1932

Abstract

Alterations in the genome that drive the transformation of normal cells into malignant cells program cancer initiation and progression. This rewiring also induces unique dependencies for genes and pathways that can be targeted therapeutically. Even though we have a clearer view of the spectrum of these molecular alterations, we still lack a complete understanding of how these alterations affect biological processes and create specific vulnerabilities in cancer cells. To address this, we have created the Cancer Dependency Map (DepMap) to systematically identify and map cancer vulnerabilities. Here, we provide an overview of the history and development of the current DepMap. We also highlight biological insights enabled by DepMap. Findings from DepMap will provide insights into new targets suitable for drug discovery efforts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062722-024239
2025-04-11
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-062722-024239.html?itemId=/content/journals/10.1146/annurev-cancerbio-062722-024239&mimeType=html&fmt=ahah

Literature Cited

  1. Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang C-Z, et al. 2016.. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. . Cancer Discov. 6:(8):91429
    [Crossref] [Google Scholar]
  2. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, et al. 1988.. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. . Cancer Res. 48:(3):589601
    [Google Scholar]
  3. Arnold PK, Jackson BT, Paras KI, Brunner JS, Hart ML, et al. 2022.. A non-canonical tricarboxylic acid cycle underlies cellular identity. . Nature 603:(7901):47781
    [Crossref] [Google Scholar]
  4. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, et al. 2012.. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. . Nature 483:(7391):6037
    [Crossref] [Google Scholar]
  5. Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, et al. 2013.. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. . Cell 154:(5):115161
    [Crossref] [Google Scholar]
  6. Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, et al. 2019.. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. . Nature 568:(7753):51116
    [Crossref] [Google Scholar]
  7. Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, et al. 2018.. Genetic and transcriptional evolution alters cancer cell line drug response. . Nature 560:(7718):32530
    [Crossref] [Google Scholar]
  8. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, et al. 2004.. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. . Nature 428:(6981):43137
    [Crossref] [Google Scholar]
  9. Blomen VA, Májek P, Jae LT, Bigenzahn JW, Nieuwenhuis J, et al. 2015.. Gene essentiality and synthetic lethality in haploid human cells. . Science 350:(6264):109296
    [Crossref] [Google Scholar]
  10. Boehm JS, Garnett MJ, Adams DJ, Francies HE, Golub TR, et al. 2021.. Cancer research needs a better map. . Nature 589:(7843):51416
    [Crossref] [Google Scholar]
  11. Bondeson DP, Paolella BR, Asfaw A, Rothberg MV, Skipper TA, et al. 2022.. Phosphate dysregulation via the XPR1-KIDINS220 protein complex is a therapeutic vulnerability in ovarian cancer. . Nat. Cancer 3:(6):68195
    [Crossref] [Google Scholar]
  12. Boyle EA, Pritchard JK, Greenleaf WJ. 2018.. High-resolution mapping of cancer cell networks using co-functional interactions. . Mol. Syst. Biol. 14:(12):e8594
    [Crossref] [Google Scholar]
  13. Brummelkamp TR, Fabius AWM, Mullenders J, Madiredjo M, Velds A, et al. 2006.. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. . Nat. Chem. Biol. 2:(4):2026
    [Crossref] [Google Scholar]
  14. Cancer Cell Line Encycl. Consort., Genom. Drug Sensit. Cancer Consort. 2015.. Pharmacogenomic agreement between two cancer cell line data sets. . Nature 528:(7580):8487
    [Crossref] [Google Scholar]
  15. Cancer Genome Atlas Res. Netw., Weinstein JN, Collisson EA, Mills GB, Shaw KRM, et al. 2013.. The Cancer Genome Atlas Pan-Cancer analysis project. . Nat. Genet. 45:(10):111320
    [Crossref] [Google Scholar]
  16. Cervia LD, Shibue T, Borah AA, Gaeta B, He L, et al. 2023.. A ubiquitination cascade regulating the integrated stress response and survival in carcinomas. . Cancer Discov. 13:(3):76695
    [Crossref] [Google Scholar]
  17. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, et al. 2017.. OncoKB: a precision oncology knowledge base. . JCO Precis. Oncol. 1::116
    [Crossref] [Google Scholar]
  18. Chan EM, Shibue T, McFarland JM, Gaeta B, Ghandi M, et al. 2019.. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. . Nature 568:(7753):55156
    [Crossref] [Google Scholar]
  19. Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, et al. 2011.. Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. . PNAS 108:(30):1237277
    [Crossref] [Google Scholar]
  20. Chiu Y-C, Zheng S, Wang L-J, Iskra BS, Rao MK, et al. 2021.. Predicting and characterizing a cancer dependency map of tumors with deep learning. . Sci Adv. 7:(34):eabh1275
    [Crossref] [Google Scholar]
  21. Cong L, Ran FA, Cox D, Lin S, Barretto R, et al. 2013.. Multiplex genome engineering using CRISPR/Cas systems. . Science 339:(6121):81923
    [Crossref] [Google Scholar]
  22. Corsello SM, Nagari RT, Spangler RD, Rossen J, Kocak M, et al. 2020.. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. . Nat. Cancer 1:(2):23548
    [Crossref] [Google Scholar]
  23. Cowley GS, Weir BA, Vazquez F, Tamayo P, Scott JA, et al. 2014.. Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. . Sci. Data 1::140035
    [Crossref] [Google Scholar]
  24. de Matos Simoes R, Shirasaki R, Downey-Kopyscinski SL, Matthews GM, Barwick BG, et al. 2023.. Genome-scale functional genomics identify genes preferentially essential for multiple myeloma cells compared to other neoplasias. . Nat. Cancer 4:(5):75473
    [Crossref] [Google Scholar]
  25. Dempster JM, Boyle I, Vazquez F, Root DE, Boehm JS, et al. 2021.. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. . Genome Biol. 22:(1):343
    [Crossref] [Google Scholar]
  26. Dempster JM, Pacini C, Pantel S, Behan FM, Green T, et al. 2019.. Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets. . Nat. Commun. 10:(1):5817
    [Crossref] [Google Scholar]
  27. DepMap Consort. 2024.. DepMap 24Q2 Public. Dataset, Broad Inst. Harvard MIT, Cambridge, MA:. https://figshare.com/articles/dataset/DepMap_24Q2_Public/25880521
    [Google Scholar]
  28. Dharia NV, Kugener G, Guenther LM, Malone CF, Durbin AD, et al. 2021.. A first-generation pediatric cancer dependency map. . Nat. Genet. 53:(4):52938
    [Crossref] [Google Scholar]
  29. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, et al. 2016.. High-throughput discovery of novel developmental phenotypes. . Nature 537:(7621):50814
    [Crossref] [Google Scholar]
  30. Doshi MB, Lee N, Tseyang T, Ponomarova O, Goel HL, et al. 2023.. Disruption of sugar nucleotide clearance is a therapeutic vulnerability of cancer cells. . Nature 623:(7987):62532
    [Crossref] [Google Scholar]
  31. Evers B, Jastrzebski K, Heijmans JPM, Grernrum W, Beijersbergen RL, Bernards R. 2016.. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. . Nat. Biotechnol. 34:(6):63133
    [Crossref] [Google Scholar]
  32. Flaherty KT, Gray RJ, Chen AP, Li S, McShane LM, et al. 2020.. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH). . J. Clin. Oncol. 38:(33):388394
    [Crossref] [Google Scholar]
  33. Funk L, Su K-C, Ly J, Feldman D, Singh A, et al. 2022.. The phenotypic landscape of essential human genes. . Cell 185:(24):463453.e22
    [Crossref] [Google Scholar]
  34. Gallo D, Young JTF, Fourtounis J, Martino G, Álvarez-Quilón A, et al. 2022.. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. . Nature 604:(7907):74956
    [Crossref] [Google Scholar]
  35. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, et al. 2012.. Systematic identification of genomic markers of drug sensitivity in cancer cells. . Nature 483:(7391):57075
    [Crossref] [Google Scholar]
  36. Garraway LA, Verweij J, Ballman KV. 2013.. Precision oncology: an overview. . J. Clin. Oncol. 31:(15):18035
    [Crossref] [Google Scholar]
  37. Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012.. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. . PNAS 109:(39):E257986
    [Crossref] [Google Scholar]
  38. Ghandi M, Huang FW, Jané-Valbuena J, Kryukov GV, Lo CC, et al. 2019.. Next-generation characterization of the Cancer Cell Line Encyclopedia. . Nature 569:(7757):5038
    [Crossref] [Google Scholar]
  39. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, et al. 2020.. Visualizing and interpreting cancer genomics data via the Xena platform. . Nat. Biotechnol. 38:(6):67578
    [Crossref] [Google Scholar]
  40. Gonçalves E, Poulos RC, Cai Z, Barthorpe S, Manda SS, et al. 2022.. Pan-cancer proteomic map of 949 human cell lines. . Cancer Cell 40:(8):83549.e8
    [Crossref] [Google Scholar]
  41. Gonçalves E, Segura-Cabrera A, Pacini C, Picco G, Behan FM, et al. 2020.. Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens. . Mol. Syst. Biol. 16:(7):e9405
    [Crossref] [Google Scholar]
  42. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, et al. 2016.. Toward a shared vision for cancer genomic data. . N. Engl. J. Med. 375:(12):110912
    [Crossref] [Google Scholar]
  43. Hahn WC, Bader JS, Braun TP, Califano A, Clemons PA, et al. 2021.. An expanded universe of cancer targets. . Cell 184:(5):114255
    [Crossref] [Google Scholar]
  44. Halling-Brown MD, Bulusu KC, Patel M, Tym JE, Al-Lazikani B. 2012.. canSAR: an integrated cancer public translational research and drug discovery resource. . Nucleic Acids Res. 40:(D1):D94756
    [Crossref] [Google Scholar]
  45. Han K, Pierce SE, Li A, Spees K, Anderson GR, et al. 2020.. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. . Nature 580:(7801):13641
    [Crossref] [Google Scholar]
  46. Hart T, Chandrashekhar M, Aregger M, Steinhart Z, Brown KR, et al. 2015.. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. . Cell 163:(6):151526
    [Crossref] [Google Scholar]
  47. Hoes LR, van Berge Henegouwen JM, van der Wijngaart H, Zeverijn LJ, van der Velden DL, et al. 2022.. Patients with rare cancers in the Drug Rediscovery Protocol (DRUP) benefit from genomics-guided treatment. . Clin. Cancer Res. 28:(7):140211
    [Crossref] [Google Scholar]
  48. Howard TP, Arnoff TE, Song MR, Giacomelli AO, Wang X, et al. 2019.. MDM2 and MDM4 are therapeutic vulnerabilities in malignant rhabdoid tumors. . Cancer Res. 79:(9):240414
    [Crossref] [Google Scholar]
  49. Hughes P, Marshall D, Reid Y, Parkes H, Gelber C. 2007.. The costs of using unauthenticated, over-passaged cell lines: How much more data do we need?. Biotechniques 43:(5):57586
    [Crossref] [Google Scholar]
  50. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, et al. 2016.. A landscape of pharmacogenomic interactions in cancer. . Cell 166:(3):74054
    [Crossref] [Google Scholar]
  51. Jin X, Demere Z, Nair K, Ali A, Ferraro GB, et al. 2020.. A metastasis map of human cancer cell lines. . Nature 588:(7837):33136
    [Crossref] [Google Scholar]
  52. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. . Science 337:(6096):81621
    [Crossref] [Google Scholar]
  53. Kolfschoten IGM, van Leeuwen B, Berns K, Mullenders J, Beijersbergen RL, et al. 2005.. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. . Cell 121:(6):84958
    [Crossref] [Google Scholar]
  54. Krill-Burger JM, Dempster JM, Borah AA, Paolella BR, Root DE, et al. 2023.. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR-Cas9 knockout is pan-lethal. . Genome Biol. 24:(1):192
    [Crossref] [Google Scholar]
  55. Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, et al. 2016.. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. . Science 351:(6278):121418
    [Crossref] [Google Scholar]
  56. Kwon JJ, Hajian B, Bian Y, Young LC, Amor AJ, et al. 2022.. Structure-function analysis of the SHOC2-MRAS-PP1C holophosphatase complex. . Nature 609:(7926):40815
    [Crossref] [Google Scholar]
  57. Li H, Ning S, Ghandi M, Kryukov GV, Gopal S, et al. 2019.. The landscape of cancer cell line metabolism. . Nat. Med. 25:(5):85060
    [Crossref] [Google Scholar]
  58. Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, et al. 2008.. Highly parallel identification of essential genes in cancer cells. . PNAS 105:(51):2038085
    [Crossref] [Google Scholar]
  59. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, et al. 2009.. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. . Cell 137:(5):83548
    [Crossref] [Google Scholar]
  60. Mangat PK, Garrett-Mayer E, Perez JK, Schilsky RL. 2023.. The Targeted Agent and Profiling Utilization Registry Study: a pragmatic clinical trial. . Clin. Trials 20:(6):699707
    [Crossref] [Google Scholar]
  61. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. 2017.. The different mechanisms of cancer drug resistance: a brief review. . Adv. Pharm. Bull. 7:(3):33948
    [Crossref] [Google Scholar]
  62. Marcotte R, Sayad A, Brown KR, Sanchez-Garcia F, Reimand J, et al. 2016.. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. . Cell 164:(1–2):293309
    [Crossref] [Google Scholar]
  63. Marquart J, Chen EY, Prasad V. 2018.. Estimation of the percentage of US patients with cancer who benefit from genome-driven oncology. . JAMA Oncol. 4:(8):109398
    [Crossref] [Google Scholar]
  64. Mavrakis KJ, McDonald ER 3rd, Schlabach MR, Billy E, Hoffman GR, et al. 2016.. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. . Science 351:(6278):120813
    [Crossref] [Google Scholar]
  65. McDonald ER 3rd, de Weck A, Schlabach MR, Billy E, Mavrakis KJ, et al. 2017.. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. . Cell 170:(3):57792.e10
    [Crossref] [Google Scholar]
  66. McFarland JM, Ho ZV, Kugener G, Dempster JM, Montgomery PG, et al. 2018.. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. . Nat. Commun. 9:(1):4610
    [Crossref] [Google Scholar]
  67. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, et al. 2017.. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. . Nat. Genet. 49:(12):177984
    [Crossref] [Google Scholar]
  68. Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, et al. 2006.. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. . Cell 124:(6):128398
    [Crossref] [Google Scholar]
  69. Morgens DW, Deans RM, Li A, Bassik MC. 2016.. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. . Nat. Biotechnol. 34:(6):63436
    [Crossref] [Google Scholar]
  70. Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, et al. 2006.. A loss-of-function RNA interference screen for molecular targets in cancer. . Nature 441:(7089):10610
    [Crossref] [Google Scholar]
  71. Nusinow DP, Szpyt J, Ghandi M, Rose CM, McDonald ER 3rd, et al. 2020.. Quantitative proteomics of the Cancer Cell Line Encyclopedia. . Cell 180:(2):387402.e16
    [Crossref] [Google Scholar]
  72. Okamura Y, Aoki Y, Obayashi T, Tadaka S, Ito S, et al. 2015.. COXPRESdb in 2015: coexpression database for animal species by DNA-microarray and RNAseq-based expression data with multiple quality assessment systems. . Nucleic Acids Res. 43:(D1):D8286
    [Crossref] [Google Scholar]
  73. Pacini C, Duncan E, Gonçalves E, Gilbert J, Bhosle S, et al. 2024.. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization. . Cancer Cell 42:(2):30116.e9
    [Crossref] [Google Scholar]
  74. Pan J, Kwon JJ, Talamas JA, Borah AA, Vazquez F, et al. 2022.. Sparse dictionary learning recovers pleiotropy from human cell fitness screens. . Cell Syst. 13:(4):286303.e10
    [Crossref] [Google Scholar]
  75. Pan J, Meyers RM, Michel BC, Mashtalir N, Sizemore AE, et al. 2018.. Interrogation of mammalian protein complex structure, function, and membership using genome-scale fitness screens. . Cell Syst. 6:(5):55568.e7
    [Crossref] [Google Scholar]
  76. Pantziarka P, Capistrano IR, De Potter A, Vandeborne L, Bouche G. 2021.. An open access database of licensed cancer drugs. . Front. Pharmacol. 12::627574
    [Crossref] [Google Scholar]
  77. Radko-Juettner S, Yue H, Myers JA, Carter RD, Robertson AN, et al. 2024.. Targeting DCAF5 suppresses SMARCB1-mutant cancer by stabilizing SWI/SNF. . Nature 628:(8007):44249
    [Crossref] [Google Scholar]
  78. Root DE, Hacohen N, Hahn WC, Lander ES, Sabatini DM. 2006.. Genome-scale loss-of-function screening with a lentiviral RNAi library. . Nat. Methods 3:(9):71519
    [Crossref] [Google Scholar]
  79. Rubin MA. 2015.. Health: make precision medicine work for cancer care. . Nature 520:(7547):29091
    [Crossref] [Google Scholar]
  80. Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, et al. 2008.. Cancer proliferation gene discovery through functional genomics. . Science 319:(5863):62024
    [Crossref] [Google Scholar]
  81. Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, et al. 2015.. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. . Cancer Discov. 5:(11):121023
    [Crossref] [Google Scholar]
  82. Settleman J. 2012.. Oncogene addiction. . Curr. Biol. 22:(2):R4344
    [Crossref] [Google Scholar]
  83. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, et al. 2014.. Genome-scale CRISPR-Cas9 knockout screening in human cells. . Science 343:(6166):8487
    [Crossref] [Google Scholar]
  84. Sharifnia T, Wawer MJ, Goodale A, Lee Y, Kazachkova M, et al. 2023.. Mapping the landscape of genetic dependencies in chordoma. . Nat. Commun. 14:(1):1933
    [Crossref] [Google Scholar]
  85. Shields JA, Meier SR, Bandi M, Mulkearns-Hubert EE, Hajdari N, et al. 2022.. VRK1 is a synthetic-lethal target in VRK2-deficient glioblastoma. . Cancer Res. 82:(21):404457
    [Crossref] [Google Scholar]
  86. Shimada K, Bachman JA, Muhlich JL, Mitchison TJ. 2021.. shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data. . eLife 10::e57116
    [Crossref] [Google Scholar]
  87. Shoemaker RH. 2006.. The NCI60 human tumour cell line anticancer drug screen. . Nat. Rev. Cancer 6:(10):81323
    [Crossref] [Google Scholar]
  88. Silva JM, Marran K, Parker JS, Silva J, Golding M, et al. 2008.. Profiling essential genes in human mammary cells by multiplex RNAi screening. . Science 319:(5863):61720
    [Crossref] [Google Scholar]
  89. So J, Mabe NW, Englinger B, Chow K-H, Moyer SM, et al. 2022.. VRK1 as a synthetic lethal target in VRK2 promoter-methylated cancers of the nervous system. . JCI Insight 7:(19):e158755
    [Crossref] [Google Scholar]
  90. Sulahian R, Kwon JJ, Walsh KH, Pailler E, Bosse TL, et al. 2019.. Synthetic lethal interaction of SHOC2 depletion with MEK inhibition in RAS-driven cancers. . Cell Rep. 29:(1):11834.e8
    [Crossref] [Google Scholar]
  91. Tseng Y-Y, Boehm JS. 2019.. From cell lines to living biosensors: new opportunities to prioritize cancer dependencies using ex vivo tumor cultures. . Curr. Opin. Genet. Dev. 54::3340
    [Crossref] [Google Scholar]
  92. Tsherniak A, Vazquez F, Montgomery PG, Weir BA, Kryukov G, et al. 2017.. Defining a cancer dependency map. . Cell 170:(3):56476.e16
    [Crossref] [Google Scholar]
  93. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, et al. 2022.. Copper induces cell death by targeting lipoylated TCA cycle proteins. . Science 375:(6586):125461
    [Crossref] [Google Scholar]
  94. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, et al. 2015.. Tissue-based map of the human proteome. . Science 347:(6220):1260419
    [Crossref] [Google Scholar]
  95. Vasan N, Baselga J, Hyman DM. 2019.. A view on drug resistance in cancer. . Nature 575:(7782):299309
    [Crossref] [Google Scholar]
  96. Wainberg M, Kamber RA, Balsubramani A, Meyers RM, Sinnott-Armstrong N, et al. 2021.. A genome-wide atlas of co-essential modules assigns function to uncharacterized genes. . Nat. Genet. 53:(5):63849
    [Crossref] [Google Scholar]
  97. Wang T, Wei JJ, Sabatini DM, Lander ES. 2014.. Genetic screens in human cells using the CRISPR-Cas9 system. . Science 343:(6166):8084
    [Crossref] [Google Scholar]
  98. Warren A, Chen Y, Jones A, Shibue T, Hahn WC, et al. 2021.. Global computational alignment of tumor and cell line transcriptional profiles. . Nat. Commun. 12:(1):22
    [Crossref] [Google Scholar]
  99. Weinstein IB, Joe A. 2008.. Oncogene addiction. . Cancer Res. 68:(9):307780
    [Crossref] [Google Scholar]
  100. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, et al. 2005.. A genetic screen for candidate tumor suppressors identifies REST. . Cell 121:(6):83748
    [Crossref] [Google Scholar]
  101. Yu C, Mannan AM, Yvone GM, Ross KN, Zhang Y-L, et al. 2016.. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. . Nat. Biotechnol. 34:(4):41923
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062722-024239
Loading
/content/journals/10.1146/annurev-cancerbio-062722-024239
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error