1932

Abstract

Advances in genome sequencing and editing technologies have enriched our understanding of the biochemical pathways that drive tumorigenesis. Translating this knowledge into new medicines for cancer treatment, however, remains challenging, and many oncogenic proteins have proven recalcitrant to conventional approaches for chemical probe and drug discovery. Here, we discuss how innovations in chemical proteomics and covalent chemistry are being integrated to identify and advance first-in-class small molecules that target cancer-relevant proteins. Mechanistic studies have revealed that covalent compounds perturb protein functions in cancer cells in diverse ways that include the remodeling of protein–protein and protein–RNA complexes, as well as through alterations in posttranslational modification. We speculate on the attributes of chemical proteomics and covalent chemistry that have enabled targeting of previously inaccessible cancer-relevant pathways and consider technical challenges that remain to be addressed in order to fully realize the druggability of the cancer proteome.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061421-041946
2024-06-12
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-061421-041946.html?itemId=/content/journals/10.1146/annurev-cancerbio-061421-041946&mimeType=html&fmt=ahah

Literature Cited

  1. Abbasov ME, Kavanagh ME, Ichu TA, Lazear MR, Tao Y, et al. 2021.. Publisher correction: A proteome-wide atlas of lysine-reactive chemistry. . Nat. Chem. 13::1151
    [Crossref] [Google Scholar]
  2. Arkin MR, Tang Y, Wells JA. 2014.. Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. . Chem. Biol. 21::110214
    [Crossref] [Google Scholar]
  3. Bach K, Beerkens BLH, Zanon PRA, Hacker SM. 2020.. Light-activatable, 2,5-disubstituted tetrazoles for the proteome-wide profiling of aspartates and glutamates in living bacteria. . ACS Cent. Sci. 6::54654
    [Crossref] [Google Scholar]
  4. Backus KM, Correia BE, Lum KM, Forli S, Horning BD, et al. 2016.. Proteome-wide covalent ligand discovery in native biological systems. . Nature 534::57074
    [Crossref] [Google Scholar]
  5. Bar-Peled L, Kemper EK, Suciu RM, Vinogradova EV, Backus KM, et al. 2017.. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. . Cell 171::696709.e23
    [Crossref] [Google Scholar]
  6. Bateman LA, Nguyen TB, Roberts AM, Miyamoto DK, Ku WM, et al. 2017.. Chemoproteomics-enabled covalent ligand screen reveals a cysteine hotspot in reticulon 4 that impairs ER morphology and cancer pathogenicity. . Chem. Commun. 53::723437
    [Crossref] [Google Scholar]
  7. Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, et al. 2019.. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. . Nature 568::51116
    [Crossref] [Google Scholar]
  8. Bekes M, Langley DR, Crews CM. 2022.. PROTAC targeted protein degraders: the past is prologue. . Nat. Rev. Drug Discov. 21::118111200
    [Crossref] [Google Scholar]
  9. Benns HJ, Storch M, Falco JA, Fisher FR, Tamaki F, et al. 2022.. CRISPR-based oligo recombineering prioritizes apicomplexan cysteines for drug discovery. . Nat. Microbiol. 7::1891905
    [Crossref] [Google Scholar]
  10. Berger AH, Brooks AN, Wu X, Shrestha Y, Chouinard C, et al. 2016.. High-throughput phenotyping of lung cancer somatic mutations. . Cancer Cell 30::21428
    [Crossref] [Google Scholar]
  11. Blewett MM, Xie J, Zaro BW, Backus KM, Altman A, et al. 2016.. Chemical proteomic map of dimethyl fumarate–sensitive cysteines in primary human T cells. . Sci. Signal. 9::rs10
    [Crossref] [Google Scholar]
  12. Boatner LM, Palafox MF, Schweppe DK, Backus KM. 2023.. CysDB: a human cysteine database based on experimental quantitative chemoproteomics. . Cell Chem. Biol. 30:(6):68398.e3
    [Crossref] [Google Scholar]
  13. Boike L, Cioffi AG, Majewski FC, Co J, Henning NJ, et al. 2021.. Discovery of a functional covalent ligand targeting an intrinsically disordered cysteine within MYC. . Cell Chem. Biol. 28::413.e17
    [Crossref] [Google Scholar]
  14. Boike L, Henning NJ, Nomura DK. 2022.. Advances in covalent drug discovery. . Nat. Rev. Drug Discov. 21::88198
    [Crossref] [Google Scholar]
  15. Bondeson DP, Crews CM. 2017.. Targeted protein degradation by small molecules. . Annu. Rev. Pharmacol. Toxicol. 57::10723
    [Crossref] [Google Scholar]
  16. Bondeson DP, Mares A, Smith IE, Ko E, Campos S, et al. 2015.. Catalytic in vivo protein knockdown by small-molecule PROTACs. . Nat. Chem. Biol. 11::61117
    [Crossref] [Google Scholar]
  17. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, et al. 2018.. Lessons in PROTAC design from selective degradation with a promiscuous warhead. . Cell Chem. Biol. 25::7887.e5
    [Crossref] [Google Scholar]
  18. Brooks DJ, Fresco JR. 2002.. Increased frequency of cysteine, tyrosine, and phenylalanine residues since the last universal ancestor. . Mol. Cell. Proteom. 1::12531
    [Crossref] [Google Scholar]
  19. Browne CM, Jiang B, Ficarro SB, Doctor ZM, Johnson JL, et al. 2019.. A chemoproteomic strategy for direct and proteome-wide covalent inhibitor target-site identification. . J. Am. Chem. Soc. 141::191203
    [Crossref] [Google Scholar]
  20. Bushweller JH. 2019.. Targeting transcription factors in cancer – from undruggable to reality. . Nat. Rev. Cancer 19::61124
    [Crossref] [Google Scholar]
  21. Byrd JC, Harrington B, O'Brien S, Jones JA, Schuh A, et al. 2016.. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. . N. Engl. J. Med. 374::32332
    [Crossref] [Google Scholar]
  22. Cancer Genome Atlas Research Network. 2014.. Comprehensive molecular profiling of lung adenocarcinoma. . Nature 511::54350
    [Crossref] [Google Scholar]
  23. Canon J, Rex K, Saiki AY, Mohr C, Cooke K, et al. 2019.. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. . Nature 575::21723
    [Crossref] [Google Scholar]
  24. Caveney NA, Saxton RA, Waghray D, Glassman CR, Tsutsumi N, et al. 2023.. Structural basis of Janus kinase trans-activation. . Cell Rep. 42::112201
    [Crossref] [Google Scholar]
  25. Chakravarty D, Solit DB. 2021.. Clinical cancer genomic profiling. . Nat. Rev. Genet. 22::483501
    [Crossref] [Google Scholar]
  26. Cisar JS, Weber OD, Clapper JR, Blankman JL, Henry CL, et al. 2018.. Identification of ABX-1431, a selective inhibitor of monoacylglycerol lipase and clinical candidate for treatment of neurological disorders. . J. Med. Chem. 61::906284
    [Crossref] [Google Scholar]
  27. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. 2014.. Drugging the undruggable RAS: mission possible?. Nat. Rev. Drug Discov. 13::82851
    [Crossref] [Google Scholar]
  28. Cravatt B, Njomen E, Hayward R, DeMeester K, Ogasawara D, et al. 2023.. Comprehensive mapping of electrophilic small molecule–protein interactions in human cells. . ChemRxiv. https://chemrxiv.org/engage/chemrxiv/article-details/64788e6ebe16ad5c5748dcec
  29. Cravatt BF, Wright AT, Kozarich JW. 2008.. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. . Annu. Rev. Biochem. 77::383414
    [Crossref] [Google Scholar]
  30. Cromm PM, Crews CM. 2017.. Targeted protein degradation: from chemical biology to drug discovery. . Cell Chem. Biol. 24::118190
    [Crossref] [Google Scholar]
  31. Crowley VM, Thielert M, Cravatt BF. 2021.. Functionalized scout fragments for site-specific covalent ligand discovery and optimization. . ACS Cent. Sci. 7::61323
    [Crossref] [Google Scholar]
  32. Cuesta A, Taunton J. 2019.. Lysine-targeted inhibitors and chemoproteomic probes. . Annu. Rev. Biochem. 88::36581
    [Crossref] [Google Scholar]
  33. D'Agostino VG, Sighel D, Zucal C, Bonomo I, Micaelli M, et al. 2019.. Screening approaches for targeting ribonucleoprotein complexes: a new dimension for drug discovery. . SLAS Discov. 24::31431
    [Crossref] [Google Scholar]
  34. Dang CV. 2012.. MYC on the path to cancer. . Cell 149::2235
    [Crossref] [Google Scholar]
  35. Dang CV, Reddy EP, Shokat KM, Soucek L. 2017.. Drugging the ‘undruggable’ cancer targets. . Nat. Rev. Cancer 17::5028
    [Crossref] [Google Scholar]
  36. Dubiella C, Pinch BJ, Koikawa K, Zaidman D, Poon E, et al. 2021.. Sulfopin is a covalent inhibitor of Pin1 that blocks Myc-driven tumors in vivo. . Nat. Chem. Biol. 17::95463
    [Crossref] [Google Scholar]
  37. Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H. 2016.. Twenty years on: the impact of fragments on drug discovery. . Nat. Rev. Drug Discov. 15::60519
    [Crossref] [Google Scholar]
  38. Fadeyi OO, Hoth LR, Choi C, Feng X, Gopalsamy A, et al. 2017.. Covalent enzyme inhibition through fluorosulfate modification of a noncatalytic serine residue. . ACS Chem. Biol. 12::201520
    [Crossref] [Google Scholar]
  39. Fell JB, Fischer JP, Baer BR, Blake JF, Bouhana K, et al. 2020.. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer. . J. Med. Chem. 63::667993
    [Crossref] [Google Scholar]
  40. Ferguson FM, Gray NS. 2018.. Kinase inhibitors: the road ahead. . Nat. Rev. Drug Discov. 17::35377
    [Crossref] [Google Scholar]
  41. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, et al. 2010.. Selective inhibition of BET bromodomains. . Nature 468::106773
    [Crossref] [Google Scholar]
  42. Finlay MR, Anderton M, Ashton S, Ballard P, Bethel PA, et al. 2014.. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. . J. Med. Chem. 57::824967
    [Crossref] [Google Scholar]
  43. Fu L, Jung Y, Tian C, Ferreira RB, Cheng R, et al. 2023.. Nucleophilic covalent ligand discovery for the cysteine redoxome. . Nat. Chem. Biol. 19::130919
    [Crossref] [Google Scholar]
  44. Garnier J-M, Sharp PP, Burns CJ. 2014.. BET bromodomain inhibitors: a patent review. . Expert Opin. Ther. Pat. 24::18599
    [Crossref] [Google Scholar]
  45. Garraway LA, Sellers WR. 2006.. Lineage dependency and lineage-survival oncogenes in human cancer. . Nat. Rev. Cancer 6::593602
    [Crossref] [Google Scholar]
  46. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, et al. 2017.. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. . Nature 551::46471
    [Crossref] [Google Scholar]
  47. Gehringer M, Laufer SA. 2019.. Emerging and re-emerging warheads for targeted covalent inhibitors: applications in medicinal chemistry and chemical biology. . J. Med. Chem. 62::5673724
    [Crossref] [Google Scholar]
  48. Gerry CJ, Schreiber SL. 2020.. Recent achievements and current trajectories of diversity-oriented synthesis. . Curr. Opin. Chem. Biol. 56::19
    [Crossref] [Google Scholar]
  49. Goodnow RA Jr., Dumelin CE, Keefe AD. 2017.. DNA-encoded chemistry: enabling the deeper sampling of chemical space. . Nat. Rev. Drug Discov. 16::13147
    [Crossref] [Google Scholar]
  50. Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M. 2000.. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. . Chem. Biol. 7::56981
    [Crossref] [Google Scholar]
  51. Grüner BM, Schulze CJ, Yang D, Ogasawara D, Dix MM, et al. 2016.. An in vivo multiplexed small-molecule screening platform. . Nat. Methods 13::88389
    [Crossref] [Google Scholar]
  52. Hacker SM, Backus KM, Lazear MR, Forli S, Correia BE, Cravatt BF. 2017.. Global profiling of lysine reactivity and ligandability in the human proteome. . Nat. Chem. 9::118190
    [Crossref] [Google Scholar]
  53. Hahm HS, Toroitich EK, Borne AL, Brulet JW, Libby AH, et al. 2020.. Global targeting of functional tyrosines using sulfur-triazole exchange chemistry. . Nat. Chem. Biol. 16::15059
    [Crossref] [Google Scholar]
  54. Hashiguchi T, Bruss N, Best S, Lam V, Danilova O, et al. 2019.. Cyclin-dependent kinase-9 is a therapeutic target in MYC-expressing diffuse large B-cell lymphoma. . Mol. Cancer Ther. 18::152032
    [Crossref] [Google Scholar]
  55. Henning NJ, Boike L, Spradlin JN, Ward CC, Liu G, et al. 2022a.. Deubiquitinase-targeting chimeras for targeted protein stabilization. . Nat. Chem. Biol. 18::41221
    [Crossref] [Google Scholar]
  56. Henning NJ, Manford AG, Spradlin JN, Brittain SM, Zhang E, et al. 2022b.. Discovery of a covalent FEM1B recruiter for targeted protein degradation applications. . J. Am. Chem. Soc. 144::7018
    [Crossref] [Google Scholar]
  57. Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, et al. 2010.. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. . PNAS 107::1307580
    [Crossref] [Google Scholar]
  58. Huang HT, Dobrovolsky D, Paulk J, Yang G, Weisberg EL, et al. 2018.. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. . Cell Chem. Biol. 25::8899.e6
    [Crossref] [Google Scholar]
  59. Janes MR, Zhang J, Li L-S, Hansen R, Peters U, et al. 2018.. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. . Cell 172::57889.e17
    [Crossref] [Google Scholar]
  60. Jessani N, Humphrey M, McDonald WH, Niessen S, Masuda K, et al. 2004.. Carcinoma and stromal enzyme activity profiles associated with breast tumor growth in vivo. . PNAS 101::1375661
    [Crossref] [Google Scholar]
  61. Jia S, He D, Chang CJ. 2019.. Bioinspired thiophosphorodichloridate reagents for chemoselective histidine bioconjugation. . J. Am. Chem. Soc. 141::7294301
    [Crossref] [Google Scholar]
  62. Jin L, Wang W, Fang G. 2014.. Targeting protein-protein interaction by small molecules. . Annu. Rev. Pharmacol. Toxicol. 54::43556
    [Crossref] [Google Scholar]
  63. Johnson DS, Stiff C, Lazerwith SE, Kesten SR, Fay LK, et al. 2011.. Discovery of PF-04457845: a highly potent, orally bioavailable, and selective urea FAAH inhibitor. . ACS Med. Chem. Lett. 2::9196
    [Crossref] [Google Scholar]
  64. Johnson DS, Weerapana E, Cravatt BF. 2010.. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. . Future Med. Chem. 2::94964
    [Crossref] [Google Scholar]
  65. Julio AR, Backus KM. 2021.. New approaches to target RNA binding proteins. . Curr. Opin. Chem. Biol. 62::1323
    [Crossref] [Google Scholar]
  66. Kannt A, Dikic I. 2021.. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. . Cell Chem. Biol. 28::101431
    [Crossref] [Google Scholar]
  67. Kathman SG, Koo SJ, Lindsey GL, Her H-L, Blue SM, et al. 2023.. Remodeling oncogenic transcriptomes by small molecules targeting NONO. . Nat. Chem. Biol. 19:(7):82536
    [Crossref] [Google Scholar]
  68. Kavanagh ME, Horning BD, Khattri R, Roy N, Lu JP, et al. 2022.. Selective inhibitors of JAK1 targeting an isoform-restricted allosteric cysteine. . Nat. Chem. Biol. 18::138898
    [Crossref] [Google Scholar]
  69. Koikawa K, Kibe S, Suizu F, Sekino N, Kim N, et al. 2021.. Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy. . Cell 184::475371.e27
    [Crossref] [Google Scholar]
  70. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016.. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. . Nature 533::42024
    [Crossref] [Google Scholar]
  71. Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, et al. 2015.. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. . Nature 523::18388
    [Crossref] [Google Scholar]
  72. Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, et al. 2014.. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. . Science 343::3015
    [Crossref] [Google Scholar]
  73. Lanning BR, Whitby LR, Dix MM, Douhan J, Gilbert AM, et al. 2014.. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. . Nat. Chem. Biol. 10::76067
    [Crossref] [Google Scholar]
  74. Lazear MR, Remsberg JR, Jaeger MG, Rothamel K, Her H-L, et al. 2023.. Proteomic discovery of chemical probes that perturb protein complexes in human cells. . Mol. Cell 83::172542.e12
    [Crossref] [Google Scholar]
  75. Li ASM, Kimani S, Wilson B, Noureldin M, González-Álvarez H, et al. 2023.. Discovery of nanomolar DCAF1 small molecule ligands. . J. Med. Chem. 66::504160
    [Crossref] [Google Scholar]
  76. Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, et al. 2008.. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. . Oncogene 27::470211
    [Crossref] [Google Scholar]
  77. Li H, Ma T, Remsberg JR, Won SJ, DeMeester KE, et al. 2023.. Assigning functionality to cysteines by base editing of cancer dependency genes. . Nat. Chem. Biol. 19::132030
    [Crossref] [Google Scholar]
  78. Lin S, Yang X, Jia S, Weeks AM, Hornsby M, et al. 2017.. Redox-based reagents for chemoselective methionine bioconjugation. . Science 355::597602
    [Crossref] [Google Scholar]
  79. Liu Y, Patricelli MP, Cravatt BF. 1999.. Activity-based protein profiling: the serine hydrolases. . PNAS 96::1469499
    [Crossref] [Google Scholar]
  80. Lo LC, Pang TL, Kuo CH, Chiang YL, Wang HY, Lin JJ. 2002.. Design and synthesis of class-selective activity probes for protein tyrosine phosphatases. . J. Proteome Res. 1::3540
    [Crossref] [Google Scholar]
  81. Lu D, Yu X, Lin H, Cheng R, Monroy EY, et al. 2022.. Applications of covalent chemistry in targeted protein degradation. . Chem. Soc. Rev. 51::924361
    [Crossref] [Google Scholar]
  82. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, et al. 2014.. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. . Science 343::3059
    [Crossref] [Google Scholar]
  83. Lu J, Qian Y, Altieri M, Dong H, Wang J, et al. 2015.. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. . Chem. Biol. 22::75563
    [Crossref] [Google Scholar]
  84. Lucero B, Francisco KR, Liu LJ, Caffrey CR, Ballatore C. 2023.. Protein–protein interactions: developing small-molecule inhibitors/stabilizers through covalent strategies. . Trends Pharmacol. Sci. 44::47488
    [Crossref] [Google Scholar]
  85. Luo M, Spradlin JN, Boike L, Tong B, Brittain SM, et al. 2021.. Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function. . Cell Chem. Biol. 28::55966.e15
    [Crossref] [Google Scholar]
  86. Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu C-C, et al. 2016.. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. . Nature 535::25257
    [Crossref] [Google Scholar]
  87. McKeown MR, Bradner JE. 2014.. Therapeutic strategies to inhibit MYC. Cold Spring Harb. . Perspect. Med. 4:(10):a014266
    [Google Scholar]
  88. Minzel W, Venkatachalam A, Fink A, Hung E, Brachya G, et al. 2018.. Small molecules co-targeting CKIα and the transcriptional kinases CDK7/9 control AML in preclinical models. . Cell 175::17185.e25
    [Crossref] [Google Scholar]
  89. Moellering RE, Cravatt BF. 2012.. How chemoproteomics can enable drug discovery and development. . Chem. Biol. 19::1122
    [Crossref] [Google Scholar]
  90. Moffat JG, Rudolph J, Bailey D. 2014.. Phenotypic screening in cancer drug discovery – past, present and future. . Nat. Rev. Drug Discov. 13::588602
    [Crossref] [Google Scholar]
  91. Nakajima EC, Drezner N, Li X, Mishra-Kalyani PS, Liu Y, et al. 2022.. FDA approval summary: sotorasib for KRAS G12C-mutated metastatic NSCLC. . Clin Cancer Res. 28::148286
    [Crossref] [Google Scholar]
  92. Nasti R, Rossi D, Amadio M, Pascale A, Unver MY, et al. 2017.. Compounds interfering with embryonic lethal abnormal vision (ELAV) protein-RNA complexes: an avenue for discovering new drugs. . J. Med. Chem. 60::825767
    [Crossref] [Google Scholar]
  93. Niessen S, Dix MM, Barbas S, Potter ZE, Lu S, et al. 2017.. Proteome-wide map of targets of T790M-EGFR-directed covalent inhibitors. . Cell Chem. Biol. 24::1388400.e7
    [Crossref] [Google Scholar]
  94. Niphakis MJ, Cravatt BF. 2014.. Enzyme inhibitor discovery by activity-based protein profiling. . Annu. Rev. Biochem. 83::34177
    [Crossref] [Google Scholar]
  95. Nomura DK, Long JZ, Niessen S, Hoover HS, Ng SW, Cravatt BF. 2010.. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. . Cell 140::4961
    [Crossref] [Google Scholar]
  96. O'Neil NJ, Bailey ML, Hieter P. 2017.. Synthetic lethality and cancer. . Nat. Rev. Genet. 18::61323
    [Crossref] [Google Scholar]
  97. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. 2013.. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. . Nature 503::54851
    [Crossref] [Google Scholar]
  98. Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, et al. 2007.. Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. . ChemMedChem 2::5861
    [Crossref] [Google Scholar]
  99. Patricelli MP, Janes MR, Li L-S, Hansen R, Peters U, et al. 2016.. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. . Cancer Discov. 6::31629
    [Crossref] [Google Scholar]
  100. Patricelli MP, Szardenings AK, Liyanage M, Nomanbhoy TK, Wu M, et al. 2007.. Functional interrogation of the kinome using nucleotide acyl phosphates. . Biochemistry 46::35058
    [Crossref] [Google Scholar]
  101. Pei J, Xiao Y, Liu X, Hu W, Sobh A, et al. 2023.. Piperlongumine conjugates induce targeted protein degradation. . Cell Chem. Biol. 30::20313.e17
    [Crossref] [Google Scholar]
  102. Pinch BJ, Doctor ZM, Nabet B, Browne CM, Seo HS, et al. 2020.. Identification of a potent and selective covalent Pin1 inhibitor. . Nat. Chem. Biol. 16::97987
    [Crossref] [Google Scholar]
  103. Remsberg JR, Suciu RM, Zambetti NA, Hanigan TW, Firestone AJ, et al. 2021.. ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth. . Nat. Chem. Biol. 17::85664
    [Crossref] [Google Scholar]
  104. Ruprecht B, Wei L, Zheng L, Bodea S, Mo X, et al. 2022.. Chemoproteomic profiling to identify activity changes and functional inhibitors of DNA-binding proteins. . Cell Chem. Biol. 29::163948
    [Crossref] [Google Scholar]
  105. Sablin EP, Woods A, Krylova IN, Hwang P, Ingraham HA, Fletterick RJ. 2008.. The structure of corepressor Dax-1 bound to its target nuclear receptor LRH-1. . PNAS 105::1839095
    [Crossref] [Google Scholar]
  106. Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. 2001.. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. . PNAS 98::855459
    [Crossref] [Google Scholar]
  107. Salisbury CM, Cravatt BF. 2007.. Activity-based probes for proteomic profiling of histone deacetylase complexes. . PNAS 104::117176
    [Crossref] [Google Scholar]
  108. Sanman LE, Bogyo M. 2014.. Activity-based profiling of proteases. . Annu. Rev. Biochem. 83::24973
    [Crossref] [Google Scholar]
  109. Sato M, Fuchida H, Shindo N, Kuwata K, Tokunaga K, et al. 2020.. Selective covalent targeting of mutated EGFR(T790M) with chlorofluoroacetamide-pyrimidines. . ACS Med. Chem. Lett. 11::113744
    [Crossref] [Google Scholar]
  110. Schapira M, Calabrese MF, Bullock AN, Crews CM. 2019.. Targeted protein degradation: expanding the toolbox. . Nat. Rev. Drug Discov. 18::94963
    [Crossref] [Google Scholar]
  111. Schmidt KT, Huitema ADR, Chau CH, Figg WD. 2021.. Resistance to second-generation androgen receptor antagonists in prostate cancer. . Nat. Rev. Urol. 18::20926
    [Crossref] [Google Scholar]
  112. Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, et al. 2018.. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. . J. Med. Chem. 61::812035
    [Crossref] [Google Scholar]
  113. Schreiber SL. 2021.. The rise of molecular glues. . Cell 184::39
    [Crossref] [Google Scholar]
  114. Schröder M, Renatus M, Liang X, Meili F, Zoller T, et al. 2023.. Reinstating targeted protein degradation with DCAF1 PROTACs in CRBN PROTAC resistant settings. . bioRxiv 2023.04.09.536153. https://doi.org/10.1101/2023.04.09.536153
  115. Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O'Shea JJ. 2017.. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. . Nat. Rev. Drug Discov. 16::84362
    [Crossref] [Google Scholar]
  116. Schwefel D, Groom HC, Boucherit VC, Christodoulou E, Walker PA, et al. 2014.. Structural basis of lentiviral subversion of a cellular protein degradation pathway. . Nature 505::23438
    [Crossref] [Google Scholar]
  117. Scott KA, Ropek N, Melillo B, Schreiber SL, Cravatt BF, Vinogradova EV. 2022.. Stereochemical diversity as a source of discovery in chemical biology. . Curr. Res. Chem. Biol. 2::100028
    [Crossref] [Google Scholar]
  118. Shen HC, Balk SP. 2009.. Development of androgen receptor antagonists with promising activity in castration-resistant prostate cancer. . Cancer Cell 15::46163
    [Crossref] [Google Scholar]
  119. Shi Y, Carroll KS. 2020.. Activity-based sensing for site-specific proteomic analysis of cysteine oxidation. . Acc. Chem. Res. 53::2031
    [Crossref] [Google Scholar]
  120. Simanshu DK, Nissley DV, McCormick F. 2017.. RAS proteins and their regulators in human disease. . Cell 170::1733
    [Crossref] [Google Scholar]
  121. Singh J, Petter RC, Baillie TA, Whitty A. 2011.. The resurgence of covalent drugs. . Nat. Rev. Drug Discov. 10::30717
    [Crossref] [Google Scholar]
  122. Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, et al. 2021.. Sotorasib for lung cancers with KRAS p.G12C mutation. . N. Engl. J. Med. 384::237181
    [Crossref] [Google Scholar]
  123. Solca F, Dahl G, Zoephel A, Bader G, Sanderson M, et al. 2012.. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. . J. Pharmacol. Exp. Ther. 343::34250
    [Crossref] [Google Scholar]
  124. Spinelli FR, Meylan F, O'Shea JJ, Gadina M. 2021.. JAK inhibitors: ten years after. . Eur. J. Immunol. 51::161527
    [Crossref] [Google Scholar]
  125. Spradlin JN, Hu X, Ward CC, Brittain SM, Jones MD, et al. 2019.. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. . Nat. Chem. Biol. 15::74755
    [Crossref] [Google Scholar]
  126. Spradlin JN, Zhang E, Nomura DK. 2021.. Reimagining druggability using chemoproteomic platforms. . Acc. Chem. Res. 54::180113
    [Crossref] [Google Scholar]
  127. Struntz NB, Chen A, Deutzmann A, Wilson RM, Stefan E, et al. 2019.. Stabilization of the Max homodimer with a small molecule attenuates Myc-driven transcription. . Cell Chem. Biol. 26::71123.e14
    [Crossref] [Google Scholar]
  128. Tao Y, Remillard D, Vinogradova EV, Yokoyama M, Banchenko S, et al. 2022.. Targeted protein degradation by electrophilic PROTACs that stereoselectively and site-specifically engage DCAF1. . J. Am. Chem. Soc. 144::1868899
    [Crossref] [Google Scholar]
  129. Tong B, Luo M, Xie Y, Spradlin JN, Tallarico JA, et al. 2020.. Bardoxolone conjugation enables targeted protein degradation of BRD4. . Sci. Rep. 10::15543
    [Crossref] [Google Scholar]
  130. Toriki ES, Papatzimas JW, Nishikawa K, Dovala D, Frank AO, et al. 2023.. Rational chemical design of molecular glue degraders. . ACS Cent. Sci. 9::91526
    [Crossref] [Google Scholar]
  131. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, et al. 2017.. Defining a cancer dependency map. . Cell 170::56476.e16
    [Crossref] [Google Scholar]
  132. Tsitsiridis G, Steinkamp R, Giurgiu M, Brauner B, Fobo G, et al. 2023.. CORUM: the comprehensive resource of mammalian protein complexes–2022. . Nucleic Acids Res. 51::D53945
    [Crossref] [Google Scholar]
  133. Vinogradova EV, Zhang X, Remillard D, Lazar DC, Suciu RM, et al. 2020.. An activity-guided map of electrophile-cysteine interactions in primary human T cells. . Cell 182::100926.e29
    [Crossref] [Google Scholar]
  134. Wang C, Weerapana E, Blewett MM, Cravatt BF. 2014.. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. . Nat. Methods 11::7985
    [Crossref] [Google Scholar]
  135. Ward CC, Kleinman JI, Brittain SM, Lee PS, Chung CYS, et al. 2019.. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. . ACS Chem. Biol. 14::243040
    [Crossref] [Google Scholar]
  136. Ward CC, Kleinman JI, Nomura DK. 2017.. NHS-esters as versatile reactivity-based probes for mapping proteome-wide ligandable hotspots. . ACS Chem. Biol. 12::147883
    [Crossref] [Google Scholar]
  137. Weerapana E, Wang C, Simon GM, Richter F, Khare S, et al. 2010.. Quantitative reactivity profiling predicts functional cysteines in proteomes. . Nature 468::79095
    [Crossref] [Google Scholar]
  138. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, et al. 2015.. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. . Science 348::137681
    [Crossref] [Google Scholar]
  139. Xu JH, Eberhardt J, Hill-Payne B, González-Páez GE, Castellon JO, et al. 2020.. Integrative X-ray structure and molecular modeling for the rationalization of procaspase-8 inhibitor potency and selectivity. . ACS Chem. Biol. 15::57586
    [Crossref] [Google Scholar]
  140. Yang T, Cuesta A, Wan X, Craven GB, Hirakawa B, et al. 2022.. Reversible lysine-targeted probes reveal residence time-based kinase selectivity. . Nat. Chem. Biol. 18::93441
    [Crossref] [Google Scholar]
  141. Zhang L, Riley-Gillis B, Vijay P, Shen Y. 2019.. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. . Mol. Cancer Ther. 18::130211
    [Crossref] [Google Scholar]
  142. Zhang X, Crowley VM, Wucherpfennig TG, Dix MM, Cravatt BF. 2019.. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. . Nat. Chem. Biol. 15::73746
    [Crossref] [Google Scholar]
  143. Zhang X, Luukkonen LM, Eissler CL, Crowley VM, Yamashita Y, et al. 2021.. DCAF11 supports targeted protein degradation by electrophilic proteolysis-targeting chimeras. . J. Am. Chem. Soc. 143::514149
    [Crossref] [Google Scholar]
  144. Zhang Y, Daum S, Wildemann D, Zhou XZ, Verdecia MA, et al. 2007.. Structural basis for high-affinity peptide inhibition of human Pin1. . ACS Chem. Biol. 2::32028
    [Crossref] [Google Scholar]
  145. Zhao Q, Ouyang X, Wan X, Gajiwala KS, Kath JC, et al. 2017.. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. . J. Am. Chem. Soc. 139::68085
    [Crossref] [Google Scholar]
  146. Zhou W, Ercan D, Chen L, Yun C-H, Li D, et al. 2009.. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. . Nature 462::107074
    [Crossref] [Google Scholar]
  147. Zhou XZ, Lu KP. 2016.. The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. . Nat. Rev. Cancer 16::46378
    [Crossref] [Google Scholar]
  148. Zorba A, Nguyen C, Xu Y, Starr J, Borzilleri K, et al. 2018.. Delineating the role of cooperativity in the design of potent PROTACs for BTK. . PNAS 115::E728592
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061421-041946
Loading
/content/journals/10.1146/annurev-cancerbio-061421-041946
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error