotherapy is potentiated by induction of tertiary lymphoid structures in mice. . Cell. Mol. Gastroenterol. Hepatol. 12::154365
    [Crossref] [Google Scholar]
  35. Di Caro G, Bergomas F, Grizzi F, Doni A, Bianchi P, et al. 2014.. Occurrence of tertiary lymphoid tissue is associated with T-cell infiltration and predicts better prognosis in early-stage colorectal cancers. . Clin. Cancer Res. 20::214758
    [Crossref] [Google Scholar]
  36. Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, et al. 2014.. Complement is activated by IgG hexamers assembled at the cell surface. . Science 343::12603
    [Crossref] [Google Scholar]
  37. Dieu-Nosjean M-C, Antoine M, Danel C, Heudes D, Wislez M, et al. 2008.. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. . J. Clin. Oncol. 26::441017
    [Crossref] [Google Scholar]
  38. Dieu-Nosjean M-C, Giraldo NA, Kaplon H, Germain C, Fridman WH, Sautès-Fridman C. 2016.. Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers. . Immunol. Rev. 271::26075
    [Crossref] [Google Scholar]
  39. Dixon KO, van der Kooij SW, Vignali DAA, van Kooten C. 2015.. Human tolerogenic dendritic cells produce IL-35 in the absence of other IL-12 family members. . Eur. J. Immunol. 45::173647
    [Crossref] [Google Scholar]
  40. Elgueta R, Benson MJ, De Vries VC, Wasiuk A, Guo Y, Noelle RJ. 2009.. Molecular mechanism and function of CD40/CD40L engagement in the immune system. . Immunol. Rev. 229::15272
    [Crossref] [Google Scholar]
  41. Faustino LD, Griffith JW, Rahimi RA, Nepal K, Hamilos DL, et al. 2020.. Interleukin-33 activates regulatory T cells to suppress innate γδ T cell responses in the lung. . Nat. Immunol. 21::137183
    [Crossref] [Google Scholar]
  42. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. 2002.. B cells regulate autoimmunity by provision of IL-10. . Nat. Immunol. 3::94450
    [Crossref] [Google Scholar]
  43. Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautès-Fridman C. 2022.. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. . Nat. Rev. Clin. Oncol. 19::44157
    [Crossref] [Google Scholar]
  44. Fridman WH, Meylan M, Pupier G, Calvez A, Hernandez I, Sautès-Fridman C. 2023a.. Tertiary lymphoid structures and B cells: an intratumoral immunity cycle. . Immunity 56::225469
    [Crossref] [Google Scholar]
  45. Fridman WH, Sibéril S, Pupier G, Soussan S, Sautès-Fridman C. 2023b.. Activation of B cells in Tertiary Lymphoid Structures in cancer: anti-tumor or anti-self?. Semin. Immunol. 65::101703
    [Crossref] [Google Scholar]
  46. Fusil F, Calattini S, Amirache F, Mancip J, Costa C, et al. 2015.. A lentiviral vector allowing physiologically regulated membrane-anchored and secreted antibody expression depending on B-cell maturation status. . Mol. Ther. 23::173447
    [Crossref] [Google Scholar]
  47. Ganti SN, Albershardt TC, Iritani BM, Ruddell A. 2015.. Regulatory B cells preferentially accumulate in tumor-draining lymph nodes and promote tumor growth. . Sci. Rep. 5::12255
    [Crossref] [Google Scholar]
  48. Garaud S, Buisseret L, Solinas C, Gu-Trantien C, de Wind A, et al. 2019.. Tumor-infiltrating B cells signal functional humoral immune responses in breast cancer. . JCI Insight 5::e129641
    [Crossref] [Google Scholar]
  49. Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, et al. 2014.. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. . Am. J. Respir. Crit. Care Med. 189::83244
    [Crossref] [Google Scholar]
  50. Griss J, Bauer W, Wagner C, Simon M, Chen M, et al. 2019.. B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. . Nat. Commun. 10::4186
    [Crossref] [Google Scholar]
  51. Guan H, Lan Y, Wan Y, Wang Q, Wang C, et al. 2016.. PD-L1 mediated the differentiation of tumor-infiltrating CD19+ B lymphocytes and T cells in invasive breast cancer. . Oncoimmunology 5::e1075112
    [Crossref] [Google Scholar]
  52. Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, et al. 2016.. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. . Cancer Discov. 6::27085
    [Crossref] [Google Scholar]
  53. Gunderson AJ, Rajamanickam V, Bui C, Bernard B, Pucilowska J, et al. 2021.. Germinal center reactions in tertiary lymphoid structures associate with neoantigen burden, humoral immunity and long-term survivorship in pancreatic cancer. . Oncoimmunology 10::1900635
    [Crossref] [Google Scholar]
  54. Gupta SL, Khan N, Basu S, Soni V. 2022.. B-cell-based immunotherapy: a promising new alternative. . Vaccines 10::879
    [Crossref] [Google Scholar]
  55. Gu-Trantien C, Migliori E, Buisseret L, de Wind A, Brohée S, et al. 2017.. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. . JCI Insight 2::e91487
    [Crossref] [Google Scholar]
  56. Hassan R, Ho M. 2008.. Mesothelin targeted cancer immunotherapy. . Eur. J. Cancer 44::4653
    [Crossref] [Google Scholar]
  57. Hladíková K, Koucký V, Bouček J, Laco J, Grega M, et al. 2019.. Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8+ T cells. . J. Immunother. Cancer 7::261
    [Crossref] [Google Scholar]
  58. Hollern DP, Xu N, Thennavan A, Glodowski C, Garcia-Recio S, et al. 2019.. B cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. . Cell 179::1191206.e21
    [Crossref] [Google Scholar]
  59. Hu H-T, Ai X, Lu M, Song Z, Li H. 2019.. Characterization of intratumoral and circulating IL-10-producing B cells in gastric cancer. . Exp. Cell Res. 384::111652
    [Crossref] [Google Scholar]
  60. Irenaeus SMM, Nielsen D, Ellmark P, Yachnin J, Deronic A, et al. 2019.. First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. . Int. J. Cancer 145::118999
    [Crossref] [Google Scholar]
  61. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, et al. 2011.. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. . Blood 117::53041
    [Crossref] [Google Scholar]
  62. Jeske SS, Brand M, Ziebart A, Laban S, Doescher J, et al. 2020.. Adenosine-producing regulatory B cells in head and neck cancer. . Cancer Immunol. Immunother. 69::120516
    [Crossref] [Google Scholar]
  63. Jin X-K, Liang J-L, Zhang S-M, Ji P, Huang Q-X, et al. 2023.. Engineering metal-based hydrogel-mediated tertiary lymphoid structure formation via activation of the STING pathway for enhanced immunotherapy. . Mater. Horiz. 10::436579
    [Crossref] [Google Scholar]
  64. Kim S, Fridlender ZG, Dunn R, Kehry MR, Kapoor V, et al. 2008.. B-cell depletion using an anti-CD20 antibody augments antitumor immune responses and immunotherapy in nonhematopoetic murine tumor models. . J. Immunother. 31::44657
    [Crossref] [Google Scholar]
  65. Kroeger DR, Milne K, Nelson BH. 2016.. Tumor-infiltrating plasma cells are associated with tertiary lymphoid structures, cytolytic T-cell responses, and superior prognosis in ovarian cancer. . Clin. Cancer Res. 22::300515
    [Crossref] [Google Scholar]
  66. Laoharawee K, Johnson MJ, Lahr WS, Peterson JJ, Webber BR, Moriarity BS. 2020.. Genome engineering of primary human B cells using CRISPR/Cas9. . J. Vis. Exp. 3::e61855
    [Google Scholar]
  67. Laumont CM, Banville AC, Gilardi M, Hollern DP, Nelson BH. 2022.. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. . Nat. Rev. Cancer 22::41430
    [Crossref] [Google Scholar]
  68. Lechner A, Schlößer HA, Thelen M, Wennhold K, Rothschild SI, et al. 2019.. Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma. . Oncoimmunology 8::1535293
    [Crossref] [Google Scholar]
  69. Lee BO, Moyron-Quiroz J, Rangel-Moreno J, Kusser KL, Hartson L, et al. 2003.. CD40, but not CD154, expression on B cells is necessary for optimal primary B cell responses. . J. Immunol. 171::570717
    [Crossref] [Google Scholar]
  70. Lee-Chang C, Bodogai M, Martin-Montalvo A, Wejksza K, Sanghvi M, et al. 2013.. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. . J. Immunol. 191::414151
    [Crossref] [Google Scholar]
  71. Legler DF, Loetscher M, Roos RS, Clark-Lewis I, Baggiolini M, Moser B. 1998.. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. . J. Exp. Med. 187::65560
    [Crossref] [Google Scholar]
  72. Li S, Mirlekar B, Johnson BM, Brickey WJ, Wrobel JA, et al. 2022.. STING-induced regulatory B cells compromise NK function in cancer immunity. . Nature 610::37380
    [Crossref] [Google Scholar]
  73. Li X, Du H, Zhan S, Liu W, Wang Z, et al. 2022.. The interaction between the soluble programmed death ligand-1 (sPD-L1) and PD-1+ regulator B cells mediates immunosuppression in triple-negative breast cancer. . Front. Immunol. 13::830606
    [Crossref] [Google Scholar]
  74. Li YY, Li SJ, Liu MC, Chen Z, Li L, et al. 2023.. B cells and tertiary lymphoid structures are associated with survival in papillary thyroid cancer. . J. Endocrinol. Investig. 46::224756
    [Crossref] [Google Scholar]
  75. Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, et al. 2013.. Interleukin 21-induced granzyme B-expressing B cells infiltrate tumors and regulate T cells. . Cancer Res. 73::246879
    [Crossref] [Google Scholar]
  76. Link A, Hardie DL, Favre S, Britschgi MR, Adams DH, et al. 2011.. Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. . Am. J. Pathol. 178::166275
    [Crossref] [Google Scholar]
  77. Liu H-C, Davila Gonzalez D, Viswanath DI, Vander Pol RS, Saunders SZ, et al. 2023.. Sustained intratumoral administration of agonist CD40 antibody overcomes immunosuppressive tumor microenvironment in pancreatic cancer. . Adv. Sci. 10::2370054
    [Crossref] [Google Scholar]
  78. Liu L, Zhang L, Yang L, Li H, Li R, et al. 2017.. Anti-CD47 antibody as a targeted therapeutic agent for human lung cancer and cancer stem cells. . Front. Immunol. 8::404
    [Crossref] [Google Scholar]
  79. Liu R, Lu Z, Gu J, Liu J, Huang E, et al. 2018.. MicroRNAs 15A and 16-1 activate signaling pathways that mediate chemotaxis of immune regulatory B cells to colorectal tumors. . Gastroenterology 154::63751
    [Crossref] [Google Scholar]
  80. Liu Z, Fu YX. 2020.. Chemotherapy induces cancer-fighting B cells. . Cell 180::103739
    [Crossref] [Google Scholar]
  81. Luke JJ, Barlesi F, Chung K, Tolcher AW, Kelly K, et al. 2021.. Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors. . J. Immunother. Cancer 9::e002015
    [Crossref] [Google Scholar]
  82. Luo B, Zhan Y, Luo M, Dong H, Liu J, et al. 2020.. Engineering of α-PD-1 antibody-expressing long-lived plasma cells by CRISPR/Cas9-mediated targeted gene integration. . Cell Death Dis. 11::973
    [Crossref] [Google Scholar]
  83. Luo S, Zhu R, Yu T, Fan H, Hu Y, et al. 2019.. Chronic inflammation: a common promoter in tertiary lymphoid organ neogenesis. . Front. Immunol. 10::2938
    [Crossref] [Google Scholar]
  84. Luther SA, Ansel KM, Cyster JG. 2003.. Overlapping roles of CXCL13, interleukin 7 receptor α, and CCR7 ligands in lymph node development. . J. Exp. Med. 197::119198
    [Crossref] [Google Scholar]
  85. Luther SA, Lopez T, Bai W, Hanahan D, Cyster JG. 2000.. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. . Immunity 12:(5):47181
    [Crossref] [Google Scholar]
  86. Lynch KT, Young SJ, Meneveau MO, Wages NA, Engelhard VH, et al. 2021.. Heterogeneity in tertiary lymphoid structure B-cells correlates with patient survival in metastatic melanoma. . J. Immunother. Cancer 9::e002273
    [Crossref] [Google Scholar]
  87. Ma A, Xin G, Ma Q. 2022.. The use of single-cell multi-omics in immuno-oncology. . Nat. Commun. 13::2728
    [Crossref] [Google Scholar]
  88. Ma J, Wu Y, Ma L, Yang X, Zhang T, et al. 2024.. A blueprint for tumor-infiltrating B cells across human cancers. . Science 384::eadj4857
    [Crossref] [Google Scholar]
  89. Mao H, Pan F, Wu Z, Wang Z, Zhou Y, et al. 2017.. Colorectal tumors are enriched with regulatory plasmablasts with capacity in suppressing T cell inflammation. . Int. Immunopharmacol. 49::95101
    [Crossref] [Google Scholar]
  90. Marcucci KT, Jadlowsky JK, Hwang W-T, Suhoski-Davis M, Gonzalez VE, et al. 2018.. Retroviral and lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. . Mol. Therapy 26::26979
    [Crossref] [Google Scholar]
  91. Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, et al. 2011.. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. . Cancer Res. 71::567887
    [Crossref] [Google Scholar]
  92. Mauri C. 2021.. Novel frontiers in regulatory B cells. . Immunol. Rev. 299::59
    [Crossref] [Google Scholar]
  93. Mauri C, Gray D, Mushtaq N, Londei M. 2003.. Prevention of arthritis by interleukin 10-producing B cells. . J. Exp. Med. 197::489501
    [Crossref] [Google Scholar]
  94. Merz C, Sykora J, Marschall V, Richards DM, Heinonen K, et al. 2018.. The hexavalent CD40 agonist HERA-CD40L induces T-cell-mediated antitumor immune response through activation of antigen-presenting cells. . J. Immunother. 41::38598
    [Crossref] [Google Scholar]
  95. Mesin L, Ersching J, Victora GD. 2016.. Germinal center B cell dynamics. . Immunity 45::47182
    [Crossref] [Google Scholar]
  96. Messina JL, Fenstermacher DA, Eschrich S, Qu X, Berglund AE, et al. 2012.. 12-Chemokine gene signature identifies lymph node-like structures in melanoma: potential for patient selection for immunotherapy?. Sci. Rep. 2::765
    [Crossref] [Google Scholar]
  97. Meylan M, Petitprez F, Becht E, Bougoüin A, Pupier G, et al. 2022.. Tertiary lymphoid structures generate and propagate anti-tumor antibody-producing plasma cells in renal cell cancer. . Immunity 55::52741.e5
    [Crossref] [Google Scholar]
  98. Meylan M, Petitprez F, Lacroix L, Di Tommaso L, Roncalli M, et al. 2020.. Early hepatic lesions display immature tertiary lymphoid structures and show elevated expression of immune inhibitory and immunosuppressive molecules. . Clin. Cancer Res. 26::438189
    [Crossref] [Google Scholar]
  99. Michaud D, Steward CR, Mirlekar B, Pylayeva-Gupta Y. 2021.. Regulatory B cells in cancer. . Immunol. Rev. 299::7492
    [Crossref] [Google Scholar]
  100. Mirlekar B, Michaud D, Lee SJ, Kren NP, Harris C, et al. 2020.. B cell–derived IL35 drives STAT3-dependent CD8+ T-cell exclusion in pancreatic cancer. . Cancer Immunol. Res. 8::292308
    [Crossref] [Google Scholar]
  101. Mirlekar B, Michaud D, Searcy R, Greene K, Pylayeva-Gupta Y. 2018.. IL35 hinders endogenous antitumor T-cell immunity and responsiveness to immunotherapy in pancreatic cancer. . Cancer Immunol. Res. 6::101424
    [Crossref] [Google Scholar]
  102. Mirlekar B, Wang Y, Li S, Zhou M, Entwistle S, et al. 2022.. Balance between immunoregulatory B cells and plasma cells drives pancreatic tumor immunity. . Cell Rep. Med. 3::100744
    [Crossref] [Google Scholar]
  103. Moffett HF, Harms CK, Fitzpatrick KS, Tooley MR, Boonyaratanakornkit J, Taylor JJ. 2019.. B cells engineered to express pathogen-specific antibodies protect against infection. . Sci. Immunol. 4::eaax0644
    [Crossref] [Google Scholar]
  104. Monach PA, Schreiber H, Rowley DA. 1993.. CD4+ and B lymphocytes in transplantation immunity. II. Augmented rejection of tumor allografts by mice lacking B cells. . Transplantation 55::135661
    [Crossref] [Google Scholar]
  105. Montfort A, Pearce O, Maniati E, Vincent BG, Bixby L, et al. 2017.. A strong B-cell response is part of the immune landscape in human high-grade serous ovarian metastases. . Clin. Cancer Res. 23::25062
    [Crossref] [Google Scholar]
  106. Murakami Y, Saito H, Shimizu S, Kono Y, Shishido Y, et al. 2019.. Increased regulatory B cells are involved in immune evasion in patients with gastric cancer. . Sci. Rep. 9::13083
    [Crossref] [Google Scholar]
  107. Ng KW, Boumelha J, Enfield KSS, Almagro J, Cha H, et al. 2023.. Antibodies against endogenous retroviruses promote lung cancer immunotherapy. . Nature 616::56373
    [Crossref] [Google Scholar]
  108. Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R, et al. 2011.. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. . Cancer Res. 71::350515
    [Crossref] [Google Scholar]
  109. Onder L, Danuser R, Scandella E, Firner S, Chai Q, et al. 2013.. Endothelial cell–specific lymphotoxin-β receptor signaling is critical for lymph node and high endothelial venule formation. . J. Exp. Med. 210::46573
    [Crossref] [Google Scholar]
  110. Park M-Y, Kim H-S, Woo S-J, Kim C-H, Park J-S, et al. 2008.. Efficient antitumor immunity in a murine colorectal cancer model induced by CEA RNA-electroporated B cells. . Eur. J. Immunol. 38::210617
    [Crossref] [Google Scholar]
  111. Pesch T, Bonati L, Kelton W, Parola C, Ehling RA, et al. 2019.. Molecular design, optimization, and genomic integration of chimeric B cell receptors in murine B cells. . Front. Immunol. 10::2630
    [Crossref] [Google Scholar]
  112. Premkumar K, Shankar BS. 2021.. TGF-βR inhibitor SB431542 restores immune suppression induced by regulatory B–T cell axis and decreases tumour burden in murine fibrosarcoma. . Cancer Immunol. Immunother. 70::15368
    [Crossref] [Google Scholar]
  113. Purwada A, Singh A. 2017.. Immuno-engineered organoids for regulating the kinetics of B-cell development and antibody production. . Nat. Protoc. 12::16882
    [Crossref] [Google Scholar]
  114. Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, et al. 2016.. IL35-producing B cells promote the development of pancreatic neoplasia. . Cancer Discov. 6::24755
    [Crossref] [Google Scholar]
  115. Ramachandran M, Vaccaro A, van de Walle T, Georganaki M, Lugano R, et al. 2023.. Tailoring vascular phenotype through AAV therapy promotes anti-tumor immunity in glioma. . Cancer Cell 41::113451.e10
    [Google Scholar]
  116. Ren H, Zhao S, Li W, Dong H, Zhou M, et al. 2014.. Therapeutic antitumor efficacy of B cells loaded with tumor-derived autophagasomes vaccine (DRibbles). . J. Immunother. 37::38393
    [Crossref] [Google Scholar]
  117. Revel M, Daugan MV, Sautés-Fridman C, Fridman WH, Roumenina LT. 2020.. Complement system: promoter or suppressor of cancer progression?. Antibodies 9::57
    [Crossref] [Google Scholar]
  118. Ribatti D. 2024.. Tertiary lymphoid structures, a historical reappraisal. . Tissue Cell 86::102288
    [Google Scholar]
  119. Rodriguez AB, Peske JD, Woods AN, Leick KM, Mauldin IS, et al. 2021.. Immune mechanisms orchestrate tertiary lymphoid structures in tumors via cancer-associated fibroblasts. . Cell Rep. 36::109422
    [Crossref] [Google Scholar]
  120. Rosser EC, Mauri C. 2015.. Regulatory B cells: origin, phenotype, and function. . Immunity 42::60712
    [Crossref] [Google Scholar]
  121. Roumenina LT, Daugan MV, Petitprez F, Sautès-Fridman C, Fridman WH. 2019.. Context-dependent roles of complement in cancer. . Nat. Rev. Cancer 19::698715
    [Crossref] [Google Scholar]
  122. Ruffin AT, Cillo AR, Tabib T, Liu A, Onkar S, et al. 2021.. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma. . Nat. Commun. 12::3349
    [Crossref] [Google Scholar]
  123. Sagiv-Barfi I, Czerwinski DK, Shree T, Lohmeyer JJK, Levy R. 2022.. Intratumoral immunotherapy relies on B and T cell collaboration. . Sci. Immunol. 7::eabn5859
    [Crossref] [Google Scholar]
  124. Sarvaria A, Madrigal JA, Saudemont A. 2017.. B cell regulation in cancer and anti-tumor immunity. . Cell. Mol. Immunol. 14::66274
    [Crossref] [Google Scholar]
  125. Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. 2019.. Tertiary lymphoid structures in the era of cancer immunotherapy. . Nat. Rev. Cancer 19::30725
    [Crossref] [Google Scholar]
  126. Saze Z, Schuler PJ, Hong C-S, Cheng D, Jackson EK, Whiteside TL. 2013.. Adenosine production by human B cells and B cell–mediated suppression of activated T cells. . Blood 122::918
    [Crossref] [Google Scholar]
  127. Schöffski P, Tan DSW, Martín M, Ochoa-de-Olza M, Sarantopoulos J, et al. 2022.. Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. . J. Immunother. Cancer 10::e003776
    [Crossref] [Google Scholar]
  128. Shankar S, Stolp J, Juvet SC, Beckett J, Macklin PS, et al. 2022.. Ex vivo-expanded human CD19+TIM-1+ regulatory B cells suppress immune responses in vivo and are dependent upon the TIM-1/STAT3 axis. . Nat. Commun. 13::3121
    [Crossref] [Google Scholar]
  129. Shao Y, Lo CM, Ling CC, Liu XB, Ng KT, et al. 2014.. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. . Cancer Lett. 355::26472
    [Crossref] [Google Scholar]
  130. Shen M, Wang J, Yu W, Zhang C, Liu M, et al. 2018.. A novel MDSC-induced PD-1PD-L1+ B-cell subset in breast tumor microenvironment possesses immuno-suppressive properties. . Oncoimmunology 7::1413520
    [Crossref] [Google Scholar]
  131. Shin C-A, Cho H-W, Shin A-R, Sohn H-J, Cho H-I, Kim T-G. 2016.. Co-expression of CD40L with CD70 or OX40L increases B-cell viability and antitumor efficacy. . Oncotarget 7::4617386
    [Crossref] [Google Scholar]
  132. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, et al. 2022.. Immune checkpoint inhibitors in cancer therapy. . Curr. Oncol. 29::304460
    [Crossref] [Google Scholar]
  133. Silina K, Soltermann A, Attar FM, Casanova R, Uckeley ZM, et al. 2018.. Germinal centers determine the prognostic relevance of tertiary lymphoid structures and are impaired by corticosteroids in lung squamous cell carcinoma. . Cancer Res. 78::130820
    [Crossref] [Google Scholar]
  134. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. 2005.. Identification and characterization of circulating human transitional B cells. . Blood 105::439098
    [Crossref] [Google Scholar]
  135. Smith TT, Moffett HF, Stephan SB, Opel CF, Dumigan AG, et al. 2017.. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. . J. Clin. Investig. 127::217691
    [Crossref] [Google Scholar]
  136. Soldevilla MM, Villanueva H, Martinez-Velez N, Meraviglia-Crivelli D, Alonso MM, et al. 2018.. Intratumoral injection of activated B lymphoblast in combination with PD-1 blockade induces systemic antitumor immunity with reduction of local and distal tumors. . Oncoimmunology 7::e1450711
    [Crossref] [Google Scholar]
  137. Steele KE, Brown C. 2018.. Multiplex immunohistochemistry for image analysis of tertiary lymphoid structures in cancer. . In Tertiary Lymphoid Structures, ed. MC Dieu-Nosjean , pp. 8798. New York:: Humana
    [Google Scholar]
  138. Suematsu S, Watanabe T. 2004.. Generation of a synthetic lymphoid tissue-like organoid in mice. . Nat. Biotechnol. 22::153945
    [Crossref] [Google Scholar]
  139. Tang H, Zhu M, Qiao J, Fu Y-X. 2017.. Lymphotoxin signalling in tertiary lymphoid structures and immunotherapy. . Cell Mol. Immunol. 14::80918
    [Crossref] [Google Scholar]
  140. Tao H, Lu L, Xia Y, Dai F, Wang Y, et al. 2015.. Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL-10. . Eur. J. Immunol. 45::9991009
    [Crossref] [Google Scholar]
  141. Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, et al. 2018.. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. . Nat. Med. 24::9941004
    [Crossref] [Google Scholar]
  142. Trenevska I, Li D, Banham AH. 2017.. Therapeutic antibodies against intracellular tumor antigens. . Front. Immunol. 8::1001
    [Crossref] [Google Scholar]
  143. Tsuchida CA, Brandes N, Bueno R, Trinidad M, Mazumder T, et al. 2023.. Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells. . Cell 186::456782.e20
    [Crossref] [Google Scholar]
  144. Ukita M, Hamanishi J, Yoshitomi H, Yamanoi K, Takamatsu S, et al. 2022.. CXCL13-producing CD4+ T cells accumulate in the early phase of tertiary lymphoid structures in ovarian cancer. . JCI Insight 7::e157215
    [Crossref] [Google Scholar]
  145. Vaahtomeri K, Moussion C, Hauschild R, Sixt M. 2021.. Shape and function of interstitial chemokine CCL21 gradients are independent of heparan sulfates produced by lymphatic endothelium. . Front. Immunol. 12::630002
    [Crossref] [Google Scholar]
  146. van Herpen CML, van der Voort R, van der Laak JAWM, Klasen IS, de Graaf AO, et al. 2008.. Intratumoral rhIL-12 administration in head and neck squamous cell carcinoma patients induces B cell activation. . Int. J. Cancer 123::235461
    [Crossref] [Google Scholar]
  147. Vijayan D, Young A, Teng MWL, Smyth MJ. 2017.. Targeting immunosuppressive adenosine in cancer. . Nat. Rev. Cancer 17::70924
    [Crossref] [Google Scholar]
  148. Voss JE, Gonzalez-Martin A, Andrabi R, Fuller RP, Murrell B, et al. 2019.. Reprogramming the antigen specificity of B cells using genome-editing technologies. . eLife 8::e42995
    [Crossref] [Google Scholar]
  149. Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. 1998.. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. . Hepatology 27::40714
    [Crossref] [Google Scholar]
  150. Wang WW, Yuan XL, Chen H, Xie GH, Ma YH, et al. 2015.. CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer. . Oncotarget 6::3348699
    [Crossref] [Google Scholar]
  151. Wang X, Asami S, Kitamura D. 2021.. A novel cancer immunotherapy using tumor-infiltrating B cells in the APCmin/+ mouse model. . PLOS ONE 16::e0245608
    [Crossref] [Google Scholar]
  152. Wen H, Ji T, Lin L, Cheng N, Zhu K, Cao L. 2023.. High expression of ten eleven translocation 1 is associated with poor prognosis in hepatocellular carcinoma. . Mediators Inflamm. 2023::2664370
    [Google Scholar]
  153. Wennhold K, Thelen M, Schlößer HA, Haustein N, Reuter S, et al. 2017a.. Using antigen-specific B cells to combine antibody and T cell–based cancer immunotherapy. . Cancer Immunol. Res. 5::73043
    [Crossref] [Google Scholar]
  154. Wennhold K, Weber TM, Klein-Gonzalez N, Thelen M, Garcia-Marquez M, et al. 2017b.. CD40-activated B cells induce anti-tumor immunity in vivo. . Oncotarget 8::2774053
    [Crossref] [Google Scholar]
  155. Wolf SD, Dittel BN, Hardardottir F, Janeway CA. 1996.. Experimental autoimmune encephalomyelitis induction in genetically B cell–deficient mice. . J. Exp. Med. 184::227178
    [Crossref] [Google Scholar]
  156. Workel HH, Lubbers JM, Arnold R, Prins TM, van der Vlies P, et al. 2019.. A transcriptionally distinct CXCL13+CD103+CD8+ T-cell population is associated with B-cell recruitment and neoantigen load in human cancer. . Cancer Immunol. Res. 7::78496
    [Crossref] [Google Scholar]
  157. Wouters MCA, Nelson BH. 2018.. Prognostic significance of tumor-infiltrating B cells and plasma cells in human cancer. . Clin. Cancer Res. 24::612535
    [Crossref] [Google Scholar]
  158. Wu H, Xia L, Jia D, Zou H, Jin G, et al. 2020.. PD-L1+ regulatory B cells act as a T cell suppressor in a PD-L1-dependent manner in melanoma patients with bone metastasis. . Mol. Immunol. 119::8391
    [Crossref] [Google Scholar]
  159. Xia J, Xie Z, Niu G, Lu Z, Wang Z, Xing Y, et al. 2023.. Single-cell landscape and clinical outcomes of infiltrating B cells in colorectal cancer. . Immunology 168::13551
    [Crossref] [Google Scholar]
  160. Xiao S, Brooks CR, Sobel RA, Kuchroo VK. 2015.. Tim-1 is essential for induction and maintenance of IL-10 in regulatory B cells and their regulation of tissue inflammation. . J. Immunol. 194::16028
    [Crossref] [Google Scholar]
  161. Xiao X, Lao X-M, Chen M-M, Liu R-X, Wei Y, et al. 2016.. PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. . Cancer Discov. 6::54659
    [Crossref] [Google Scholar]
  162. Yanaba K, Bouaziz J-D, Haas KM, Poe JC, Fujimoto M, Tedder TF. 2008.. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. . Immunity 28::63950
    [Crossref] [Google Scholar]
  163. Ye L, Zhang Q, Cheng Y, Chen X, Wang G, et al. 2018.. Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1+ regulatory B cell expansion. . J. Immunother. Cancer 6::145
    [Crossref] [Google Scholar]
  164. Yao M, Preall J, Yeh JT-H, Pappin D, Cifani P, et al. 2023.. Plasma cells in human pancreatic ductal adenocarcinoma secrete antibodies against self-antigens. . JCI Insight 8::e172449
    [Crossref] [Google Scholar]
  165. Ye S, Cohen D, Belmar NA, Choi D, Tan SS, et al. 2019.. A bispecific molecule targeting CD40 and tumor antigen mesothelin enhances tumor-specific immunity. . Cancer Immunol. Res. 7::186475
    [Crossref] [Google Scholar]
  166. Zhao S, Wu D, Wu P, Wang Z, Huang J. 2015.. Serum IL-10 predicts worse outcome in cancer patients: a meta-analysis. . PLOS ONE 10::e0139598
    [Crossref] [Google Scholar]
  167. Zhu G, Nemoto S, Mailloux AW, Perez-Villarroel P, Nakagawa R, Falahat R, et al. 2018.. Induction of tertiary lymphoid structures with antitumor function by a lymph node-derived stromal cell line. . Front. Immunol. 9::1609
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-060624-045703
Loading
/content/journals/10.1146/annurev-cancerbio-060624-045703
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error