1932

Abstract

The development of novel drug modalities is necessary to overcome the current critical issues in the treatment of cancer, namely toxicity, insufficient efficacy, and the development of resistance. Unlike classical small molecule inhibitors that only block a single function or interaction of a protein involved in oncogenic signaling, proteolysis-targeting chimeras (PROTACs) degrade the entire protein, thus offering a potential paradigm shift. PROTACs are bivalent small molecules that recruit a target protein in proximity to an E3 ligase, promoting the transfer of ubiquitin, which marks the protein for proteasomal degradation. Because of their unique properties, PROTACs offer an attractive alternative as targeted therapeutics. The first PROTAC entered the clinic 5 years ago, and since then more than 30 have followed. In this review, we discuss the current compounds being investigated in the clinic, the key aspects of their design, and their potential for treating cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-061824-105806
2025-04-11
2025-06-14
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-061824-105806.html?itemId=/content/journals/10.1146/annurev-cancerbio-061824-105806&mimeType=html&fmt=ahah

Literature Cited

  1. Alabi S, Jaime-Figueroa S, Yao Z, Gao Y, Hines J, et al. 2021.. Mutant-selective degradation by BRAF-targeting PROTACs. . Nat. Commun. 12::920
    [Crossref] [Google Scholar]
  2. Alfert A, Moreno N, Kerl K. 2019.. The BAF complex in development and disease. . Epigenet. Chromatin 12:(1):19
    [Crossref] [Google Scholar]
  3. Apprato G, Poongavanam V, Garcia Jimenez D, Atilaw Y, Erdelyi M, et al. 2024.. Exploring the chemical space of orally bioavailable PROTACs. . Drug Discov. Today 29:(4):103917
    [Crossref] [Google Scholar]
  4. Araki T, Kanda S, Horinouchi H, Ohe Y. 2023.. Current treatment strategies for EGFR-mutated non-small cell lung cancer: from first line to beyond osimertinib resistance. . Jpn. J. Clin. Oncol. 53:(7):54761
    [Crossref] [Google Scholar]
  5. Atilaw Y, Poongavanam V, Svensson Nilsson C, Nguyen D, Giese A, et al. 2021.. Solution conformations shed light on PROTAC cell permeability. . ACS Med. Chem. Lett. 12:(1):10714
    [Crossref] [Google Scholar]
  6. Awad MM, Liu S, Rybkin II, Arbour KC, Dilly J, et al. 2021.. Acquired resistance to KRASG12C inhibition in cancer. . N. Engl. J. Med. 384:(25):238293
    [Crossref] [Google Scholar]
  7. Banik SM, Pedram K, Wisnovsky S, Ahn G, Riley NM, Bertozzi CR. 2020.. Lysosome-targeting chimaeras for degradation of extracellular proteins. . Nature 584:(7820):29197
    [Crossref] [Google Scholar]
  8. Békés M, Langley DR, Crews CM. 2022.. PROTAC targeted protein degraders: The past is prologue. . Nat. Rev. Drug Discov. 21:(3):181200
    [Crossref] [Google Scholar]
  9. Bellenie BR, Cheung KMJ, Varela A, Pierrat OA, Collie GW, et al. 2020.. Achieving in vivo target depletion through the discovery and optimization of benzimidazolone BCL6 degraders. . J. Med. Chem. 63:(8):404768
    [Crossref] [Google Scholar]
  10. Bennett J, Starczynowski DT. 2022.. IRAK1 and IRAK4 as emerging therapeutic targets in hematologic malignancies. . Curr. Opin. Hematol. 29:(1):819
    [Crossref] [Google Scholar]
  11. Blair HA. 2021.. Sotorasib: first approval. . Drugs 81:(13):157379
    [Crossref] [Google Scholar]
  12. Bond MJ, Chu L, Nalawansha DA, Li K, Crews CM. 2020.. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs. . ACS Cent. Sci. 6:(8):136775
    [Crossref] [Google Scholar]
  13. Bondeson DP, Smith BE, Burslem GM, Buhimschi AD, Hines J, et al. 2018.. Lessons in PROTAC design from selective degradation with a promiscuous warhead. . Cell Chem. Biol. 25:(1):7887
    [Crossref] [Google Scholar]
  14. Bothe U, Günther J, Nubbemeyer R, Siebeneicher H, Ring S, et al. 2024.. Discovery of IRAK4 inhibitors BAY1834845 (zabedosertib) and BAY1830839. . J. Med. Chem. 67:(2):122542
    [Crossref] [Google Scholar]
  15. Braicu C, Buse M, Busuioc C, Drula R, Gulei D, et al. 2019.. A comprehensive review on MAPK: a promising therapeutic target in cancer. . Cancers 11:(10):1618
    [Crossref] [Google Scholar]
  16. Bricelj A, Steinebach C, Kuchta R, Gütschow M, Sosič I. 2021.. E3 ligase ligands in successful PROTACs: an overview of syntheses and linker attachment points. . Front. Chem. 9::707317
    [Crossref] [Google Scholar]
  17. Buhimschi AD, Armstrong HA, Toure M, Jaime-Figueroa S, Chen TL, et al. 2018.. Targeting the C481S ibrutinib-resistance mutation in Bruton's tyrosine kinase using PROTAC-mediated degradation. . Biochemistry 57:(26):356475
    [Crossref] [Google Scholar]
  18. Cantley J, Ye X, Rousseau E, Januario T, Hamman BD, et al. 2022.. Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. . Nat. Commun. 13:(1):6814
    [Crossref] [Google Scholar]
  19. Casement R, Bond A, Craigon C, Ciulli A. 2021.. Mechanistic and structural features of PROTAC ternary complexes. . Methods Mol. Biol. 2365::79113
    [Crossref] [Google Scholar]
  20. Chana CK, Maisonneuve P, Posternak G, Grinberg NGA, Poirson J, et al. 2022.. Discovery and structural characterization of small molecule binders of the human CTLH E3 ligase subunit GID4. . J. Med. Chem. 65:(19):1272546
    [Crossref] [Google Scholar]
  21. Chen L, Wan X, Shan X, Zha W, Fan R. 2022.. Smart PROTACs enable controllable protein degradation for precision cancer therapy. . Mol. Diagn. Ther. 26:(3):28391
    [Crossref] [Google Scholar]
  22. Cheng W, Li S, Wen X, Han S, Wang S, et al. 2021.. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. . Chem. Commun. 57:(95):1285255
    [Crossref] [Google Scholar]
  23. Chirnomas D, Hornberger KR, Crews CM. 2023.. Protein degraders enter the clinic – a new approach to cancer therapy. . Nat. Rev. Clin. Oncol. 20:(4):26578
    [Crossref] [Google Scholar]
  24. Ciulli A, O'Connor S, Chung C-W, Hartung IV, Testa A, et al. 2023.. The 17th EFMC short course on medicinal chemistry on small molecule protein degraders. . ChemMedChem 18:(20):e202300464
    [Crossref] [Google Scholar]
  25. Clusan L, Ferrière F, Flouriot G, Pakdel F. 2023.. A basic review on estrogen receptor signaling pathways in breast cancer. . Int. J. Mol. Sci. 24:(7):6834
    [Crossref] [Google Scholar]
  26. Conlan MG, de Vries EFJ, Glaudemans A, Wang Y, Troy S. 2020.. Pharmacokinetic and pharmacodynamic studies of elacestrant, a novel oral selective estrogen receptor degrader, in healthy post-menopausal women. . Eur. J. Drug Metab. Pharmacokinet. 45:(5):67589
    [Crossref] [Google Scholar]
  27. Crowe C, Nakasone MA, Chandler S, Craigon C, Sathe G, et al. 2024.. Mechanism of degrader-targeted protein ubiquitinability. . Sci. Adv. 10:eado6492
    [Google Scholar]
  28. Davey RA, Grossmann M. 2016.. Androgen receptor structure, function and biology: from bench to bedside. . Clin. Biochem. Rev. 37:(1):315
    [Google Scholar]
  29. Dhillon S. 2023.. Adagrasib: first approval. . Drugs 83:(3):27585
    [Crossref] [Google Scholar]
  30. Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, et al. 2021a.. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: exploration of antibody linker, payload loading, and payload molecular properties. . J. Med. Chem. 64:(5):253475
    [Crossref] [Google Scholar]
  31. Dragovich PS, Pillow TH, Blake RA, Sadowsky JD, Adaligil E, et al. 2021b.. Antibody-mediated delivery of chimeric BRD4 degraders. Part 2: improvement of in vitro antiproliferation activity and in vivo antitumor efficacy. . J. Med. Chem. 64:(5):2576607
    [Crossref] [Google Scholar]
  32. Eisermann K, Wang D, Jing Y, Pascal LE, Wang Z. 2013.. Androgen receptor gene mutation, rearrangement, polymorphism. . Transl. Androl. Urol. 2:(3):13747
    [Google Scholar]
  33. Farnaby W, Koegl M, Roy MJ, Whitworth C, Diers E, et al. 2019.. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. . Nat. Chem. Biol. 15:(7):67280
    [Crossref] [Google Scholar]
  34. Fon Tacer K, Montoya MC, Oatley MJ, Lord T, Oatley JM, et al. 2019.. MAGE cancer-testis antigens protect the mammalian germline under environmental stress. . Sci. Adv. 5::483261
    [Crossref] [Google Scholar]
  35. Gaballa S, Pinilla-Ibarz J. 2021.. BTK inhibitors in chronic lymphocytic leukemia. . Curr. Hematol. Malig. Rep. 16:(5):42232
    [Crossref] [Google Scholar]
  36. Gadd MS, Testa A, Lucas X, Chan KH, Chen W, et al. 2017.. Structural basis of PROTAC cooperative recognition for selective protein degradation. . Nat. Chem. Biol. 13:(5):51421
    [Crossref] [Google Scholar]
  37. Gao H, Sun X, Rao Y. 2020.. PROTAC technology: opportunities and challenges. . ACS Med. Chem. Lett. 11:(3):23740
    [Crossref] [Google Scholar]
  38. Garcia-Manero G, Winer ES, DeAngelo DJ, Tarantolo SR, Sallman DA, et al. 2022.. Phase 1/2a study of the IRAK4 inhibitor CA-4948 as monotherapy or in combination with azacitidine or venetoclax in patients with relapsed/refractory (R/R) acute myeloid leukemia or lyelodysplastic syndrome. . J. Clin. Oncol. 40:(Suppl. 16):7016
    [Crossref] [Google Scholar]
  39. Gazendam AM, Popovic S, Munir S, Parasu N, Wilson D, Ghert M. 2021.. Synovial sarcoma: a clinical review. . Curr. Oncol. 28:(3):190920
    [Crossref] [Google Scholar]
  40. Gim HJ, Park J, Jung ME, Houk KN. 2021.. Conformational dynamics of androgen receptors bound to agonists and antagonists. . Sci. Rep. 11:(1):15887
    [Crossref] [Google Scholar]
  41. Gomatou G, Syrigos N, Kotteas E. 2023.. Osimertinib resistance: molecular mechanisms and emerging treatment options. . Cancers 15:(3):841
    [Crossref] [Google Scholar]
  42. Gough SM, Flanagan JJ, Teh J, Andreoli M, Rousseau E, et al. 2024.. Oral estrogen receptor PROTAC vepdegestrant (ARV-471) is highly efficacious as monotherapy and in combination with CDK4/6 or PI3K/mTOR pathway inhibitors in preclinical ER+ breast cancer models. . Clin. Cancer Res. 30:(16):354963
    [Crossref] [Google Scholar]
  43. Guo J, Yi S, Chen Z. 2022.. Preparation method for BTK degradation agent. WO Patent 2022/111449 A1
    [Google Scholar]
  44. Ha S, Luo G, Xiang H. 2022.. A comprehensive overview of small-molecule androgen receptor degraders: recent progress and future perspectives. . J. Med. Chem. 65:(24):1612854
    [Crossref] [Google Scholar]
  45. Han X, Sun Y. 2022.. Strategies for the discovery of oral PROTAC degraders aimed at cancer therapy. . Cell Rep. Phys. Sci. 3:(10):1283154
    [Google Scholar]
  46. Hanrahan AJ, Chen Z, Rosen N, Solit DB. 2024.. BRAF – a tumour-agnostic drug target with lineage-specific dependencies. . Nat. Rev. Clin. Oncol. 21:(3):22447
    [Crossref] [Google Scholar]
  47. Hanzl A, Casement R, Imrichova H, Hughes SJ, Barone E, et al. 2023.. Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. . Nat. Chem. Biol. 19:(3):32333
    [Crossref] [Google Scholar]
  48. Hickey CM, Digianantonio KM, Zimmermann K, Harbin A, Quinn C, et al. 2024.. Co-opting the E3 ligase KLHDC2 for targeted protein degradation by small molecules. . Nat. Struct. Mol. Biol. 31:(2):31122
    [Crossref] [Google Scholar]
  49. Hornberger KR, Araujo EMV. 2023.. Physicochemical property determinants of oral absorption for PROTAC protein degraders. . J. Med. Chem. 66:(12):828187
    [Crossref] [Google Scholar]
  50. Howell A, Howell SJ. 2023.. Tamoxifen evolution. . Br. J. Cancer 128:(3):42125
    [Crossref] [Google Scholar]
  51. Hsia O, Hinterndorfer M, Cowan AD, Iso K, Ishida T, et al. 2024.. Targeted protein degradation via intramolecular bivalent glues. . Nature 627::20411
    [Crossref] [Google Scholar]
  52. Hu Y, Dong Z, Liu K. 2024.. Unraveling the complexity of STAT3 in cancer: molecular understanding and drug discovery. . J. Exp. Clin. Cancer Res. 43:(1):23
    [Crossref] [Google Scholar]
  53. Huang HT, Dobrovolsky D, Paulk J, Yang G, Weisberg EL, et al. 2018.. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. . Cell Chem. Biol. 25:(1):8899.e6
    [Crossref] [Google Scholar]
  54. Hurvitz SA, Hamilton EP, Spira AI, Pohlmann PR, Giordano A, et al. 2023.. A phase 1, first-in-human, open label, escalation and expansion study of ORM-5029, a highly potent GSPT1 degrader targeting HER2, in patients with HER2-expressing advanced solid tumors. . J. Clin. Oncol. 41:(Suppl. 16):TPS1114
    [Crossref] [Google Scholar]
  55. Ishida T, Ciulli A. 2021.. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. . SLAS Discov. 26:(4):484502
    [Crossref] [Google Scholar]
  56. Jager A, de Vries EGE, van der Houven van Oordt CWM, Neven P, Venema CM, et al. 2020.. A phase 1b study evaluating the effect of elacestrant treatment on estrogen receptor availability and estradiol binding to the estrogen receptor in metastatic breast cancer lesions using 18F-FES PET/CT imaging. . Breast Cancer Res. 22:(1):97
    [Crossref] [Google Scholar]
  57. Jaiswal A, Jaiswal A, Williamson EA, Gelfond J, Zheng G, et al. 2023.. Resistance to the BCL-XL degrader DT2216 in T-cell acute lymphoblastic leukemia is rare and correlates with decreased BCL-XL proteolysis. . Cancer Chemother. Pharmacol. 91:(1):8995
    [Crossref] [Google Scholar]
  58. Jan M, Sperling AS, Ebert BL. 2021.. Cancer therapies based on targeted protein degradation – lessons learned with lenalidomide. . Nat. Rev. Clin. Oncol. 18:(7):40117
    [Crossref] [Google Scholar]
  59. Jarusiewicz JA, Yoshimura S, Mayasundari A, Actis M, Aggarwal A, et al. 2023.. Phenyl dihydrouracil: an alternative cereblon binder for PROTAC design. . ACS Med. Chem. Lett. 14:(2):14145
    [Crossref] [Google Scholar]
  60. Jiang B, Gao Y, Che J, Lu W, Kaltheuner IH, et al. 2021.. Discovery and resistance mechanism of a selective CDK12 degrader. . Nat. Chem. Biol. 17:(6):67583
    [Crossref] [Google Scholar]
  61. Josefsson EC, Vainchenker W, James C. 2020.. Regulation of platelet production and life span: role of Bcl-xL and potential implications for human platelet diseases. . Int. J. Mol. Sci. 21:(20):7591
    [Crossref] [Google Scholar]
  62. Kadoch C, Crabtree GR. 2013.. Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. . Cell 153:(1):7185
    [Crossref] [Google Scholar]
  63. Kerres N, Steurer S, Schlager S, Bader G, Berger H, et al. 2017.. Chemically induced degradation of the oncogenic transcription factor BCL6. . Cell Rep. 20:(12):286075
    [Crossref] [Google Scholar]
  64. Khan S, Zhang X, Lv D, Zhang Q, He Y, et al. 2019.. A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity. . Nat. Med. 25:(12):193847
    [Crossref] [Google Scholar]
  65. Khawaja MRR-u-H, Naqash AR, Schneider R, Shastri A, Stahl M, et al. 2024.. Safety, pharmacokinetics (PK), pharmacodynamics (PD) and efficacy of KT-253, a targeted protein degrader of MDM2, in patients with relapsed/refractory (R/R) solid tumors, lymphoma, high grade myeloid malignancies and acute lymphoblastic leukemia (ALL). . J. Clin. Oncol. 42:(Suppl. 16):3084
    [Crossref] [Google Scholar]
  66. Kofink C, Trainor N, Mair B, Wöhrle S, Wurm M, et al. 2022.. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. . Nat. Commun. 13:(1):5969
    [Crossref] [Google Scholar]
  67. Konopleva MY, Röllig C, Cavenagh J, Deeren D, Girshova L, et al. 2022.. Idasanutlin plus cytarabine in relapsed or refractory acute myeloid leukemia: results of the MIRROS trial. . Blood Adv. 6:(14):414756
    [Google Scholar]
  68. Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, et al. 2015.. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. . Nature 523:(7559):18388
    [Crossref] [Google Scholar]
  69. Lamb YN. 2021.. Osimertinib: a review in previously untreated, EGFR mutation-positive, advanced NSCLC. . Target Oncol. 16:(5):68795
    [Crossref] [Google Scholar]
  70. Lee GT, Nagaya N, Desantis J, Madura K, Sabaawy HE, et al. 2021.. Effects of MTX-23, a novel PROTAC of androgen receptor splice variant-7 and androgen receptor, on CRPC resistant to second-line antiandrogen therapy. . Mol. Cancer Ther. 20:(3):49099
    [Crossref] [Google Scholar]
  71. Li ASM, Kimani S, Wilson B, Noureldin M, González-Álvarez H, et al. 2023.. Discovery of nanomolar DCAF1 small molecule ligands. . J. Med. Chem. 66:(7):504160
    [Crossref] [Google Scholar]
  72. Li H, Cai X, Yang X, Zhang X. 2024.. An overview of PROTACs targeting MDM2 as a novel approach for cancer therapy. . Eur. J. Med. Chem. 272::116506
    [Crossref] [Google Scholar]
  73. Li Y, Mao T, Wang J, Zheng H, Hu Z, et al. 2023.. Toward the next generation EGFR inhibitors: an overview of osimertinib resistance mediated by EGFR mutations in non-small cell lung cancer. . Cell Commun. Signaling. 21:(1):71
    [Crossref] [Google Scholar]
  74. Li Y, Yang J, Aguilar A, McEachern D, Przybranowski S, et al. 2019.. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. . J. Med. Chem. 62:(2):44866
    [Crossref] [Google Scholar]
  75. Liu J, Chen H, Liu Y, Shen Y, Meng F, et al. 2021.. Cancer selective target degradation by folate-caged PROTACs. . J. Am. Chem. Soc. 143:(19):738087
    [Crossref] [Google Scholar]
  76. Liu J, Kang R, Tang D. 2022.. The KRAS-G12C inhibitor: activity and resistance. . Cancer Gene Ther. 29:(7):87578
    [Crossref] [Google Scholar]
  77. Liu X, Kalogeropulou AF, Domingos S, Makukhin N, Nirujogi RS, et al. 2022.. Discovery of XL01126: a potent, fast, cooperative, selective, orally bioavailable, and blood-brain barrier penetrant PROTAC degrader of leucine-rich repeat kinase 2. . J. Am. Chem. Soc. 144:(37):1693052
    [Crossref] [Google Scholar]
  78. Lu G, Weng S, Matyskiela M, Zheng X, Fang W, et al. 2018.. UBE2G1 governs the destruction of cereblon neomorphic substrates. . eLife 7::e40958
    [Crossref] [Google Scholar]
  79. Lu Y, Liu W. 2020.. Selective estrogen receptor degraders (SERDs): a promising strategy for estrogen receptor positive endocrine-resistant breast cancer. . J. Med. Chem. 63:(24):15094114
    [Crossref] [Google Scholar]
  80. Lue JK, Stevens DA, Williams ME, Westin J, Ewesudeo R, et al. 2022.. Phase 1 study of KT-413, a targeted protein degrader of IRAK4 and IMiD substrates, in adult patients with relapsed or refractory B-cell non-Hodgkin lymphoma. . Blood 140:(Suppl. 1):1214344
    [Crossref] [Google Scholar]
  81. Ma Z, Ji Y, Yu Y, Liang D. 2021.. Specific non-genetic IAP-based protein erasers (SNIPERs) as a potential therapeutic strategy. . Eur. J. Med. Chem. 216::113247
    [Crossref] [Google Scholar]
  82. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. 2017.. The different mechanisms of cancer drug resistance: a brief review. . Adv. Pharm. Bull. 7:(3):33948
    [Crossref] [Google Scholar]
  83. Marei HE, Althani A, Afifi N, Hasan A, Caceci T, et al. 2021.. p53 signaling in cancer progression and therapy. . Cancer Cell Int. 21:(1):703
    [Crossref] [Google Scholar]
  84. Matyskiela ME, Lu G, Ito T, Pagarigan B, Lu C, et al. 2016.. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. . Nature 535:(7611):25257
    [Crossref] [Google Scholar]
  85. Mayo M, Karnik R, Klaus C, Sharma K, McDonald A, et al. 2021.. KT-413, a novel IRAKIMiD degrader of IRAK4 and IMiD substrates, has a differentiated MoA that leads to single-agent and combination regressions in MYD88MT lymphoma models. . Hematol. Oncol. 39:(Suppl. 2). https://doi.org/10.1002/hon.13_2879
    [Google Scholar]
  86. McCoull W, Abrams RD, Anderson E, Blades K, Barton P, et al. 2017.. Discovery of pyrazolo[1,5-a]pyrimidine B-cell lymphoma 6 (BCL6) binders and optimization to high affinity macrocyclic inhibitors. . J. Med. Chem. 60:(10):4386402. Erratum . 2017.. J. Med. Chem. 60:(14):6459
    [Google Scholar]
  87. McLachlan T, Matthews WC, Jackson ER, Staudt DE, Douglas AM, et al. 2022.. B-cell lymphoma 6 (BCL6): from master regulator of humoral immunity to oncogenic driver in pediatric cancers. . Mol. Cancer Res. 20:(12):171123
    [Crossref] [Google Scholar]
  88. Miah AH, Smith IED, Rackham M, Mares A, Thawani AR, et al. 2021.. Optimization of a series of RIPK2 PROTACs. . J. Med. Chem. 64:(17):129783003
    [Crossref] [Google Scholar]
  89. Michel BC, D'Avino AR, Cassel SH, Mashtalir N, McKenzie ZM, et al. 2018.. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. . Nat. Cell Biol. 20:(12):141020
    [Crossref] [Google Scholar]
  90. Min J, Mayasundari A, Keramatnia F, Jonchere B, Yang SW, et al. 2021.. Phenyl-glutarimides: alternative cereblon binders for the design of PROTACs. . Angew. Chem. Int. Ed. 60:(51):2666370
    [Crossref] [Google Scholar]
  91. Mohamad Anuar NN, Nor Hisam NS, Liew SL, Ugusman A. 2020.. Clinical review: navitoclax as a pro-apoptotic and anti-fibrotic agent. . Front. Pharmacol. 11::564108
    [Crossref] [Google Scholar]
  92. Montoya S, Bourcier J, Noviski M, Lu H, Thompson MC, et al. 2024.. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. . Science 383:(6682):eadi5798
    [Crossref] [Google Scholar]
  93. Mullard A. 2023.. Glue-based KRAS inhibitors make their debut cancer trial mark. . Nat. Rev. Drug Discov. 22:(12):94243
    [Crossref] [Google Scholar]
  94. Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. 2013.. The MDM2-p53 pathway revisited. . J. Biomed. Res. 27:(4):25471
    [Crossref] [Google Scholar]
  95. Nat. Cancer. 2021.. Editorial: advancing cancer therapy. . Nat. Cancer 2:(3):24546
    [Crossref] [Google Scholar]
  96. Nathan MR, Schmid P. 2017.. A review of fulvestrant in breast cancer. . Oncol. Ther. 5:(1):1729
    [Crossref] [Google Scholar]
  97. Norris S, Ba X, Rhodes J, Huang D, Khambatta G, et al. 2023.. Design and synthesis of novel cereblon binders for use in targeted protein degradation. . J. Med. Chem. 66:(23):16388409
    [Crossref] [Google Scholar]
  98. Ottis P, Palladino C, Thienger P, Britschgi A, Heichinger C, et al. 2019.. Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway. . ACS Chem. Biol. 14:(10):221523
    [Google Scholar]
  99. Owens DDG, Maitland MER, Khalili Yazdi A, Song X, Reber V, et al. 2024.. A chemical probe to modulate human GID4 Pro/N-degron interactions. . Nat. Chem. Biol. 20::116475
    [Crossref] [Google Scholar]
  100. Pancholi S, Simigdala N, Ribas R, Schuster E, Leal MF, et al. 2022.. Elacestrant demonstrates strong anti-estrogenic activity in PDX models of estrogen-receptor positive endocrine-resistant and fulvestrant-resistant breast cancer. . NPJ Breast Cancer 8:(1):125
    [Crossref] [Google Scholar]
  101. Papillon JPN, Nakajima K, Adair CD, Hempel J, Jouk AO, et al. 2018.. Discovery of orally active inhibitors of Brahma homolog (BRM)/SMARCA2 ATPase activity for the treatment of Brahma related gene 1 (BRG1)/SMARCA4-mutant cancers. . J. Med. Chem. 61:(22):1011572
    [Crossref] [Google Scholar]
  102. Pereira M, Durso DF, Bryant CE, Kurt-Jones EA, Silverman N, et al. 2022.. The IRAK4 scaffold integrates TLR4-driven TRIF and MYD88 signaling pathways. . Cell Rep. 40:(7):111225
    [Crossref] [Google Scholar]
  103. Petzold G, Fischer ES, Thomä NH. 2016.. Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. . Nature 532:(7597):12730
    [Crossref] [Google Scholar]
  104. Pike A, Williamson B, Harlfinger S, Martin S, McGinnity DF. 2020.. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. . Drug Discov. Today 25:(10):17931800
    [Crossref] [Google Scholar]
  105. Pommier Y, O'Connor MJ, De Bono J. 2016.. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. . Sci. Transl. Med. 8::362ps17
    [Crossref] [Google Scholar]
  106. Popow J, Farnaby W, Gollner A, Kofink C, Fischer G, et al. 2024.. Targeting cancer with small-molecule pan-KRAS degraders. . Science 385:(6715):133847
    [Crossref] [Google Scholar]
  107. Ramachandran S, Ciulli A. 2021.. Building ubiquitination machineries: E3 ligase multi-subunit assembly and substrate targeting by PROTACs and molecular glues. . Curr. Opin. Struct. Biol. 67::11019
    [Crossref] [Google Scholar]
  108. Ramachandran S, Makukhin N, Haubrich K, Nagala M, Forrester B, et al. 2023.. Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2. . Nat. Commun. 14::6345
    [Crossref] [Google Scholar]
  109. Remillard D, Buckley DL, Paulk J, Brien GL, Sonnett M, et al. 2017.. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. . Angew. Chem. Int. Ed. 56:(21):573843
    [Crossref] [Google Scholar]
  110. Robbins DW, Noviski MA, Tan YS, Konst ZA, Kelly A, et al. 2024.. Discovery and preclinical pharmacology of NX-2127, an orally bioavailable degrader of Bruton's tyrosine kinase with immunomodulatory activity for the treatment of patients with B cell malignancies. . J. Med. Chem. 67:(4):232136
    [Crossref] [Google Scholar]
  111. Röth S, Kocaturk NM, Sathyamurthi PS, Carton B, Watt M, et al. 2023.. Identification of KLHDC2 as an efficient proximity-induced degrader of K-RAS, STK33, β-catenin, and FoxP3. . Cell Chem. Biol. 30:(10):126176
    [Crossref] [Google Scholar]
  112. Salami J, Alabi S, Willard RR, Vitale NJ, Wang J, et al. 2018.. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. . Commun. Biol. 1::100
    [Crossref] [Google Scholar]
  113. Scher HI, Sawyers CL. 2005.. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. . J. Clin. Oncol. 23:(32):825361
    [Crossref] [Google Scholar]
  114. Schröder M, Renatus M, Liang X, Meili F, Zoller T, et al. 2024.. DCAF1-based PROTACs with activity against clinically validated targets overcoming intrinsic- and acquired-degrader resistance. . Nat. Commun. 15::275
    [Crossref] [Google Scholar]
  115. Sherman D. 2024.. Abstract ND05: the discovery of ARV-393, a potent, orally bioavailable BCL6 targeting PROTAC® for the treatment of non-Hodgkin's lymphoma. . Cancer Res. 84:(Suppl. 7):ND05
    [Crossref] [Google Scholar]
  116. Shi S, Du Y, Zou Y, Niu J, Cai Z, et al. 2022.. Rational design for nitroreductase (NTR)-responsive proteolysis targeting chimeras (PROTACs) selectively targeting tumor tissues. . J. Med. Chem. 65:(6):505771
    [Crossref] [Google Scholar]
  117. Siegel RL, Giaquinto AN, Jemal A. 2024.. Cancer statistics, 2024. . CA Cancer J. Clin. 74:(1):1249. Erratum . 2024.. CA Cancer J. Clin. 74:(2):203
    [Google Scholar]
  118. Sobhani N, Neeli PK, D'Angelo A, Pittacolo M, Sirico M, et al. 2021.. AR-V7 in metastatic prostate cancer: a strategy beyond redemption. . Int. J. Mol. Sci. 22:(11):5515
    [Crossref] [Google Scholar]
  119. Starodub A, Gollerkeri A, De savi C, Dey J, Agarwal S, et al. 2022.. Phase 1 study of KT-333, a targeted protein degrader, in patients with relapsed or refractory lymphomas, large granular lymphocytic leukemia, and solid tumors. . J. Clin. Oncol. 40:(Suppl. 16):TPS3171
    [Crossref] [Google Scholar]
  120. Susanibar-Adaniya S, Barta SK. 2021.. 2021 Update on diffuse large B cell lymphoma: a review of current data and potential applications on risk stratification and management. . Am. J. Hematol. 96:(5):61729
    [Crossref] [Google Scholar]
  121. Takahashi D, Ora T, Sasaki S, Ishii N, Tanaka T, et al. 2023.. Second-generation AUTACs for targeted autophagic degradation. . J. Med. Chem. 66:(17):1234272
    [Crossref] [Google Scholar]
  122. Tao Y, Remillard D, Vinogradova EV, Yokoyama M, Banchenko S, et al. 2022.. Targeted protein degradation by electrophilic PROTACs that stereoselectively and site-specifically engage DCAF1. . J. Am. Chem. Soc. 144:(40):1868899
    [Crossref] [Google Scholar]
  123. Teh J, Bessonett S, Wu W, Kuhlberg C, Wynne A, et al. 2023.. Mechanisms of acquired resistance to ARV-471, a novel PROTAC® estrogen receptor degrader. . Cancer Res. 83:(Suppl. 7):432
    [Crossref] [Google Scholar]
  124. Tong B, Luo M, Xie Y, Spradlin JN, Tallarico JA, et al. 2020.. Bardoxolone conjugation enables targeted protein degradation of BRD4. . Sci. Rep. 10:(1):15543
    [Crossref] [Google Scholar]
  125. Vangamudi B, Paul TA, Shah PK, Kost-Alimova M, Nottebaum L, et al. 2015.. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. . Cancer Res. 75:(18):386578
    [Crossref] [Google Scholar]
  126. Varga J, Kube M, Luck K, Schick S. 2021.. The BAF chromatin remodeling complexes: structure, function, and synthetic lethalities. . Biochem. Soc. Trans. 49:(4):1489503
    [Crossref] [Google Scholar]
  127. Vasan N, Baselga J, Hyman DM. 2019.. A view on drug resistance in cancer. . Nature 575:(7782):299309
    [Crossref] [Google Scholar]
  128. Wang E, Mi X, Thompson MC, Montoya S, Notti RQ, et al. 2022.. Mechanisms of resistance to noncovalent Bruton's tyrosine kinase inhibitors. . N. Engl. J. Med. 386:(8):73543
    [Crossref] [Google Scholar]
  129. Wang H, Lei B, Huo C, Sun D, Chen J, et al. 2021.. Degradation of Bruton's tyrosine kinase (BTK) by conjugation of BTK inhibitors with E3 ligase ligand and methods of use. WO Patent 2021/219070 A1
    [Google Scholar]
  130. Watson PA, Arora VK, Sawyers CL. 2015.. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. . Nat. Rev. Cancer 15:(12):70111
    [Crossref] [Google Scholar]
  131. Woyach JA, Furman RR, Liu T-M, Ozer HG, Zapatka M, et al. 2014.. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. . N. Engl. J. Med. 370:(24):228694
    [Crossref] [Google Scholar]
  132. Wu X, Bayle JH, Olson D, Levine AJ. 1993.. The p53–mdm-2 autoregulatory feedback loop. . Genes Dev. 7:(7):112632
    [Crossref] [Google Scholar]
  133. Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, et al. 2022.. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. . Nature 601:(7893):43439
    [Crossref] [Google Scholar]
  134. Yang L, Tu W, Huang L, Miao B, Kaneshige A, et al. 2023.. Discovery of SMD-3040 as a potent and selective SMARCA2 PROTAC degrader with strong in vivo antitumor activity. . J. Med. Chem. 66:(15):1076181
    [Crossref] [Google Scholar]
  135. Zengerle M, Chan KH, Ciulli A. 2015.. Selective small molecule induced degradation of the BET bromodomain protein BRD4. . ACS Chem. Biol. 10:(8):177077
    [Crossref] [Google Scholar]
  136. Zhang B, Liu C, Yang Z, Zhang S, Hu X, et al. 2023.. Discovery of BWA-522, a first-in-class and orally bioavailable PROTAC degrader of the androgen receptor targeting N-terminal domain for the treatment of prostate cancer. . J. Med. Chem. 66:(16):1115886
    [Crossref] [Google Scholar]
  137. Zhang C, He S, Zeng Z, Cheng P, Pu K. 2022.. Smart nano-PROTACs reprogram tumor microenvironment for activatable photo-metabolic cancer immunotherapy. . Angew. Chem. Int. Ed. 61:(8):e202114957
    [Crossref] [Google Scholar]
  138. Zhang L, Riley-Gillis B, Vijay P, Shen Y. 2019.. Acquired resistance to BET-ProTACS (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. . Mol. Cancer Ther. 18:(7):130211
    [Crossref] [Google Scholar]
  139. Zoppi V, Hughes SJ, Maniaci C, Testa A, Gmaschitz T, et al. 2019.. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. . J. Med. Chem. 62:(2):699726
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-061824-105806
Loading
/content/journals/10.1146/annurev-cancerbio-061824-105806
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error