1932

Abstract

Preclinical models have played a pivotal role in the development of immunotherapies that now have become a standard treatment option for numerous cancer types. This review examines the strengths and weaknesses of various mouse models in advancing our understanding of cancer immunology and responses to immunotherapy. Furthermore, we explore how emerging technologies such as humanized models, the integration of CRISPR/Cas9 systems, and advanced in vitro systems are helping us deepen our insights into cancer–immune interactions that dictate the response to therapies. Integrating these diverse models with cutting-edge genetic and genomic tools will be crucial to tackle challenges such as immunotherapy resistance and to design the next generation of cancer immunotherapy drugs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062822-024810
2025-04-11
2025-04-21
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-062822-024810.html?itemId=/content/journals/10.1146/annurev-cancerbio-062822-024810&mimeType=html&fmt=ahah

Literature Cited

  1. Alessandri G, Giavazzi R, Falautano P, Spreafico F, Garattini S, Mantovani A. 1981.. A murine ovarian tumor with unique metastasizing capacity. . Eur. J. Cancer 17::65153
    [Crossref] [Google Scholar]
  2. Alvarez M, Molina C, Garasa S, Ochoa MC, Rodriguez-Ruiz ME, et al. 2023.. Intratumoral neoadjuvant immunotherapy based on the BO-112 viral RNA mimetic. . OncoImmunology 12::2197370
    [Crossref] [Google Scholar]
  3. Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. 2021.. Preclinical models for the study of lung cancer pathogenesis and therapy development. . Cold Spring Harb. Perspect. Med. 11::a037820
    [Crossref] [Google Scholar]
  4. Aslakson CJ, Miller FR. 1992.. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. . Cancer Res. 52::1399405
    [Google Scholar]
  5. Atkins JT, George GC, Hess K, Marcelo-Lewis KL, Yuan Y, et al. 2020.. Pre-clinical animal models are poor predictors of human toxicities in phase 1 oncology clinical trials. . Br. J. Cancer 123::1496501
    [Crossref] [Google Scholar]
  6. Bayless NL, Bluestone JA, Bucktrout S, Butterfield LH, Jaffee EM, et al. 2021.. Development of preclinical and clinical models for immune-related adverse events following checkpoint immunotherapy: a perspective from SITC and AACR. . J. Immunother. Cancer 9::e002627
    [Crossref] [Google Scholar]
  7. Berckmans Y, Ceusters J, Vankerckhoven A, Wouters R, Riva M, Coosemans A. 2023.. Preclinical studies performed in appropriate models could help identify optimal timing of combined chemotherapy and immunotherapy. . Front. Immunol. 14::1236965
    [Crossref] [Google Scholar]
  8. Bernardo M, Tolstykh T, Zhang Y-A, Bangari DS, Cao H, et al. 2021.. An experimental model of anti-PD-1 resistance exhibits activation of TGFß and Notch pathways and is sensitive to local mRNA immunotherapy. . OncoImmunology 10::1881268
    [Crossref] [Google Scholar]
  9. Blair LM, Juan JM, Sebastian L, Tran VB, Nie W, et al. 2023.. Oncogenic context shapes the fitness landscape of tumor suppression. . Nat. Commun. 14::6422
    [Crossref] [Google Scholar]
  10. Bleijs M, van de Wetering M, Clevers H, Drost J. 2019.. Xenograft and organoid model systems in cancer research. . EMBO J. 38::e101654
    [Crossref] [Google Scholar]
  11. Boire A, Brastianos PK, Garzia L, Valiente M. 2020.. Brain metastasis. . Nat. Rev. Cancer 20::411
    [Crossref] [Google Scholar]
  12. Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD, et al. 2015.. Organoid models of human and mouse ductal pancreatic cancer. . Cell 160::32438
    [Crossref] [Google Scholar]
  13. Bos PD, Nguyen DX, Massagué J. 2010.. Modeling metastasis in the mouse. . Curr. Opin. Pharmacol. 10::57177
    [Crossref] [Google Scholar]
  14. Bosma GC, Custer RP, Bosma MJ. 1983.. A severe combined immunodeficiency mutation in the mouse. . Nature 301::52730
    [Crossref] [Google Scholar]
  15. Boumelha J, de Carné Trécesson S, Law E, Romero-Clavijo P, Coelho M, et al. 2022.. An immunogenic model of KRAS-mutant lung cancer enables evaluation of targeted therapy and immunotherapy combinations. . Cancer Res. 82::343548
    [Crossref] [Google Scholar]
  16. Buque A, Galluzzi L. 2018.. Modeling tumor immunology and immunotherapy in mice. . Trends Cancer 4::599601
    [Crossref] [Google Scholar]
  17. Campbell JP, Merkel AR, Masood-Campbell SK, Elefteriou F, Sterling JA. 2012.. Models of bone metastasis. . J. Vis. Exp. 4::e4260
    [Google Scholar]
  18. Cardenas JJ, Robles-Oteiza C, Politi K. 2020.. Assessment of IFNγ responsiveness in patient-derived xenografts. . Methods Enzymol. 631::41527
    [Crossref] [Google Scholar]
  19. Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, et al. 2022.. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. . Science 377::118091
    [Crossref] [Google Scholar]
  20. Chiorazzi M, Martinek J, Krasnick B, Zheng Y, Robbins KJ, et al. 2023.. Autologous humanized PDX modeling for immuno-oncology recapitulates features of the human tumor microenvironment. . J. Immunother. Cancer 11::e006921
    [Crossref] [Google Scholar]
  21. Clevers H, Tuveson DA. 2019.. Organoid models for cancer research. . Annu. Rev. Cancer Biol. 3::22334
    [Crossref] [Google Scholar]
  22. Cogels MM, Rouas R, Ghanem GE, Martinive P, Awada A, et al. 2021.. Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. . Front. Oncol. 11::784947
    [Crossref] [Google Scholar]
  23. Connolly KA, Fitzgerald B, Damo M, Joshi NS. 2022.. Novel mouse models for cancer immunology. . Annu. Rev. Cancer Biol. 6::26991
    [Crossref] [Google Scholar]
  24. Connolly KA, Kuchroo M, Venkat A, Khatun A, Wang J, et al. 2021.. A reservoir of stem-like CD8+ T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. . Sci. Immunol. 6::eabg7836
    [Crossref] [Google Scholar]
  25. Coughlan AM, Harmon C, Whelan S, O'Brien EC, O'Reilly VP, et al. 2016.. Myeloid engraftment in humanized mice: impact of granulocyte-colony stimulating factor treatment and transgenic mouse strain. . Stem Cells Dev. 25::53041
    [Crossref] [Google Scholar]
  26. Cui C, Wang J, Fagerberg E, Chen P-M, Connolly KA, et al. 2021.. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. . Cell 9::610118.e13
    [Crossref] [Google Scholar]
  27. Damo M, Fitzgerald B, Lu Y, Nader M, William I, et al. 2021.. Inducible de novo expression of neoantigens in tumor cells and mice. . Nat. Biotechnol. 39::6473
    [Crossref] [Google Scholar]
  28. Damo M, Hornick NI, Venkat A, William I, Clulo K, et al. 2023.. PD-1 maintains CD8 T cell tolerance towards cutaneous neoantigens. . Nature 619::15159
    [Crossref] [Google Scholar]
  29. Dervovic D, Malik AA, Chen ELY, Narimatsu M, Adler N, et al. 2023.. In vivo CRISPR screens reveal Serpinb9 and Adam2 as regulators of immune therapy response in lung cancer. . Nat. Commun. 14::3150
    [Crossref] [Google Scholar]
  30. Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, et al. 2018.. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. . Cell 174::158698.e12
    [Crossref] [Google Scholar]
  31. Do-Umehara HC, Chen C, Urich D, Zhou L, Qiu J, et al. 2013.. Suppression of inflammation and acute lung injury by Miz1 via repression of C/EBP-δ. . Nat. Immunol. 14::46169
    [Crossref] [Google Scholar]
  32. Dong MB, Wang G, Chow RD, Ye L, Zhu L, et al. 2019.. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. . Cell 178::1189204.e23
    [Crossref] [Google Scholar]
  33. Dong R, Zhang B, Zhang X. 2022.. Liver organoids: an in vitro 3D model for liver cancer study. . Cell Biosci. 12::152
    [Crossref] [Google Scholar]
  34. Doornebal CW, Klarenbeek S, Braumuller TM, Klijn CN, Ciampricotti M, et al. 2013.. A preclinical mouse model of invasive lobular breast cancer metastasis. . Cancer Res. 73::35363
    [Crossref] [Google Scholar]
  35. Dubrot J, Du PP, Lane-Reticker SK, Kessler EA, Muscato AJ, et al. 2022.. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. . Nat. Immunol. 23::1495506
    [Crossref] [Google Scholar]
  36. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. 2002.. Cancer immunoediting: from immunosurveillance to tumor escape. . Nat. Immunol. 3::99198
    [Crossref] [Google Scholar]
  37. Eguren-Santamaría I, Rodríguez I, Herrero-Martin C, Piérola EFd, Azpilikueta A, et al. 2024.. Short-term cultured tumor fragments to study immunotherapy combinations based on CD137 (4-1BB) agonism. . OncoImmunology 13::2373519
    [Crossref] [Google Scholar]
  38. Espinosa-Carrasco G, Chiu E, Scrivo A, Zumbo P, Dave A, et al. 2024.. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors. . Cancer Cell 42::120216.e8
    [Crossref] [Google Scholar]
  39. Exposito F, Redrado M, Houry M, Hastings K, Molero-Abraham M, et al. 2023.. PTEN loss confers resistance to anti-PD-1 therapy in non-small cell lung cancer by increasing tumor infiltration of regulatory T cells. . Cancer Res. 83::251326
    [Crossref] [Google Scholar]
  40. Fernandez JL, Årbogen S, Sadeghinia MJ, Haram M, Snipstad S, et al. 2023.. A comparative analysis of orthotopic and subcutaneous pancreatic tumour models: tumour microenvironment and drug delivery. . Cancers 15::5415
    [Crossref] [Google Scholar]
  41. Fidler IJ, Kripke ML. 1977.. Metastasis results from preexisting variant cells within a malignant tumor. . Science 197::89395
    [Crossref] [Google Scholar]
  42. Fitzgerald B, Connolly KA, Cui C, Fagerberg E, Mariuzza DL, et al. 2021.. A mouse model for the study of anti-tumor T cell responses in Kras-driven lung adenocarcinoma. . Cell Rep. Methods 1::100080
    [Crossref] [Google Scholar]
  43. Foggetti G, Li C, Cai H, Hellyer JA, Lin WY, et al. 2021.. Genetic determinants of EGFR-driven lung cancer growth and therapeutic response in vivo. . Cancer Discov. 11::173653
    [Crossref] [Google Scholar]
  44. Francia G, Cruz-Munoz W, Man S, Xu P, Kerbel RS. 2011.. Mouse models of advanced spontaneous metastasis for experimental therapeutics. . Nat. Rev. Cancer 11::13541
    [Crossref] [Google Scholar]
  45. Gammelgaard OL, Terp MG, Preiss B, Ditzel HJ. 2018.. Human cancer evolution in the context of a human immune system in mice. . Mol. Oncol. 12::1797810
    [Crossref] [Google Scholar]
  46. Gengenbacher N, Singhal M, Augustin HG, Gengenbacher N, Singhal M, Augustin HG. 2017.. Preclinical mouse solid tumour models: status quo, challenges and perspectives. . Nat. Rev. Cancer 17::75165
    [Crossref] [Google Scholar]
  47. George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, et al. 2017.. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. . Immunity 46::197204
    [Crossref] [Google Scholar]
  48. Germano G, Lamba S, Rospo G, Barault L, Magrì A, et al. 2017.. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. . Nature 552::11620
    [Crossref] [Google Scholar]
  49. Gettinger S, Choi J, Hastings K, Truini A, Datar I, et al. 2017.. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. . Cancer Discov. 7::142035
    [Crossref] [Google Scholar]
  50. Giacobbe A, Abate-Shen C. 2021.. Modeling metastasis in mice: a closer look. . Trends Cancer 7::91629
    [Crossref] [Google Scholar]
  51. Goddard ET, Fischer J, Schedin P. 2016.. A portal vein injection model to study liver metastasis of breast cancer. . J. Vis. Exp. 2016::e54903
    [Google Scholar]
  52. Goldberg SB, Schalper KA, Gettinger SN, Mahajan A, Herbst RS, et al. 2020.. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. . Lancet Oncol. 21::65563
    [Crossref] [Google Scholar]
  53. Gómez-Cuadrado L, Tracey N, Ma R, Qian B, Brunton VG. 2017.. Mouse models of metastasis: progress and prospects. . Dis. Models Mech. 10::106174
    [Crossref] [Google Scholar]
  54. Gronholm M, Feodoroff M, Antignani G, Martins B, Hamdan F, Cerullo V. 2021.. Patient-derived organoids for precision cancer immunotherapy. . Cancer Res. 81::314955
    [Crossref] [Google Scholar]
  55. Guerin MV, Finisguerra V, Van den Eynde BJ, Bercovici N, Trautmann A. 2020.. Preclinical murine tumor models: a structural and functional perspective. . eLife 9::e50740
    [Crossref] [Google Scholar]
  56. Guo S, Jiang X, Mao B, Li Q-X. 2019.. The design, analysis and application of mouse clinical trials in oncology drug development. . BMC Cancer 19::718
    [Crossref] [Google Scholar]
  57. Hai J, Zhang H, Zhou J, Wu Z, Chen T, et al. 2020.. Generation of genetically engineered mouse lung organoid models for squamous cell lung cancers allows for the study of combinatorial immunotherapy. . Clin. Cancer Res. 26::343142
    [Crossref] [Google Scholar]
  58. Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, et al. 2020.. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. . Cancer Cell 37::289307.e9
    [Crossref] [Google Scholar]
  59. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, et al. 2002.. NOD/SCID/ mouse: an excellent recipient mouse model for engraftment of human cells. . Blood 100::317582
    [Crossref] [Google Scholar]
  60. Kähkönen TE, Halleen JM, Bernoulli J. 2020.. Immunotherapies and metastatic cancers: understanding utility and predictivity of human immune cell engrafted mice in preclinical drug development. . Cancers 12::1615
    [Crossref] [Google Scholar]
  61. Kalbasi A, Ribas A. 2020.. Tumour-intrinsic resistance to immune checkpoint blockade. . Nat. Rev. Immunol. 20::2539
    [Crossref] [Google Scholar]
  62. Katti A, Vega-Pérez A, Foronda M, Zimmerman J, Zafra MP, et al. 2023.. Generation of precision preclinical cancer models using regulated in vivo base editing. . Nat. Biotechnol. 42::43747
    [Crossref] [Google Scholar]
  63. Khanna C, Hunter K. 2005.. Modeling metastasis in vivo. . Carcinogenesis 26::51323
    [Crossref] [Google Scholar]
  64. Kraehenbuehl L, Weng CH, Eghbali S, Wolchok JD, Merghoub T. 2022.. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. . Nat. Rev. Clin. Oncol. 19::3750
    [Crossref] [Google Scholar]
  65. Layton MG, Franks LM. 1984.. Heterogeneity in a spontaneous mouse lung carcinoma: selection and characterisation of stable metastatic variants. . Br. J. Cancer 49::41521
    [Crossref] [Google Scholar]
  66. Lee JW, Komar CA, Bengsch F, Graham K, Beatty GL. 2016.. Genetically engineered mouse models of pancreatic cancer: the KPC model (LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre), its variants, and their applications in immune-oncology drug discovery. . Curr. Protoc. Pharmacol. 73::14.39
    [Crossref] [Google Scholar]
  67. Li Y, Ferris A, Lewis BC, Orsulic S, Williams BO, et al. 2012.. The RCAS/TVA somatic gene transfer method in modeling human cancer. . In Genetically Engineered Mice for Cancer Research: Design, Analysis, Pathways, Validation and Pre-Clinical Testing, ed. JE Green, T Ried , pp. 83111. New York:: Springer
    [Google Scholar]
  68. McFadden DG, Politi K, Bhutkar A, Chen FK, Song X, et al. 2016.. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma. . PNAS 113::E640917
    [Crossref] [Google Scholar]
  69. Meeth K, Wang JX, Micevic G, Damsky W, Bosenberg MW. 2016.. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. . Pigment Cell Melanoma Res. 29::59097
    [Crossref] [Google Scholar]
  70. Memon D, Schoenfeld AJ, Ye D, Fromm G, Rizvi H, et al. 2024.. Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lung cancer. . Cancer Cell 42::20924.e9
    [Crossref] [Google Scholar]
  71. Menche C, Farin HF. 2021.. Strategies for genetic manipulation of adult stem cell-derived organoids. . Exp. Mol. Med. 53::148394
    [Crossref] [Google Scholar]
  72. Meraz IM, Majidi M, Meng F, Shao R, Ha MJ, et al. 2019.. An improved patient-derived xenograft humanized mouse model for evaluation of lung cancer immune responses. . Cancer Immunol. Res. 7::126779
    [Crossref] [Google Scholar]
  73. Mills BN, Connolly KA, Ye J, Murphy JD, Uccello TP, et al. 2019.. Stereotactic body radiation and interleukin-12 combination therapy eradicates pancreatic tumors by repolarizing the immune microenvironment. . Cell Rep. 29::40621.e5
    [Crossref] [Google Scholar]
  74. Mittendorf EA, Burgers F, Haanen J, Cascone T. 2022.. Neoadjuvant immunotherapy: leveraging the immune system to treat early-stage disease. . Am. Soc. Clin. Oncol. Educ. Book 42::189203
    [Crossref] [Google Scholar]
  75. Moser JC, Sullivan R, Taylor MH, Puzanov I, Falchook GS, et al. 2023.. 736A phase 1/2 open-label, dose-escalation study of ST-067, a decoy-resistant IL-18 cytokine, given as a monotherapy and with pembrolizumab in advanced solid tumor malignancies. . J. Immunother. Cancer 11:(Suppl. 1). https://doi.org/10.1136/jitc-2023-SITC2023.0736
    [Google Scholar]
  76. Mullenders J, de Jongh E, Brousali A, Roosen M, Blom JPA, et al. 2019.. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. . PNAS 116::456774
    [Crossref] [Google Scholar]
  77. Naranjo S, Cabana CM, LaFave LM, Romero R, Shanahan SL, et al. 2022.. Modeling diverse genetic subtypes of lung adenocarcinoma with a next-generation alveolar type 2 organoid platform. . Genes Dev. 36::93649
    [Crossref] [Google Scholar]
  78. Nguyen DX, Chiang AC, Zhang XH-F, Kim JY, Kris MG, et al. 2009.. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. . Cell 138::5162
    [Crossref] [Google Scholar]
  79. Nguyen-Ngoc KV, Shamir ER, Huebner RJ, Beck JN, Cheung KJ, Ewald AJ. 2015.. 3D culture assays of murine mammary branching morphogenesis and epithelial invasion. . Methods Mol. Biol. 1189::13562
    [Crossref] [Google Scholar]
  80. Norman GAV. 2019.. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?. JACC Basic Transl. Sci. 4::84554
    [Crossref] [Google Scholar]
  81. Ny L, Rizzo LY, Belgrano V, Karlsson J, Jespersen H, et al. 2020.. Supporting clinical decision making in advanced melanoma by preclinical testing in personalized immune-humanized xenograft mouse models. . Ann. Oncol. 31::26673
    [Crossref] [Google Scholar]
  82. O'Brien M, Ernst M, Poh AR. 2023.. An intrasplenic injection model of pancreatic cancer metastasis to the liver in mice. . STAR Protoc. 4::102021
    [Crossref] [Google Scholar]
  83. Olson B, Li Y, Lin Y, Liu ET, Patnaik A. 2018.. Mouse models for cancer immunotherapy research. . Cancer Discov. 8::135865
    [Crossref] [Google Scholar]
  84. Patel AK, Dhanik A, Lim WK, Adler C, Ni M, et al. 2023.. Spontaneous tumor regression mediated by human T cells in a humanized immune system mouse model. . Commun. Biol. 6::444
    [Crossref] [Google Scholar]
  85. Peng W, Chen JQ, Liu C, Malu S, Creasy C, et al. 2016.. Loss of PTEN promotes resistance to T cell–mediated immunotherapy. . Cancer Discov. 6::20216
    [Crossref] [Google Scholar]
  86. Pera M, Greene A, Cardon L, Carter GW, Chesler EJ, et al. 2024.. Improving the predictive power of mouse models. . Nat. Biotechnol. 42::117577
    [Crossref] [Google Scholar]
  87. Pereira C, Gimenez-Xavier P, Pros E, Pajares MJ, Moro M, et al. 2017.. Genomic profiling of patient-derived xenografts for lung cancer identifies B2M inactivation impairing immunorecognition. . Clin. Cancer Res. 23::320313
    [Crossref] [Google Scholar]
  88. Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, et al. 2016.. An essential receptor for adeno-associated virus infection. . Nature 530::10812
    [Crossref] [Google Scholar]
  89. Politi K. 2020.. Leveraging patient-derived models for immunotherapy research. . Am. Soc. Clin. Oncol. Educ. Book 40::e34450
    [Crossref] [Google Scholar]
  90. Ricciuti B, Lamberti G, Puchala SR, Mahadevan NR, Lin J-R, et al. 2024.. Genomic and immunophenotypic landscape of acquired resistance to PD-(L)1 blockade in non–small-cell lung cancer. . J. Clin. Oncol. 42::131121
    [Crossref] [Google Scholar]
  91. Rodríguez-Ruiz ME, Rodríguez I, Mayorga L, Labiano T, Barbes B, et al. 2019.. TGFβ blockade enhances radiotherapy abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. . Mol. Cancer Ther. 18::62131
    [Crossref] [Google Scholar]
  92. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, et al. 2014.. Development and function of human innate immune cells in a humanized mouse model. . Nat. Biotechnol. 32::36472
    [Crossref] [Google Scholar]
  93. Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, et al. 2019.. Laboratory mice born to wild mice have natural microbiota and model human immune responses. . Science 365::eaaw4361
    [Crossref] [Google Scholar]
  94. Saez-Ibanez AR, Upadhaya S, Campbell J. 2023.. Immuno-oncology clinical trials take a turn beyond PD1/PDL1 inhibitors. . Nat. Rev. Drug Discov. 22::44243
    [Crossref] [Google Scholar]
  95. Sánchez-Rivera FJ, Diaz BJ, Kastenhuber ER, Schmidt H, Katti A, et al. 2022.. Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants. . Nat. Biotechnol. 40::86273
    [Crossref] [Google Scholar]
  96. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. 1990.. Overexpression of TGFα in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. . Cell 61::112135
    [Crossref] [Google Scholar]
  97. Sargent JK, Warner MA, Low BE, Schott WH, Hoffert T, et al. 2022.. Genetically diverse mouse platform to xenograft cancer cells. . Disease Models Mech. 15::dmm049457
    [Crossref] [Google Scholar]
  98. Schoenfeld AJ, Hellmann MD. 2020.. Acquired resistance to immune checkpoint inhibitors. . Cancer Cell 37::44355
    [Crossref] [Google Scholar]
  99. Schreiber RD, Old LJ, Smyth MJ. 2011.. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. . Science 331::156570
    [Crossref] [Google Scholar]
  100. Seidlitz T, Stange DE. 2021.. Gastrointestinal cancer organoids—applications in basic and translational cancer research. . Exp. Mol. Med. 53::145970
    [Crossref] [Google Scholar]
  101. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, et al. 2005.. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells. . J. Immunol. 174::647789
    [Crossref] [Google Scholar]
  102. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, et al. 1995.. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. . J. Immunol. 154::18091
    [Crossref] [Google Scholar]
  103. Simeonov KP, Byrns CN, Clark ML, Norgard RJ, Martin B, et al. 2021.. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. . Cancer Cell 39::115062.e9
    [Crossref] [Google Scholar]
  104. Simons BW, Dalrymple S, Rosen M, Zheng L, Brennen WN. 2020.. A hemi-spleen injection model of liver metastasis for prostate cancer. . Prostate 80::126369
    [Crossref] [Google Scholar]
  105. Sorokin AV, Kanikarla Marie P, Bitner L, Syed M, Woods M, et al. 2022.. Targeting RAS mutant colorectal cancer with dual inhibition of MEK and CDK4/6. . Cancer Res. 82::333544
    [Crossref] [Google Scholar]
  106. Stribbling SM, Beach C, Ryan AJ. 2024.. Orthotopic and metastatic tumour models in preclinical cancer research. . Pharmacol. Ther. 257::108631
    [Crossref] [Google Scholar]
  107. Strowig T, Rongvaux A, Rathinam C, Takizawa H, Borsotti C, et al. 2011.. Transgenic expression of human signal regulatory protein alpha in Rag2−/−γc−/− mice improves engraftment of human hematopoietic cells in humanized mice. . PNAS 108::1321823
    [Crossref] [Google Scholar]
  108. Sykes JA, Whitescarver J, Briggs L. 1968.. Observations on a cell line producing mammary tumor virus. . J. Natl. Cancer Inst. 41::131527
    [Google Scholar]
  109. Takeda H, Kataoka S, Nakayama M, Ali MAE, Oshima H, et al. 2019.. CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. . PNAS 116::1563544
    [Crossref] [Google Scholar]
  110. Takenaka K, Prasolava TK, Wang JC, Mortin-Toth SM, Khalouei S, et al. 2007.. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. . Nat. Immunol. 8::131323
    [Crossref] [Google Scholar]
  111. Tang J, Yu JX, Hubbard-Lucey VM, Neftelinov ST, Hodge JP, Lin Y. 2018.. Trial watch: the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. . Nat. Rev. Drug Discov. 17::85455
    [Crossref] [Google Scholar]
  112. Tang YJ, Shuldiner EG, Karmakar S, Winslow MM. 2023.. High-throughput identification, modeling, and analysis of cancer driver genes in vivo. . Cold Spring Harb. Perspect. Med. 13::a041382
    [Crossref] [Google Scholar]
  113. Teng Y-C, Shen Z-Q, Kao C-H, Tsai T-F. 2016.. Hepatocellular carcinoma mouse models: hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes. . World J. Gastroenterol. 22::30025
    [Crossref] [Google Scholar]
  114. Torrejon DY, Galvez M, Abril-Rodriguez G, Campbell KM, Medina E, et al. 2023.. Antitumor immune responses in B2M-deficient cancers. . Cancer Immunol. Res. 11::164255
    [Crossref] [Google Scholar]
  115. Trejo CL, Green S, Marsh V, Collisson EA, Iezza G, et al. 2013.. Mutationally activated PIK3CAH1047R cooperates with BRAFV600E to promote lung cancer progression. . Cancer Res. 73::644861
    [Crossref] [Google Scholar]
  116. Trujillo JA, Luke JJ, Zha Y, Segal JP, Ritterhouse LL, et al. 2019.. Secondary resistance to immunotherapy associated with β-catenin pathway activation or PTEN loss in metastatic melanoma. . J. Immunother. Cancer 7::295
    [Crossref] [Google Scholar]
  117. Usman OH, Zhang L, Xie G, Kocher HM, Hwang CI, et al. 2022.. Genomic heterogeneity in pancreatic cancer organoids and its stability with culture. . NPJ Genom. Med. 7::71
    [Crossref] [Google Scholar]
  118. Valencia K, Sainz C, Bértolo C, De Biurrun G, Agorreta J, et al. 2022.. Two cell line models to study multiorganic metastasis and immunotherapy in lung squamous cell carcinoma. . Dis. Models Mech. 15::dmm049137
    [Crossref] [Google Scholar]
  119. van Marion DMS, Domanska UM, Timmer-Bosscha H, Walenkamp AME. 2016.. Studying cancer metastasis: existing models, challenges and future perspectives. . Crit. Rev. Oncol. Hematol. 97::10717
    [Crossref] [Google Scholar]
  120. Veninga V, Voest EE. 2021.. Tumor organoids: opportunities and challenges to guide precision medicine. . Cancer Cell 39::1190201
    [Crossref] [Google Scholar]
  121. Voabil P, de Bruijn M, Roelofsen LM, Hendriks SH, Brokamp S, et al. 2021.. An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. . Nat. Med. 27::125061
    [Crossref] [Google Scholar]
  122. Wakefield L, Agarwal S, Tanner K. 2023.. Preclinical models for drug discovery for metastatic disease. . Cell 186::1792813
    [Crossref] [Google Scholar]
  123. Wang J, Perry CJ, Meeth K, Thakral D, Damsky W, et al. 2017.. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model. . Pigment Cell Melanoma Res. 30::42835
    [Crossref] [Google Scholar]
  124. Waxler SH, Tabar P, Melcher LR. 1953.. Obesity and the time of appearance of spontaneous mammary carcinoma in C3H mice. . Cancer Res. 13::27678
    [Google Scholar]
  125. Wei T, Buehler D, Ward-Shaw E, Lambert PF, Shenk T. 2020.. An infection-based murine model for papillomavirus-associated head and neck cancer. . mBio 11::e00908-20
    [Crossref] [Google Scholar]
  126. Westcott PMK, Halliwill KD, To MD, Rashid M, Rust AG, et al. 2015.. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. . Nature 517::48992
    [Crossref] [Google Scholar]
  127. Westcott PMK, Muyas F, Hauck H, Smith OC, Sacks NJ, et al. 2023.. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity. . Nat. Genet. 55::168695
    [Crossref] [Google Scholar]
  128. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA. 2011.. Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. . Trends Immunol. 32::32127
    [Crossref] [Google Scholar]
  129. Wrenn ED, Moore BM, Greenwood E, McBirney M, Cheung KJ. 2020.. Optimal, large-scale propagation of mouse mammary tumor organoids. . J. Mammary Gland Biol. Neoplasia 25::33750
    [Crossref] [Google Scholar]
  130. Yu C, Wang H, Muscarella A, Goldstein A, Zeng H-C, et al. 2016.. Intra-iliac artery injection for efficient and selective modeling of microscopic bone metastasis. . J. Vis. Exp. 2016:e53982
    [Google Scholar]
  131. Yu J, Green MD, Li S, Sun Y, Journey SN, et al. 2021.. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. . Nat. Med. 27::15264
    [Crossref] [Google Scholar]
  132. Zafra MP, Schatoff EM, Katti A, Foronda M, Breinig M, et al. 2018.. Optimized base editors enable efficient editing in cells, organoids and mice. . Nat. Biotechnol. 36::88893
    [Crossref] [Google Scholar]
  133. Zamler DB, Shingu T, Kahn LM, Huntoon K, Kassab C, et al. 2022.. Immune landscape of a genetically engineered murine model of glioma compared with human glioma. . JCI Insight 7::e148990
    [Crossref] [Google Scholar]
  134. Zandberg DP, Menk AV, Velez M, Normolle D, Depeaux K, et al. 2021.. Tumor hypoxia is associated with resistance to PD-1 blockade in squamous cell carcinoma of the head and neck. . J. Immunother. Cancer 9::e002088
    [Crossref] [Google Scholar]
  135. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, et al. 2016.. Mutations associated with acquired resistance to PD-1 blockade in melanoma. . N. Eng. J. Med. 375::81929
    [Crossref] [Google Scholar]
  136. Zeng Z, Gu SS, Wong CJ, Yang L, Ouardaoui N, et al. 2022.. Machine learning on syngeneic mouse tumor profiles to model clinical immunotherapy response. . Sci. Adv. 8::eabm8564
    [Crossref] [Google Scholar]
  137. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, et al. 2015.. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. . Nature 527::1004
    [Crossref] [Google Scholar]
  138. Zhang S, Huang W-C, Zhang L, Zhang C, Lowery FJ, et al. 2013.. SRC family kinases as novel therapeutic targets to treat breast cancer brain metastases. . Cancer Res. 73::576474
    [Crossref] [Google Scholar]
  139. Zhang W, Bado IL, Hu J, Wan Y-W, Wu L, et al. 2021.. The bone microenvironment invigorates metastatic seeds for further dissemination. . Cell 184::247186.e20
    [Crossref] [Google Scholar]
  140. Zhao Z, Chen X, Dowbaj AM, Sljukic A, Bratlie K, et al. 2022.. Organoids. . Nat. Rev. Methods Primers 2::94
    [Crossref] [Google Scholar]
  141. Zhou H, Zhao D. 2014.. Ultrasound imaging-guided intracardiac injection to develop a mouse model of breast cancer brain metastases followed by longitudinal MRI. . J. Vis. Exp. 6::e51146
    [Google Scholar]
  142. Zhou T, Damsky W, Weizman O-E, McGeary MK, Hartmann KP, et al. 2020.. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. . Nature 583::60914
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062822-024810
Loading
/content/journals/10.1146/annurev-cancerbio-062822-024810
Loading

Data & Media loading...

Supplemental Materials

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error