1932

Abstract

Cancer research seeks to understand the biology underlying the progression to malignant transformation. Recently, the incidence of esophageal adenocarcinoma (EAC) has increased dramatically, and if we understand why and how, we will be better equipped for diagnosis, prognosis, detection, prevention, and intervention. The earliest steps in progression for most malignancies are the most difficult to study. The initiation of cancer is believed to be a relatively rare and sporadic event, the locations and timings of which are most often unknown. Of the trillions of somatic cells in our bodies, only a few ever find themselves on a path to malignancy. However, chronic inflammation generates a metaplastic lesion that is directly linked to increased incidence of EAC and thus alerts us to the time and place that progression is initiated and allows us to study the biology. We describe recent studies that identify coordinated actions between stromal and epithelial cells that progress to EAC.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062822-105541
2024-06-12
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062822-105541.html?itemId=/content/journals/10.1146/annurev-cancerbio-062822-105541&mimeType=html&fmt=ahah

Literature Cited

  1. Alkhayyat M, Kumar P, Sanaka KO, Thota PN. 2021.. Chemoprevention in Barrett's esophagus and esophageal adenocarcinoma. . Ther. Adv. Gastroenterol. 14::17562848211033730
    [Crossref] [Google Scholar]
  2. Arnold M, Laversanne M, Brown LM, Devesa SS, Bray F. 2017.. Predicting the future burden of esophageal cancer by histological subtype: international trends in incidence up to 2030. . Am. J. Gastroenterol. 112::124755
    [Crossref] [Google Scholar]
  3. Arnold M, Soerjomataram I, Ferlay J, Forman D. 2015.. Global incidence of oesophageal cancer by histological subtype in 2012. . Gut 64::38187
    [Crossref] [Google Scholar]
  4. Barcellos-Hoff MH, Ravani SA. 2000.. Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. . Cancer Res. 60::125460
    [Google Scholar]
  5. Baslan T, Morris JP 4th, Zhao Z, Reyes J, Ho YJ, et al. 2022.. Ordered and deterministic cancer genome evolution after p53 loss. . Nature 608::795802
    [Crossref] [Google Scholar]
  6. Bissell MJ, Hines WC. 2011.. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. . Nat. Med. 17::32029
    [Crossref] [Google Scholar]
  7. Bissell MJ, Radisky D. 2001.. Putting tumours in context. . Nat. Rev. Cancer 1::4654
    [Crossref] [Google Scholar]
  8. Bussard KM, Boulanger CA, Booth BW, Bruno RD, Smith GH. 2010.. Reprogramming human cancer cells in the mouse mammary gland. . Cancer Res. 70::633643
    [Crossref] [Google Scholar]
  9. Bussard KM, Smith GH. 2012.. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo. . PLOS ONE 7::e49221
    [Crossref] [Google Scholar]
  10. Caruso JA, Tlsty TD. 2021.. Remaining true to one's identity. . Nat. Aging 1::75759
    [Crossref] [Google Scholar]
  11. Caruso JA, Wang X, Murrow LM, Rodriguez CI, Chen-Tanyolac C, et al. 2023.. Loss of PPARγ activity characterizes early protumorigenic stromal reprogramming and dictates the therapeutic window of opportunity. . PNAS 120:(42):e2303774120
    [Crossref] [Google Scholar]
  12. Conteduca V, Sansonno D, Ingravallo G, Marangi S, Russi S, et al. 2012.. Barrett's esophagus and esophageal cancer: an overview. . Int. J. Oncol. 41::41424
    [Crossref] [Google Scholar]
  13. Corley DA, Kerlikowske K, Verma R, Buffler P. 2003.. Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. . Gastroenterology 124::4756
    [Crossref] [Google Scholar]
  14. Dai S, Mo Y, Wang Y, Xiang B, Liao Q, et al. 2020.. Chronic stress promotes cancer development. . Front. Oncol. 10::1492
    [Crossref] [Google Scholar]
  15. DeFilippis RA, Chang H, Dumont N, Rabban JT, Chen YY, et al. 2012.. CD36 repression activates a multicellular stromal program shared by high mammographic density and tumor tissues. . Cancer Discov. 2::82639
    [Crossref] [Google Scholar]
  16. Denisov EV, Schegoleva AA, Gervas PA, Ponomaryova AA, Tashireva LA, et al. 2019.. Premalignant lesions of squamous cell carcinoma of the lung: the molecular make-up and factors affecting their progression. . Lung Cancer 135::2128
    [Crossref] [Google Scholar]
  17. Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ. 1985.. Wounding and its role in RSV-mediated tumor formation. . Science 230::67678
    [Crossref] [Google Scholar]
  18. Dumont N, Liu B, Defilippis RA, Chang H, Rabban JT, et al. 2013.. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alternation of extracellular matrix characteristics. . Neoplasia 15::24962
    [Crossref] [Google Scholar]
  19. Eluri S, Brugge WR, Daglilar ES, Jackson SA, Styn MA, et al. 2015.. The presence of genetic mutations at key loci predicts progression to esophageal adenocarcinoma in Barrett's esophagus. . Am. J. Gastroenterol. 110::82834
    [Crossref] [Google Scholar]
  20. Erkan M, Michalski CW, Rieder S, Reiser-Erkan C, Abiatari I, et al. 2008.. The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. . Clin. Gastroenterol. Hepatol. 6::115561
    [Crossref] [Google Scholar]
  21. Evans JA, Carlotti E, Lin ML, Hackett RJ, Haughey MJ, et al. 2022.. Clonal transitions and phenotypic evolution in Barrett's esophagus. . Gastroenterology 162::1197209.e13
    [Crossref] [Google Scholar]
  22. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, et al. 2008.. Stromal gene expression predicts clinical outcome in breast cancer. . Nat. Med. 14::51827
    [Crossref] [Google Scholar]
  23. Fordyce CA, Patten KT, Fessenden TB, DeFilippis R, Hwang ES, et al. 2012.. Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue phenotypes. . Breast Cancer Res. 14::R155
    [Crossref] [Google Scholar]
  24. Gadek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. 2013.. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. . Pharmacol. Rep. 65::165562
    [Crossref] [Google Scholar]
  25. Gaudino G, Xue JM, Yang HN. 2020.. How asbestos and other fibers cause mesothelioma. . Transl. Lung Cancer Res. 9::S3946
    [Crossref] [Google Scholar]
  26. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, et al. 2014.. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. . N. Engl. J. Med. 371::247787
    [Crossref] [Google Scholar]
  27. Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, et al. 2010.. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. . Genes Dev. 24::24155
    [Crossref] [Google Scholar]
  28. Greten FR, Grivennikov SI. 2019.. Inflammation and cancer: triggers, mechanisms, and consequences. . Immunity 51::2741
    [Crossref] [Google Scholar]
  29. Grivennikov SI. 2013.. Inflammation and colorectal cancer: colitis-associated neoplasia. . Semin. Immunopathol. 35::22944
    [Crossref] [Google Scholar]
  30. Grivennikov SI, Karin M. 2010.. Inflammation and oncogenesis: a vicious connection. . Curr. Opin. Genet. Dev. 20::6571
    [Crossref] [Google Scholar]
  31. Gu J, Ajani JA, Hawk ET, Ye Y, Lee JH, et al. 2010.. Genome-wide catalogue of chromosomal aberrations in Barrett's esophagus and esophageal adenocarcinoma: a high-density single nucleotide polymorphism array analysis. . Cancer Prev. Res. 3::117686
    [Crossref] [Google Scholar]
  32. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. 2003.. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. . Nat. Rev. Cancer 3::41121
    [Crossref] [Google Scholar]
  33. Hong H, Ji M, Lai D. 2021.. Chronic stress effects on tumor: pathway and mechanism. . Front. Oncol. 11::738252
    [Crossref] [Google Scholar]
  34. Hong S, Lee H-J, Kim SJ, Hahm K-B. 2010.. Connection between inflammation and carcinogenesis in gastrointestinal tract: focus on TGF-β signaling. . World J. Gastroenterol. 16::208093
    [Crossref] [Google Scholar]
  35. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, et al. 2015.. Tumour exosome integrins determine organotropic metastasis. . Nature 527::32935
    [Crossref] [Google Scholar]
  36. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, et al. 2004.. Gastric cancer originating from bone marrow-derived cells. . Science 306::156871
    [Crossref] [Google Scholar]
  37. Houghton J, Wang TC. 2005.. Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. . Gastroenterology 128::156778
    [Crossref] [Google Scholar]
  38. Ishikawa S, Takenaka K, Yanagihara K, Miyahara R, Kawano Y, et al. 2004.. Matrix metalloproteinase-2 status in stromal fibroblasts, not in tumor cells, is a significant prognostic factor in non-small-cell lung cancer. . Clin. Cancer Res. 10::657985
    [Crossref] [Google Scholar]
  39. Januszewicz W, Fitzgerald RC. 2019.. Barrett's oesophagus and oesophageal adenocarcinoma. . Medicine 47::27585
    [Crossref] [Google Scholar]
  40. Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, et al. 2009.. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett's esophagus. . Cancer Res. 69::411215
    [Crossref] [Google Scholar]
  41. Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, et al. 1996.. Frequent clones of p53-mutated keratinocytes in normal human skin. . PNAS 93::1402529
    [Crossref] [Google Scholar]
  42. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, et al. 2005.. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. . Nature 438::82027
    [Crossref] [Google Scholar]
  43. Kastelein F, Biermann K, Steyerberg EW, Verheij J, Kalisvaart M, et al. 2013.. Aberrant p53 protein expression is associated with an increased risk of neoplastic progression in patients with Barrett's oesophagus. . Gut 62::167683
    [Crossref] [Google Scholar]
  44. Katz-Summercorn AC, Jammula S, Frangou A, Peneva I, O'Donovan M, et al. 2022.. Multi-omic cross-sectional cohort study of pre-malignant Barrett's esophagus reveals early structural variation and retrotransposon activity. . Nat. Commun. 13::1407
    [Crossref] [Google Scholar]
  45. Kaur A, Webster MR, Marchbank K, Behera R, Ndoye A, et al. 2016.. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. . Nature 532::25054
    [Crossref] [Google Scholar]
  46. Lagisetty KH, McEwen DP, Nancarrow DJ, Schiebel JG, Ferrer-Torres D, et al. 2021.. Immune determinants of Barrett's progression to esophageal adenocarcinoma. . JCI Insight 6::e143888
    [Crossref] [Google Scholar]
  47. Leedham SJ, Preston SL, McDonald SA, Elia G, Bhandari P, et al. 2008.. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett's oesophagus. . Gut 57::104148
    [Crossref] [Google Scholar]
  48. Li X, Galipeau PC, Paulson TG, Sanchez CA, Arnaudo J, et al. 2014.. Temporal and spatial evolution of somatic chromosomal alterations: a case-cohort study of Barrett's esophagus. . Cancer Prev. Res. 7::11427
    [Crossref] [Google Scholar]
  49. Li X, Paulson TG, Galipeau PC, Sanchez CA, Liu K, et al. 2015.. Assessment of esophageal adenocarcinoma risk using somatic chromosome alterations in longitudinal samples in Barrett's esophagus. . Cancer Prev. Res. 8::84556
    [Crossref] [Google Scholar]
  50. Liu Y, Tian S, Ning B, Huang T, Li Y, Wei Y. 2022.. Stress and cancer: the mechanisms of immune dysregulation and management. . Front. Immunol. 13::1032294
    [Crossref] [Google Scholar]
  51. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD. 1992.. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. . Cell 70::92335
    [Crossref] [Google Scholar]
  52. Luebeck J, Ng AWT, Galipeau PC, Li X, Sanchez CA, et al. 2023.. Extrachromosomal DNA in the cancerous transformation of Barrett's oesophagus. . Nature 616::798805
    [Crossref] [Google Scholar]
  53. Lyons TR, O'Brien J, Borges VF, Conklin MW, Keely PJ, et al. 2011.. Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. . Nat. Med. 17::110915
    [Crossref] [Google Scholar]
  54. Mantovani A, Allavena P, Sica A, Balkwill F. 2008.. Cancer-related inflammation. . Nature 454::43644
    [Crossref] [Google Scholar]
  55. Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F, et al. 2018.. Somatic mutant clones colonize the human esophagus with age. . Science 362::91117
    [Crossref] [Google Scholar]
  56. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, et al. 2015.. High burden and pervasive positive selection of somatic mutations in normal human skin. . Science 348::88086
    [Crossref] [Google Scholar]
  57. Medrek C, Ponten F, Jirstrom K, Leandersson K. 2012.. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. . BMC Cancer 12::306
    [Crossref] [Google Scholar]
  58. Modiano N, Gerson LB. 2007.. Barrett's esophagus: incidence, etiology, pathophysiology, prevention and treatment. . Ther. Clin. Risk Manag. 3::1035145
    [Google Scholar]
  59. Moody S, Senkin S, Islam SMA, Wang J, Nasrollahzadeh D, et al. 2021.. Mutational signatures in esophageal squamous cell carcinoma from eight countries with varying incidence. . Nat. Genet. 53::155363
    [Crossref] [Google Scholar]
  60. Northcott JM, Northey JJ, Barnes JM, Weaver VM. 2015.. Fighting the force: potential of homeobox genes for tumor microenvironment regulation. . Biochim. Biophys. Acta 1855::24853
    [Google Scholar]
  61. Northey JJ, Barrett AS, Acerbi I, Hayward MK, Talamantes S, et al. 2020.. Stiff stroma increases breast cancer risk by inducing the oncogene ZNF217. . J. Clin. Investig. 130::572137
    [Crossref] [Google Scholar]
  62. Novotna K, Trkova M, Pazdro A, Smejkal M, Soukupova A, et al. 2006.. TP53 gene mutations are rare in nondysplastic Barrett's esophagus. . Dig. Dis. Sci. 51::11013
    [Crossref] [Google Scholar]
  63. Nowicki-Osuch K, Zhuang L, Cheung TS, Black EL, Masque-Soler N, et al. 2023.. Single-cell RNA sequencing unifies developmental programs of esophageal and gastric intestinal metaplasia. . Cancer Discov. 13::134663
    [Crossref] [Google Scholar]
  64. Nowicki-Osuch K, Zhuang L, Jammula S, Bleaney CW, Mahbubani KT, et al. 2021.. Molecular phenotyping reveals the identity of Barrett's esophagus and its malignant transition. . Science 373::76067
    [Crossref] [Google Scholar]
  65. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. 1999.. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. . Cancer Res. 59::500211
    [Google Scholar]
  66. Park CC, Bissell MJ, Barcellos-Hoff MH. 2000.. The influence of the microenvironment on the malignant phenotype. . Mol. Med. Today 6::32429
    [Crossref] [Google Scholar]
  67. Paulson TG, Galipeau PC, Oman KM, Sanchez CA, Kuhner MK, et al. 2022.. Somatic whole genome dynamics of precancer in Barrett's esophagus reveals features associated with disease progression. . Nat. Commun. 13::2300
    [Crossref] [Google Scholar]
  68. Paulson TG, Galipeau PC, Xu L, Kissel HD, Li X, et al. 2008.. p16 mutation spectrum in the premalignant condition Barrett's esophagus. . PLOS ONE 3::e3809
    [Crossref] [Google Scholar]
  69. Psaila B, Lyden D. 2009.. The metastatic niche: adapting the foreign soil. . Nat. Rev. Cancer 9::28593
    [Crossref] [Google Scholar]
  70. Quante M, Abrams JA, Lee Y, Wang TC. 2012.. Barrett esophagus: what a mouse model can teach us about human disease. . Cell Cycle 11::432838
    [Crossref] [Google Scholar]
  71. Que J, Garman KS, Souza RF, Spechler SJ. 2019.. Pathogenesis and cells of origin of Barrett's esophagus. . Gastroenterology 157::34964.e1
    [Crossref] [Google Scholar]
  72. Ross-Innes CS, Becq J, Warren A, Cheetham RK, Northen H, et al. 2015.. Whole-genome sequencing provides new insights into the clonal architecture of Barrett's esophagus and esophageal adenocarcinoma. . Nat. Genet. 47::103846
    [Crossref] [Google Scholar]
  73. Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, et al. 2011.. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. . Hepatology 53::1192205
    [Crossref] [Google Scholar]
  74. Shadhu K, Xi C. 2019.. Inflammation and pancreatic cancer: an updated review. . Saudi J. Gastroenterol. 25::313
    [Crossref] [Google Scholar]
  75. Shalabi SF, Miyano M, Sayaman RW, Lopez JC, Jokela TA, et al. 2021.. Evidence for accelerated aging in mammary epithelia of women carrying germline BRCA1 or BRCA2 mutations. . Nat. Aging 1::83849
    [Crossref] [Google Scholar]
  76. Sharma P. 2009.. Barrett's esophagus. . N. Engl. J. Med. 361::254856
    [Crossref] [Google Scholar]
  77. Shree T, Olson OC, Elie BT, Kester JC, Garfall AL, et al. 2011.. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. . Genes Dev. 25::246579
    [Crossref] [Google Scholar]
  78. Sparmann A, Bar-Sagi D. 2004.. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. . Cancer Cell 6::44758
    [Crossref] [Google Scholar]
  79. Stachler MD, Camarda ND, Deitrick C, Kim A, Agoston AT, et al. 2018.. Detection of mutations in Barrett's esophagus before progression to high-grade dysplasia or adenocarcinoma. . Gastroenterology 155::15667
    [Crossref] [Google Scholar]
  80. Stachler MD, Taylor-Weiner A, Peng S, McKenna A, Agoston AT, et al. 2015.. Paired exome analysis of Barrett's esophagus and adenocarcinoma. . Nat. Genet. 47::104755
    [Crossref] [Google Scholar]
  81. Strasser MK, Gibbs DL, Gascard P, Bons J, Hickey JW, et al. 2023.. Concerted epithelial and stromal changes during progression of Barrett's esophagus to invasive adenocarcinoma exposed by multi-scale, multi-omics analysis. . bioRxiv 2023.06.08.544265. https://doi.org/10.1101/2023.06.08.544265
  82. Tlsty TD. 2002.. Functions of p53 suppress critical consequences of damage and repair in the initiation of cancer. . Cancer Cell 2::24
    [Crossref] [Google Scholar]
  83. Tlsty TD, Hein PW. 2001.. Know thy neighbor: Stromal cells can contribute oncogenic signals. . Curr. Opin. Genet. Dev. 11::5459
    [Crossref] [Google Scholar]
  84. Trinchieri G. 2012.. Cancer and inflammation: an old intuition with rapidly evolving new concepts. . Annu. Rev. Immunol. 30::677706
    [Crossref] [Google Scholar]
  85. Vignjević Petrinović S, Milošević MS, Marković D, Momčilović S. 2023.. Interplay between stress and cancer—a focus on inflammation. . Front. Physiol. 14::1119095
    [Crossref] [Google Scholar]
  86. Vogelstein B, Kinzler KW. 2004.. Cancer genes and the pathways they control. . Nat. Med. 10::78999
    [Crossref] [Google Scholar]
  87. Wang X, Ouyang H, Yamamoto Y, Kumar PA, Wei TS, et al. 2011.. Residual embryonic cells as precursors of a Barrett's-like metaplasia. . Cell 145::102335
    [Crossref] [Google Scholar]
  88. Weaver JMJ, Ross-Innes CS, Shannon N, Lynch AG, Forshew T, et al. 2014.. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. . Nat. Genet. 46::83743
    [Crossref] [Google Scholar]
  89. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, et al. 1997.. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. . J. Cell Biol. 137::23145
    [Crossref] [Google Scholar]
  90. Wei J, Yao J, Yan M, Xie Y, Liu P, et al. 2022.. The role of matrix stiffness in cancer stromal cell fate and targeting therapeutic strategies. . Acta Biomater. 150::3447
    [Crossref] [Google Scholar]
  91. Wong DJ, Paulson TG, Prevo LJ, Galipeau PC, Longton G, et al. 2001.. p16INK4a lesions are common, early abnormalities that undergo clonal expansion in Barrett's metaplastic epithelium. . Cancer Res. 61::828489
    [Google Scholar]
  92. Yamamoto Y, Wang X, Bertrand D, Kern F, Zhang T, et al. 2016.. Mutational spectrum of Barrett's stem cells suggests paths to initiation of a precancerous lesion. . Nat. Commun. 7::10380
    [Crossref] [Google Scholar]
  93. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM. 1992.. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. . Cell 70::93748
    [Crossref] [Google Scholar]
  94. Zolondick AA, Gaudino G, Xue J, Pass HI, Carbone M, Yang H. 2021.. Asbestos-induced chronic inflammation in malignant pleural mesothelioma and related therapeutic approaches—a narrative review. . Precis. Cancer Med. 4::27
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062822-105541
Loading
/content/journals/10.1146/annurev-cancerbio-062822-105541
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error