1932

Abstract

Following escape from the primary tumor, cancer cells face diverse micro-environments during the metastatic cascade. To survive and establish outgrowth at a distant site, metastasizing cancer cells must undergo metabolic reprogramming to adapt to the changing conditions. However, the host in which the tumors grow also experiences metabolic adaptations in response to various environmental factors that can mediate cancer progression. In this review, we highlight the endogenous factors that determine host metabolism (nutrient availability at specific organs or the microbiome), as well as exogenous factors that influence host metabolism systemically or locally (diet, alcohol, physical activity, air pollution, and circadian rhythm). Furthermore, we elaborate on how these environment-induced metabolic changes can affect metastatic progression. Understanding the interplay between environmental factors, host metabolism, and metastatic progression may unveil potential targets for future therapeutic interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-062822-122840
2024-06-12
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/8/1/annurev-cancerbio-062822-122840.html?itemId=/content/journals/10.1146/annurev-cancerbio-062822-122840&mimeType=html&fmt=ahah

Literature Cited

  1. Ai C, Ma G, Deng Y, Zheng Q, Gen Y, et al. 2020.. Nm23-H1 inhibits lung cancer bone-specific metastasis by upregulating miR-660-5p targeted SMARCA5. . Thorac. Cancer 11:(3):64050
    [Crossref] [Google Scholar]
  2. Alizadeh Zarei M, Seyed Hosseini E, Haddad Kashani H, Ahmad E, Nikzad H. 2023.. Effects of the exercise-inducible myokine irisin on proliferation and malignant properties of ovarian cancer cells through the HIF-1 α signaling pathway. . Sci. Rep. 13:(1):170
    [Crossref] [Google Scholar]
  3. Altea-Manzano P, Cuadros AM, Broadfield LA, Fendt S-M. 2020.. Nutrient metabolism and cancer in the in vivo context: a metabolic game of give and take. . EMBO Rep. 21:(10):e50635
    [Crossref] [Google Scholar]
  4. Altea-Manzano P, Doglioni G, Liu Y, Cuadros AM, Nolan E, et al. 2023.. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. . Nat. Cancer 4:(3):34464
    [Crossref] [Google Scholar]
  5. Andres-Hernando A, Orlicky DJ, Kuwabara M, Ishimoto T, Nakagawa T, et al. 2020.. Deletion of fructokinase in the liver or in the intestine reveals differential effects on sugar-induced metabolic dysfunction. . Cell Metab. 32:(1):11727.e3
    [Crossref] [Google Scholar]
  6. Bergers G, Fendt S-M. 2021.. The metabolism of cancer cells during metastasis. . Nat. Rev. Cancer 21:(3):16280
    [Crossref] [Google Scholar]
  7. Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, et al. 2021.. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. . Cancer Cell 39:(5):70824.e11
    [Crossref] [Google Scholar]
  8. Bojková B, Winklewski PJ, Wszedybyl-Winklewska M. 2020.. Dietary fat and cancer: which is good, which is bad, and the body of evidence. . Int. J. Mol. Sci. 21:(11):4114
    [Crossref] [Google Scholar]
  9. Brown JC, Ma C, Shi Q, Niedzwiecki D, Zemla T, et al. 2023.. Association between physical activity and the time course of cancer recurrence in stage III colon cancer. . Br. J. Sports Med. 57:(15):96571
    [Crossref] [Google Scholar]
  10. Bu P, Chen K-Y, Xiang K, Johnson C, Crown SB, et al. 2018.. Aldolase B–mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. . Cell Metab. 27:(6):124962.e4
    [Crossref] [Google Scholar]
  11. Cecconi A, Navarrete G, Garcia-Guimaraes M, Vera A, Blanco-Dominguez R, et al. 2022.. Influence of air pollutants on circulating inflammatory cells and microRNA expression in acute myocardial infarction. . Sci. Rep. 12:(1):5350
    [Crossref] [Google Scholar]
  12. Chang C-Y, You R, Armstrong D, Bandi A, Cheng Y-T, et al. 2023.. Chronic exposure to carbon black ultrafine particles reprograms macrophage metabolism and accelerates lung cancer. . Sci. Adv. 8:(46):eabq0615
    [Crossref] [Google Scholar]
  13. Chaput J-P, McHill AW, Cox RC, Broussard JL, Dutil C, et al. 2023.. The role of insufficient sleep and circadian misalignment in obesity. . Nat. Rev. Endocrinol. 19:(2):8297
    [Crossref] [Google Scholar]
  14. Chen G, Shi F, Yin W, Guo Y, Liu A, et al. 2022.. Gut microbiota dysbiosis: the potential mechanisms by which alcohol disrupts gut and brain functions. . Front. Microbiol. 13::916765
    [Crossref] [Google Scholar]
  15. Chen H-S, Bai M-H, Zhang T, Li G-D, Liu M. 2015.. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. . Int. J. Oncol. 46:(4):173038
    [Crossref] [Google Scholar]
  16. Chen M, Zhang J, Sampieri K, Clohessy JG, Mendez L, et al. 2018.. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. . Nat. Genet. 50:(2):20618
    [Crossref] [Google Scholar]
  17. Chen Q, Li Q, Liang Y, Zu M, Chen N, et al. 2022.. Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation. . Acta Pharm. Sin. B 12:(2):90723
    [Crossref] [Google Scholar]
  18. Clay SL, Fonseca-Pereira D, Garrett WS. 2022.. Colorectal cancer: the facts in the case of the microbiota. . J. Clin. Investig. 132:(4):e155101
    [Crossref] [Google Scholar]
  19. Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. 2023.. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. . Nat. Rev. Microbiol. 21:(4):23647
    [Crossref] [Google Scholar]
  20. Diamantopoulou Z, Castro-Giner F, Schwab FD, Foerster C, Saini M, et al. 2022.. The metastatic spread of breast cancer accelerates during sleep. . Nature 607:(7917):15662
    [Crossref] [Google Scholar]
  21. Dieterich W, Schink M, Zopf Y. 2018.. Microbiota in the gastrointestinal tract. . Med. Sci. 6:(4):116
    [Google Scholar]
  22. Do MH, Lee E, Oh M-J, Kim Y, Park H-Y. 2018.. High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. . Nutrients 10:(6):761
    [Crossref] [Google Scholar]
  23. Elia I, Doglioni G, Fendt S. 2018.. Metabolic hallmarks of metastasis formation. . Trends Cell Biol. 28:(8):67384
    [Crossref] [Google Scholar]
  24. FAO (Food Agric. Organ. U. N.). 2010.. Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food Nutr. Pap. 91 , FAO, Rome:
    [Google Scholar]
  25. Faubert B, Li KY, Cai L, Hensley CT, Kim J, et al. 2017.. Lactate metabolism in human lung tumors. . Cell 171:(2):35871.e9
    [Crossref] [Google Scholar]
  26. Febbraio MA. 2017.. Health benefits of exercise—more than meets the eye!. Nat. Rev. Endocrinol. 13:(2):7274
    [Crossref] [Google Scholar]
  27. Feng Q, Liu Z, Yu X, Huang T, Chen J, et al. 2022.. Lactate increases stemness of CD8+T cells to augment anti-tumor immunity. . Nat. Commun. 13:(1):4981
    [Crossref] [Google Scholar]
  28. Ferraro GB, Ali A, Luengo A, Kodack DP, Deik A, et al. 2021.. Fatty acid synthesis is required for breast cancer brain metastasis. . Nat. Cancer 2:(4):41428
    [Crossref] [Google Scholar]
  29. Frezza M, di Padova C, Pozzato G, Terpin M, Baraona E, Lieber CS. 1990.. High blood alcohol levels in women. . N. Engl. J. Med. 322:(2):9599
    [Crossref] [Google Scholar]
  30. Fu A, Yao B, Dong T, Chen Y, Yao J, et al. 2022.. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. . Cell 185:(8):135672.e26
    [Crossref] [Google Scholar]
  31. Gao R, Sang N. 2020.. Quasi-ultrafine particles promote cell metastasis via HMGB1-mediated cancer cell adhesion. . Environ. Pollut. 256::113390
    [Crossref] [Google Scholar]
  32. Gavaler JS. 1998.. Alcoholic beverages as a source of estrogens. . Alcohol Health Res. World 22:(3):22027
    [Google Scholar]
  33. Gerstberger S, Jiang Q, Ganesh K. 2023.. Metastasis. . Cell 186:(8):156479
    [Crossref] [Google Scholar]
  34. Gomes S, Rodrigues AC, Pazienza V, Preto A. 2023.. Modulation of the tumor microenvironment by microbiota-derived short-chain fatty acids: impact in colorectal cancer therapy. . Int. J. Mol. Sci. 24:(6):5069
    [Crossref] [Google Scholar]
  35. Goncalves MD, Hopkins BD, Cantley LC. 2019.. Dietary fat and sugar in promoting cancer development and progression. . Annu. Rev. Cancer Biol. 3::25573
    [Crossref] [Google Scholar]
  36. Green PH. 1983.. Alcohol, nutrition and malabsorption. . Clin. Gastroenterol. 12:(2):56374
    [Crossref] [Google Scholar]
  37. Hadadi E, Taylor W, Li X-M, Aslan Y, Villote M, et al. 2020.. Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice. . Nat. Commun. 11:(1):3193
    [Crossref] [Google Scholar]
  38. Hill W, Lim EL, Weeden CE, Lee C, Augustine M, et al. 2023.. Lung adenocarcinoma promotion by air pollutants. . Nature 616:(7955):15967
    [Crossref] [Google Scholar]
  39. Hommer DW. 2003.. Male and female sensitivity to alcohol-induced brain damage. . Alcohol Res. Health 27:(2):18185
    [Google Scholar]
  40. Hopkins BD, Pauli C, Du X, Wang DG, Li X, et al. 2018.. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. . Nature 560:(7719):499503
    [Crossref] [Google Scholar]
  41. Jakicic JM, Kraus WE, Powell KE, Campbell WW, Janz KF, et al. 2019.. Association between bout duration of physical activity and health: systematic review. . Med. Sci. Sports Exerc. 51:(6):121319
    [Crossref] [Google Scholar]
  42. Jeon S, Carr R. 2020.. Alcohol effects on hepatic lipid metabolism. . J. Lipid Res. 61:(4):47079
    [Crossref] [Google Scholar]
  43. Jiang L, Gulanski BI, De Feyter HM, Weinzimer SA, Pittman B, et al. 2013.. Increased brain uptake and oxidation of acetate in heavy drinkers. . J. Clin. Investig. 123:(4):160514
    [Crossref] [Google Scholar]
  44. Jiang Y, Pan Y, Rhea PR, Tan L, Gagea M, et al. 2016.. A sucrose-enriched diet promotes tumorigenesis in mammary gland in part through the 12-lipoxygenase pathway. . Cancer Res. 76:(1):2429
    [Crossref] [Google Scholar]
  45. Jones LW, Antonelli J, Masko EM, Broadwater G, Lascola CD, et al. 2012.. Exercise modulation of the host-tumor interaction in an orthotopic model of murine prostate cancer. . J. Appl. Physiol. 113:(2):26372
    [Crossref] [Google Scholar]
  46. Khadge S, Thiele GM, Sharp JG, McGuire TR, Klassen LW, et al. 2018.. Long-chain omega-3 polyunsaturated fatty acids decrease mammary tumor growth, multiorgan metastasis and enhance survival. . Clin. Exp. Metastasis 35:(8):797818
    [Crossref] [Google Scholar]
  47. Kim J, Kang J, Kang Y-L, Woo J, Kim Y, et al. 2020.. Ketohexokinase-A acts as a nuclear protein kinase that mediates fructose-induced metastasis in breast cancer. . Nat. Commun. 11:(1):5436
    [Crossref] [Google Scholar]
  48. Kress S, Wigmann C, Zhao Q, Herder C, Abramson MJ, et al. 2022.. Chronic air pollution–induced subclinical airway inflammation and polygenic susceptibility. . Respir. Res. 23:(1):265
    [Crossref] [Google Scholar]
  49. Kuo C-C, Wu J-Y, Wu KK. 2022.. Cancer-derived extracellular succinate: a driver of cancer metastasis. . J. Biomed. Sci. 29:(1):93
    [Crossref] [Google Scholar]
  50. Lawenda BD, Kelly KM, Ladas EJ, Sagar SM, Vickers A, Blumberg JB. 2008.. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy?. J. Natl. Cancer Inst. 100:(11):77383
    [Crossref] [Google Scholar]
  51. Le Gal K, Ibrahim MX, Wiel C, Sayin VI, Akula MK, et al. 2015.. Antioxidants can increase melanoma metastasis in mice. . Sci. Transl. Med. 7:(308):308re8
    [Crossref] [Google Scholar]
  52. Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng C-W, et al. 2014.. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. . Cell Metab. 19:(3):40717
    [Crossref] [Google Scholar]
  53. Li W, Li F, Zhang X, Lin H-K, Xu C. 2021.. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. . Signal Transduct. Target. Ther. 6:(1):422
    [Crossref] [Google Scholar]
  54. Li Y, Su X, Rohatgi N, Zhang Y, Brestoff JR, et al. 2020.. Hepatic lipids promote liver metastasis. . JCI Insight 5:(17):e136215
    [Crossref] [Google Scholar]
  55. Liu W, Chakraborty B, Safi R, Kazmin D, Chang C, McDonnell DP. 2021.. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. . Nat. Commun. 12:(1):5103
    [Crossref] [Google Scholar]
  56. Liu Z-J, Semenza GL, Zhang H-F. 2015.. Hypoxia-inducible factor 1 and breast cancer metastasis. . J. Zhejiang Univ. Sci. B 16:(1):3243
    [Crossref] [Google Scholar]
  57. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, et al. 2018.. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. . Science 360:(6391):eaan5931
    [Crossref] [Google Scholar]
  58. Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, et al. 2012.. Metabolism of [U-13C]glucose in human brain tumors in vivo. . NMR Biomed. 25:(11):123444
    [Crossref] [Google Scholar]
  59. Maltby J, Wright S, Bird G, Sheron N. 1996.. Chemokine levels in human liver homogenates: associations between GRO alpha and histopathological evidence of alcoholic hepatitis. . Hepatology 24:(5):115660
    [Google Scholar]
  60. Manni A. 2005.. Role of polyamines in breast cancer growth, development and progression. . Curr. Cancer Therapy Rev. 1:(3):20715
    [Crossref] [Google Scholar]
  61. Martin AM, Sun EW, Rogers GB, Keating DJ. 2019.. The influence of the gut microbiome on host metabolism through the regulation of gut hormone release. . Front. Physiol. 10::428
    [Crossref] [Google Scholar]
  62. Martino C, Zaramela LS, Gao B, Embree M, Tarasova J, et al. 2022.. Acetate reprograms gut microbiota during alcohol consumption. . Nat. Commun. 13:(1):4630
    [Crossref] [Google Scholar]
  63. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, et al. 2014.. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. . Cell 159:(7):160314
    [Crossref] [Google Scholar]
  64. McGinnis CD, Jennings EQ, Harris PS, Galligan JJ, Fritz KS. 2022.. Biochemical mechanisms of sirtuin-directed protein acylation in hepatic pathologies of mitochondrial dysfunction. . Cells 11:(13):2045
    [Crossref] [Google Scholar]
  65. Mews P, Egervari G, Nativio R, Sidoli S, Donahue G, et al. 2019.. Alcohol metabolism contributes to brain histone acetylation. . Nature 574:(7780):71721
    [Crossref] [Google Scholar]
  66. Mika A, Macaluso F, Barone R, Di Felice V, Sledzinski T. 2019.. Effect of exercise on fatty acid metabolism and adipokine secretion in adipose tissue. . Front. Physiol. 10::26
    [Crossref] [Google Scholar]
  67. Mohr AM, Gould JJ, Kubik JL, Talmon GA, Casey CA, et al. 2017.. Enhanced colorectal cancer metastases in the alcohol-injured liver. . Clin. Exp. Metastasis 34:(2):17184
    [Crossref] [Google Scholar]
  68. Montecillo-Aguado M, Tirado-Rodriguez B, Antonio-Andres G, Morales-Martinez M, Tong Z, et al. 2022.. Omega-6 polyunsaturated fatty acids enhance tumor aggressiveness in experimental lung cancer model: important role of oxylipins. . Int. J. Mol. Sci. 23:(11):6179
    [Crossref] [Google Scholar]
  69. Mueller NT, Odegaard A, Anderson K, Yuan J-M, Gross M, et al. 2010.. Soft drink and juice consumption and risk of pancreatic cancer: the Singapore Chinese Health Study. . Cancer Epidemiol. Biomark. Prev. 19:(2):44755
    [Crossref] [Google Scholar]
  70. Myung S-K, Kim Y, Ju W, Choi HJ, Bae WK. 2010.. Effects of antioxidant supplements on cancer prevention: meta-analysis of randomized controlled trials. . Ann. Oncol. 21:(1):16679
    [Crossref] [Google Scholar]
  71. Nguyen A, Kim AH, Kang MK, Park N-H, Kim RH, et al. 2022.. Chronic alcohol exposure promotes cancer stemness and glycolysis in oral/oropharyngeal squamous cell carcinoma cell lines by activating NFAT signaling. . Int. J. Mol. Sci. 23:(17):9779
    [Crossref] [Google Scholar]
  72. Novita Sari I, Setiawan T, Kim KS, Toni Wijaya Y, Cho KW, Kwon HY. 2021.. Metabolism and function of polyamines in cancer progression. . Cancer Lett. 519::91104
    [Crossref] [Google Scholar]
  73. Numata M, Hirano A, Yamamoto Y, Yasuda M, Miura N, et al. 2021.. Metastasis of breast cancer promoted by circadian rhythm disruption due to light/dark shift and its prevention by dietary quercetin in mice. . J. Circadian Rhythms 19::2
    [Crossref] [Google Scholar]
  74. Palanivel R, Vinayachandran V, Biswal S, Deiuliis JA, Padmanabhan R, et al. 2020.. Exposure to air pollution disrupts circadian rhythm through alterations in chromatin dynamics. . iScience 23:(11):101728
    [Crossref] [Google Scholar]
  75. Pandey H, Tang DWT, Wong SH, Lal D. 2023.. Gut microbiota in colorectal cancer: biological role and therapeutic opportunities. . Cancers 15:(3):866
    [Crossref] [Google Scholar]
  76. Papadopetraki A, Maridaki M, Zagouri F, Dimopoulos M-A, Koutsilieris M, Philippou A. 2022.. Physical exercise restrains cancer progression through muscle-derived factors. . Cancers 14:(8):1892
    [Crossref] [Google Scholar]
  77. Papsdorf K, Miklas JW, Hosseini A, Cabruja M, Morrow CS, et al. 2023.. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. . Nat. Cell Biol. 25:(5):67284
    [Crossref] [Google Scholar]
  78. Parida PK, Marquez-Palencia M, Nair V, Kaushik AK, Kim K, et al. 2022.. Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness. . Cell Metab. 34:(1):90105.e7
    [Crossref] [Google Scholar]
  79. Parik S, Fernández-García J, Lodi F, De Vlaminck K, Derweduwe M, et al. 2022.. GBM tumors are heterogeneous in their fatty acid metabolism and modulating fatty acid metabolism sensitizes cancer cells derived from recurring GBM tumors to temozolomide. . Front. Oncol. 12::988872
    [Crossref] [Google Scholar]
  80. Park S-H, Yoon S-J, Choi S, Jung J, Park J-Y, et al. 2022.. Particulate matter promotes cancer metastasis through increased HBEGF expression in macrophages. . Exp. Mol. Med. 54:(11):190112
    [Crossref] [Google Scholar]
  81. Pascual G, Avgustinova A, Mejetta S, Martín M, Castellanos A, et al. 2017.. Targeting metastasis-initiating cells through the fatty acid receptor CD36. . Nature 541:(7635):4145
    [Crossref] [Google Scholar]
  82. Pascual G, Domínguez D, Elosúa-Bayes M, Beckedorff F, Laudanna C, et al. 2021.. Dietary palmitic acid promotes a prometastatic memory via Schwann cells. . Nature 599:(7885):48590
    [Crossref] [Google Scholar]
  83. Pérez-Tomás R, Pérez-Guillén I. 2020.. Lactate in the tumor microenvironment: an essential molecule in cancer progression and treatment. . Cancers 12:(11):3244
    [Crossref] [Google Scholar]
  84. Petrelli F, Cortellini A, Indini A, Tomasello G, Ghidini M, et al. 2021.. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. . JAMA Netw. Open 4:(3):e213520
    [Crossref] [Google Scholar]
  85. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, et al. 2015.. Oxidative stress inhibits distant metastasis by human melanoma cells. . Nature 527:(7577):18691
    [Crossref] [Google Scholar]
  86. Poloz Y, Stambolic V. 2015.. Obesity and cancer, a case for insulin signaling. . Cell Death Dis. 6:(12):e2037
    [Crossref] [Google Scholar]
  87. Qin J, Xia W, Liang G, Xu S, Zhao X, et al. 2021.. Association of fine particulate matter with glucose and lipid metabolism: a longitudinal study in young adults. . Occup. Environ. Med. 78:(6):44853
    [Crossref] [Google Scholar]
  88. Rajagopalan S, Park B, Palanivel R, Vinayachandran V, Deiuliis JA, et al. 2020.. Metabolic effects of air pollution exposure and reversibility. . J. Clin. Investig. 130:(11):603440
    [Crossref] [Google Scholar]
  89. Rumgay H, Shield K, Charvat H, Ferrari P, Sornpaisarn B, et al. 2021.. Global burden of cancer in 2020 attributable to alcohol consumption: a population-based study. . Lancet Oncol. 22:(8):107180
    [Crossref] [Google Scholar]
  90. Saeedi Sadr A, Ehteram H, Seyed Hosseini E, Alizadeh Zarei M, Hassani Bafrani H, Haddad Kashani H. 2022.. Correction to: The effect of irisin on proliferation, apoptosis, and expression of metastasis markers in prostate cancer cell lines. . Oncol. Ther. 10:(2):389
    [Crossref] [Google Scholar]
  91. San-Millán I, Brooks GA. 2017.. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. . Carcinogenesis 38:(2):11933
    [Google Scholar]
  92. Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, et al. 2020.. The gut microbiota is associated with immune cell dynamics in humans. . Nature 588:(7837):3037
    [Crossref] [Google Scholar]
  93. Severinsen MCK, Pedersen BK. 2020.. Muscle-organ crosstalk: the emerging roles of myokines. . Endocr. Rev. 41:(4):594609
    [Crossref] [Google Scholar]
  94. Shang S, Liu J, Hua F. 2022.. Protein acylation: mechanisms, biological functions and therapeutic targets. . Signal Transduct. Target. Ther. 7:(1):396
    [Crossref] [Google Scholar]
  95. Sharifi-Rad M, Anil Kumar NV, Zucca P, Varoni EM, Dini L, et al. 2020.. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. . Front. Physiol. 11::694
    [Crossref] [Google Scholar]
  96. Sheinboim D, Parikh S, Manich P, Markus I, Dahan S, et al. 2022.. An exercise-induced metabolic shield in distant organs blocks cancer progression and metastatic dissemination. . Cancer Res. 82:(22):416478
    [Crossref] [Google Scholar]
  97. Siddiqui R, Boghossian A, Alharbi AM, Alfahemi H, Khan NA. 2022.. The pivotal role of the gut microbiome in colorectal cancer. . Biology 11:(11):1642
    [Crossref] [Google Scholar]
  98. Spencer CN, McQuade JL, Gopalakrishnan V, McCulloch JA, Vetizou M, et al. 2021.. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. . Science 374:(6575):163240
    [Crossref] [Google Scholar]
  99. Spivak I, Fluhr L, Elinav E. 2022.. Local and systemic effects of microbiome-derived metabolites. . EMBO Rep. 23:(10):e55664
    [Crossref] [Google Scholar]
  100. Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. 2019.. Circadian clocks and insulin resistance. . Nat. Rev. Endocrinol. 15:(2):7589
    [Crossref] [Google Scholar]
  101. Takahashi M, Ozaki M, Kang M-I, Sasaki H, Fukazawa M, et al. 2018.. Effects of meal timing on postprandial glucose metabolism and blood metabolites in healthy adults. . Nutrients 10:(11):1763
    [Crossref] [Google Scholar]
  102. Taylor SR, Falcone JN, Cantley LC, Goncalves MD. 2022.. Developing dietary interventions as therapy for cancer. . Nat. Rev. Cancer 22:(8):45266
    [Crossref] [Google Scholar]
  103. Telles GD, Conceição MS, Vechin FC, Libardi CA, da Silva Mori MA, et al. 2022.. Exercise-induced circulating microRNAs: potential key factors in the control of breast cancer. . Front. Physiol. 13::800094
    [Crossref] [Google Scholar]
  104. Ternes D, Tsenkova M, Pozdeev VI, Meyers M, Koncina E, et al. 2022.. The gut microbial metabolite formate exacerbates colorectal cancer progression. . Nat. Metab. 4:(4):45875
    [Crossref] [Google Scholar]
  105. Thompson HJ, Jiang W, Zhu Z. 2009.. Candidate mechanisms accounting for effects of physical activity on breast carcinogenesis. . IUBMB Life 61:(9):895901
    [Crossref] [Google Scholar]
  106. Tran Quang C, Leboucher S, Passaro D, Fuhrmann L, Nourieh M, et al. 2015.. The calcineurin/NFAT pathway is activated in diagnostic breast cancer cases and is essential to survival and metastasis of mammary cancer cells. . Cell Death Dis. 6:(2):e1658
    [Crossref] [Google Scholar]
  107. Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, et al. 2020.. Lymph protects metastasizing melanoma cells from ferroptosis. . Nature 585:(7823):11318
    [Crossref] [Google Scholar]
  108. Vanden Heuvel JP, Belda BJ, Hannon DB, Kris-Etherton PM, Grieger JA, et al. 2012.. Mechanistic examination of walnuts in prevention of breast cancer. . Nutr. Cancer 64:(7):107886
    [Crossref] [Google Scholar]
  109. Velazquez FN, Viscardi V, Montemage J, Zhang L, Trocchia C, et al. 2021.. A milk-fat based diet increases metastasis in the MMTV-PyMT mouse model of breast cancer. . Nutrients 13:(7):2431
    [Crossref] [Google Scholar]
  110. Villasclaras P, Jaén C, van Drooge BL, Grimalt JO, Tauler R, Bedia C. 2022.. Phenotypic and metabolomic characterization of 3D lung cell cultures exposed to airborne particulate matter from three air quality network stations in Catalonia. . Toxics 10:(11):632
    [Crossref] [Google Scholar]
  111. Wada Y, Morine Y, Imura S, Ikemoto T, Saito Y, et al. 2020.. HIF-1α expression in liver metastasis but not primary colorectal cancer is associated with prognosis of patients with colorectal liver metastasis. . World J. Surg. Oncol. 18:(1):241
    [Crossref] [Google Scholar]
  112. Wang B, Ye Y, Yang X, Liu B, Wang Z, et al. 2020.. SIRT2-dependent IDH1 deacetylation inhibits colorectal cancer and liver metastases. . EMBO Rep. 21:(4):e48183
    [Crossref] [Google Scholar]
  113. Wang C, Gu K, Wang F, Cai H, Zheng W, et al. 2022.. Nut consumption in association with overall mortality and recurrence/disease-specific mortality among long-term breast cancer survivors. . Int. J. Cancer 150:(4):57279
    [Crossref] [Google Scholar]
  114. Wei Q, Qian Y, Yu J, Wong CC. 2020.. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. . Oncogene 39:(39):613956
    [Crossref] [Google Scholar]
  115. Wei Y-H, Ma X, Zhao J-C, Wang X-Q, Gao C-Q. 2023.. Succinate metabolism and its regulation of host-microbe interactions. . Gut Microbes 15:(1):2190300
    [Crossref] [Google Scholar]
  116. Wiel C, Le Gal K, Ibrahim MX, Jahangir CA, Kashif M, et al. 2019.. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. . Cell 178:(2):33045.e22
    [Crossref] [Google Scholar]
  117. Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, et al. 2020.. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. . Mol. Cell 77:(2):21327.e5
    [Crossref] [Google Scholar]
  118. Wu R, Yu I, Tokumaru Y, Asaoka M, Oshi M, et al. 2022.. Elevated bile acid metabolism and microbiome are associated with suppressed cell proliferation and better survival in breast cancer. . Am. J. Cancer Res. 12:(11):527185
    [Google Scholar]
  119. Xiang W, Shi R, Zhang D, Kang X, Zhang L, et al. 2020.. Dietary fats suppress the peritoneal seeding of colorectal cancer cells through the TLR4/Cxcl10 axis in adipose tissue macrophages. . Signal Transduct. Target. Ther. 5:(1):239
    [Crossref] [Google Scholar]
  120. Xing C, Du Y, Duan T, Nim K, Chu J, et al. 2022.. Interaction between microbiota and immunity and its implication in colorectal cancer. . Front. Immunol. 13::963819
    [Crossref] [Google Scholar]
  121. Xiong Y, Guan K-L. 2012.. Mechanistic insights into the regulation of metabolic enzymes by acetylation. . J. Cell Biol. 198:(2):15564
    [Crossref] [Google Scholar]
  122. Yang T, Huang W, Ma T, Yin X, Zhang J, et al. 2023.. The PRMT6/PARP1/CRL4B complex regulates the circadian clock and promotes breast tumorigenesis. . Adv. Sci. 10:(14):e2202737
    [Crossref] [Google Scholar]
  123. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, et al. 2015.. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. . Cell 161:(2):26476
    [Crossref] [Google Scholar]
  124. Yin T, Liu Y, Cong X, Ding R, Diao Z, et al. 2022.. Particulate matter exposure–induced cholesterol metabolism disorder in lung epithelial cells. . Research Square. https://doi.org/10.21203/rs.3.rs-1374647/v1
    [Google Scholar]
  125. Zani F, Blagih J, Gruber T, Buck MD, Jones N, et al. 2023.. The dietary sweetener sucralose is a negative modulator of T cell–mediated responses. . Nature 615:(7953):70511
    [Crossref] [Google Scholar]
  126. Zeng X, Tian G, Zhu J, Yang F, Zhang R, et al. 2023.. Air pollution associated acute respiratory inflammation and modification by GSTM1 and GSTT1 gene polymorphisms: a panel study of healthy undergraduates. . Environ. Heal. 22:(1):14
    [Crossref] [Google Scholar]
  127. Zhang K-L, Zhu W-W, Wang S-H, Gao C, Pan J-J, et al. 2021.. Organ-specific cholesterol metabolic aberration fuels liver metastasis of colorectal cancer. . Theranostics 11:(13):656072
    [Crossref] [Google Scholar]
  128. Zhang L, Zhu Z, Yan H, Wang W, Wu Z, et al. 2021.. Creatine promotes cancer metastasis through activation of Smad2/3. . Cell Metab. 33:(6):111123.e4
    [Crossref] [Google Scholar]
  129. Zhang VX, Sze KM-F, Chan L-K, Ho DW-H, Tsui Y-M, et al. 2021.. Antioxidant supplements promote tumor formation and growth and confer drug resistance in hepatocellular carcinoma by reducing intracellular ROS and induction of TMBIM1. . Cell Biosci. 11:(1):217
    [Crossref] [Google Scholar]
  130. Zhang X, Zhang X, Wang Y, Fang Y, Li M. 2023.. The regulatory network of the chemokine CCL5 in colorectal cancer. . Ann. Med. 55:(1):2205168
    [Crossref] [Google Scholar]
  131. Zhao H, Chen D, Cao R, Wang S, Yu D, et al. 2018.. Alcohol consumption promotes colorectal carcinoma metastasis via a CCL5-induced and AMPK-pathway-mediated activation of autophagy. . Sci. Rep. 8:(1):8640
    [Crossref] [Google Scholar]
  132. Zheng A, Zhang L, Yang J, Yin X, Zhang T, et al. 2022.. Physical activity prevents tumor metastasis through modulation of immune function. . Front. Pharmacol. 13::1034129
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-062822-122840
Loading
/content/journals/10.1146/annurev-cancerbio-062822-122840
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error