1932

Abstract

Minimal residual disease (MRD) represents a significant challenge in the treatment of various cancers, acting as a precursor to relapse and therapeutic resistance. This review discusses the clinical background of MRD, exploring its role as a critical determinant in patient outcomes. The persistence of MRD is attributed to several mechanisms, including Darwinian selection of preexisting resistant clones, Lamarckian induction of resistance traits, and pharmacologic resistance due to the tumor's intrinsic barriers to drugs and treatment limitations. These processes underscore MRD as the seed for long-term drug resistance, complicating treatment efficacy. Addressing MRD requires innovative therapeutic strategies, ranging from targeted therapies to novel drug combinations, aimed at eradicating these resilient cancer cells. By understanding and targeting MRD, we could improve patient prognoses and develop more effective cancer treatments. This review synthesizes current knowledge and emerging approaches in the quest to manage and eliminate MRD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-070924-120742
2025-04-11
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-070924-120742.html?itemId=/content/journals/10.1146/annurev-cancerbio-070924-120742&mimeType=html&fmt=ahah

Literature Cited

  1. Abbosh C, Birkbak NJ, Wilson GA, Jamal-Hanjani M, Constantin T, et al. 2017.. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. . Nature 545::44651
    [Crossref] [Google Scholar]
  2. Ahn A, Chatterjee A, Eccles MR. 2017.. The slow cycling phenotype: a growing problem for treatment resistance in melanoma. . Mol. Cancer Ther. 16::10029
    [Crossref] [Google Scholar]
  3. Anderson NM, Simon MC. 2020.. The tumor microenvironment. . Curr. Biol. 30::R92125
    [Crossref] [Google Scholar]
  4. Aujla A, Hanmantgad M, Islam H, Shakil F, Liu D, Seiter K. 2019.. Lineage switch from T-cell lymphoblastic leukemia/lymphoma to acute myeloid leukemia and back to T-cell lymphoblastic leukemia/lymphoma in a patient diagnosed during pregnancy. . Stem. Cell Investig. 6::12
    [Crossref] [Google Scholar]
  5. Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, et al. 2019.. Definitions and guidelines for research on antibiotic persistence. . Nat. Rev. Microbiol. 17::44148
    [Crossref] [Google Scholar]
  6. Bartosh TJ, Ullah M, Zeitouni S, Beaver J, Prockop DJ. 2016.. Cancer cells enter dormancy after cannibalizing mesenchymal stem/stromal cells (MSCs). . PNAS 113::E644756
    [Crossref] [Google Scholar]
  7. Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, et al. 2019.. The role of lineage plasticity in prostate cancer therapy resistance. . Clin. Cancer Res. 25::691624
    [Crossref] [Google Scholar]
  8. Bhola NE, Balko JM, Dugger TC, Kuba MG, Sanchez V, et al. 2013.. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. . J. Clin. Investig. 123::134858
    [Crossref] [Google Scholar]
  9. Bivona TG, Doebele RC. 2016.. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. . Nat. Med. 22::47278
    [Crossref] [Google Scholar]
  10. Blakely CM, Pazarentzos E, Olivas V, Asthana S, Yan JJ, et al. 2015.. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer. . Cell Rep. 11::98110
    [Crossref] [Google Scholar]
  11. Blatter S, Rottenberg S. 2015.. Minimal residual disease in cancer therapy–small things make all the difference. . Drug Resist. Updat. 2122:110
    [Google Scholar]
  12. Caswell DR, Gui P, Mayekar MK, Law EK, Pich O, et al. 2024.. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance. . Nat. Genet. 56::6073
    [Crossref] [Google Scholar]
  13. Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, et al. 2022.. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. . Science 377::118091
    [Crossref] [Google Scholar]
  14. Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, et al. 2017.. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. . Cancer Discov. 7::1394403
    [Crossref] [Google Scholar]
  15. Corcoran RB, Chabner BA. 2018.. Application of cell-free DNA analysis to cancer treatment. . N. Engl. J. Med. 379::175465
    [Crossref] [Google Scholar]
  16. Dadzie TG, Green AC. 2022.. The role of the bone microenvironment in regulating myeloma residual disease and treatment. . Front. Oncol. 12::999939
    [Crossref] [Google Scholar]
  17. Das Thakur M, Salangsang F, Landman AS, Sellers WR, Pryer NK, et al. 2013.. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. . Nature 494::25155
    [Crossref] [Google Scholar]
  18. De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. 2021.. Cancer drug resistance induced by EMT: novel therapeutic strategies. . Arch. Toxicol. 95::227997
    [Crossref] [Google Scholar]
  19. Du B, Shim JS. 2016.. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. . Molecules 21::965
    [Crossref] [Google Scholar]
  20. Fallahi-Sichani M, Becker V, Izar B, Baker GJ, Lin JR, et al. 2017.. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. . Mol. Syst. Biol. 13::905
    [Crossref] [Google Scholar]
  21. Farge T, Saland E, de Toni F, Aroua N, Hosseini M, et al. 2017.. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. . Cancer Discov. 7::71635
    [Crossref] [Google Scholar]
  22. Feng J, Xi Z, Jiang X, Li Y, Nik Nabil WN, et al. 2023.. Saikosaponin A enhances docetaxel efficacy by selectively inducing death of dormant prostate cancer cells through excessive autophagy. . Cancer Lett. 554::216011
    [Crossref] [Google Scholar]
  23. Fox DB, Garcia NMG, McKinney BJ, Lupo R, Noteware LC, et al. 2020.. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. . Nat. Metab. 2::31834
    [Crossref] [Google Scholar]
  24. Gokbuget N, Boissel N, Chiaretti S, Dombret H, Doubek M, et al. 2024.. Diagnosis, prognostic factors, and assessment of ALL in adults: 2024 ELN recommendations from a European expert panel. . Blood 143::1891902
    [Crossref] [Google Scholar]
  25. Haddox CL, Mangaonkar AA, Chen D, Shi M, He R, et al. 2017.. Blinatumomab-induced lineage switch of B-ALL with t(4:11)(q21;q23) KMT2A/AFF1 into an aggressive AML: pre- and post-switch phenotypic, cytogenetic and molecular analysis. . Blood Cancer J. 7::e607
    [Crossref] [Google Scholar]
  26. Haderk F, Chou YT, Cech L, Fernandez-Mendez C, Yu J, et al. 2024.. Focal adhesion kinase-YAP signaling axis drives drug-tolerant persister cells and residual disease in lung cancer. . Nat. Commun. 15::3741
    [Crossref] [Google Scholar]
  27. Hammerlindl H, Schaider H. 2018.. Tumor cell-intrinsic phenotypic plasticity facilitates adaptive cellular reprogramming driving acquired drug resistance. . J. Cell Commun. Signal. 12::13341
    [Crossref] [Google Scholar]
  28. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, et al. 2017.. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. . Nature 551::24750
    [Crossref] [Google Scholar]
  29. Hata AN, Niederst MJ, Archibald HL, Gomez-Caraballo M, Siddiqui FM, et al. 2016.. Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition. . Nat. Med. 22::26269
    [Crossref] [Google Scholar]
  30. Heinz MC, Peters NA, Oost KC, Lindeboom RGH, van Voorthuijsen L, et al. 2022.. Liver colonization by colorectal cancer metastases requires YAP-controlled plasticity at the micrometastatic stage. . Cancer Res. 82::195368
    [Crossref] [Google Scholar]
  31. Heitzer E, Haque IS, Roberts CES, Speicher MR. 2019.. Current and future perspectives of liquid biopsies in genomics-driven oncology. . Nat. Rev. Genet. 20::7188
    [Crossref] [Google Scholar]
  32. Hirata E, Girotti MR, Viros A, Hooper S, Spencer-Dene B, et al. 2015.. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin β1/FAK signaling. . Cancer Cell 27::57488
    [Crossref] [Google Scholar]
  33. Hoang-Minh LB, Siebzehnrubl FA, Yang C, Suzuki-Hatano S, Dajac K, et al. 2018.. Infiltrative and drug-resistant slow-cycling cells support metabolic heterogeneity in glioblastoma. . EMBO J. 37::e98772
    [Crossref] [Google Scholar]
  34. Hong W, Guan KL. 2012.. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. . Semin. Cell Dev. Biol. 23::78593
    [Crossref] [Google Scholar]
  35. Irving J, Jesson J, Virgo P, Case M, Minto L, et al. 2009.. Establishment and validation of a standard protocol for the detection of minimal residual disease in B lineage childhood acute lymphoblastic leukemia by flow cytometry in a multi-center setting. . Haematologica 94::87074
    [Crossref] [Google Scholar]
  36. Isozaki H, Sakhtemani R, Abbasi A, Nikpour N, Stanzione M, et al. 2023.. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. . Nature 620::393401
    [Crossref] [Google Scholar]
  37. Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A, et al. 2018.. Molecular minimal residual disease in acute myeloid leukemia. . N. Engl. J. Med. 378::118999
    [Crossref] [Google Scholar]
  38. Kaiser AM, Gatto A, Hanson KJ, Zhao RL, Raj N, et al. 2023.. p53 governs an AT1 differentiation programme in lung cancer suppression. . Nature 619::85159
    [Crossref] [Google Scholar]
  39. Karki P, Angardi V, Mier JC, Orman MA. 2021.. A transient metabolic state in melanoma persister cells mediated by chemotherapeutic treatments. . Front. Mol. Biosci. 8::780192
    [Crossref] [Google Scholar]
  40. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T. 2004.. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. . Blood 104::307885
    [Crossref] [Google Scholar]
  41. Kleffel S, Schatton T. 2013.. Tumor dormancy and cancer stem cells: two sides of the same coin?. Adv. Exp. Med. Biol. 734::14579
    [Crossref] [Google Scholar]
  42. Kronke J, Schlenk RF, Jensen KO, Tschurtz F, Corbacioglu A, et al. 2011.. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian Acute Myeloid Leukemia Study Group. . J. Clin. Oncol. 29::270916
    [Crossref] [Google Scholar]
  43. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, et al. 2017.. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. . Science 355::7883
    [Crossref] [Google Scholar]
  44. Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, et al. 2017.. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. . Nat. Med. 23::123440
    [Crossref] [Google Scholar]
  45. Kurppa KJ, Liu Y, To C, Zhang T, Fan M, et al. 2020.. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. . Cancer Cell 37::10422.e12
    [Crossref] [Google Scholar]
  46. Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ, Settleman J. 2014.. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. . Cancer Cell 26::20721
    [Crossref] [Google Scholar]
  47. Lee JK, Lee J, Kim S, Kim S, Youk J, et al. 2017.. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. . J. Clin. Oncol. 35::306574
    [Crossref] [Google Scholar]
  48. Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, et al. 2017.. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. . Cell Stem Cell 20::23346.e7
    [Crossref] [Google Scholar]
  49. Lim ZF, Ma PC. 2019.. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. . J. Hematol. Oncol. 12::134
    [Crossref] [Google Scholar]
  50. Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, et al. 2015.. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. . Nat. Genet. 47::25056
    [Crossref] [Google Scholar]
  51. Linde N, Fluegen G, Aguirre-Ghiso JA. 2016.. The relationship between dormant cancer cells and their microenvironment. . Adv. Cancer Res. 132::4571
    [Crossref] [Google Scholar]
  52. Luskin MR, Murakami MA, Manalis SR, Weinstock DM. 2018.. Targeting minimal residual disease: a path to cure?. Nat. Rev. Cancer 18::25563
    [Crossref] [Google Scholar]
  53. Marjanovic ND, Hofree M, Chan JE, Canner D, Wu K, et al. 2020.. Emergence of a high-plasticity cell state during lung cancer evolution. . Cancer Cell 38::22946.e13
    [Crossref] [Google Scholar]
  54. Marsolier J, Prompsy P, Durand A, Lyne AM, Landragin C, et al. 2022.. H3K27me3 conditions chemotolerance in triple-negative breast cancer. . Nat. Genet. 54::45968
    [Crossref] [Google Scholar]
  55. Mhawech-Fauceglia P, Oberholzer M, Aschenafi S, Baur A, Kurrer M, et al. 2006.. Potential predictive patterns of minimal residual disease detected by immunohistochemistry on bone marrow biopsy specimens during a long-term follow-up in patients treated with cladribine for hairy cell leukemia. . Arch. Pathol. Lab. Med. 130::37477
    [Crossref] [Google Scholar]
  56. Michiels JE, Van den Bergh B, Verstraeten N, Michiels J. 2016.. Molecular mechanisms and clinical implications of bacterial persistence. . Drug Resist. Updat. 29::7689
    [Crossref] [Google Scholar]
  57. Müller-Hermelink N, Braumüller H, Pichler B, Wieder T, Mailhammer R, et al. 2008.. TNFR1 signaling and IFN-γ signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. . Cancer Cell 13::50718
    [Crossref] [Google Scholar]
  58. Munir T, Cairns DA, Bloor A, Allsup D, Cwynarski K, et al. 2024.. Chronic lymphocytic leukemia therapy guided by measurable residual disease. . N. Engl. J. Med. 390::32637
    [Crossref] [Google Scholar]
  59. Munshi NC, Avet-Loiseau H, Anderson KC, Neri P, Paiva B, et al. 2020.. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. . Blood Adv. 4::598899
    [Crossref] [Google Scholar]
  60. Nguyen CDK, Yi C. 2019.. YAP/TAZ signaling and resistance to cancer therapy. . Trends Cancer 5::28396
    [Crossref] [Google Scholar]
  61. Noronha A, Belugali Nataraj N, Lee JS, Zhitomirsky B, Oren Y, et al. 2022.. AXL and error-prone DNA replication confer drug resistance and offer strategies to treat EGFR-mutant lung cancer. . Cancer Discov. 12::266683
    [Crossref] [Google Scholar]
  62. Oren Y, Tsabar M, Cuoco MS, Amir-Zilberstein L, Cabanos HF, et al. 2021.. Cycling cancer persister cells arise from lineages with distinct programs. . Nature 596::57682
    [Crossref] [Google Scholar]
  63. Ossenkoppele G, Schuurhuis GJ. 2016.. MRD in AML: Does it already guide therapy decision-making?. Hematol. Am. Soc. Hematol. Educ. Program. 2016.:35665
    [Google Scholar]
  64. Oxnard GR. 2016.. The cellular origins of drug resistance in cancer. . Nat. Med. 22::23234
    [Crossref] [Google Scholar]
  65. Paez D, Labonte MJ, Bohanes P, Zhang W, Benhanim L, et al. 2012.. Cancer dormancy: a model of early dissemination and late cancer recurrence. . Clin. Cancer Res. 18::64553
    [Crossref] [Google Scholar]
  66. Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, et al. 2018.. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. . Science 362::9195
    [Crossref] [Google Scholar]
  67. Perner F, Armstrong SA. 2020.. Targeting chromatin complexes in myeloid malignancies and beyond: from basic mechanisms to clinical innovation. . Cells 9::2721
    [Crossref] [Google Scholar]
  68. Perrot A, Lauwers-Cances V, Corre J, Robillard N, Hulin C, et al. 2018.. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. . Blood 132::245664
    [Crossref] [Google Scholar]
  69. Pfeifer M, Brammeld JS, Price S, Pilling J, Bhavsar D, et al. 2024.. Genome-wide CRISPR screens identify the YAP/TEAD axis as a driver of persister cells in EGFR mutant lung cancer. . Commun. Biol. 7::497
    [Crossref] [Google Scholar]
  70. Phan TG, Croucher PI. 2020.. The dormant cancer cell life cycle. . Nat. Rev. Cancer 20::398411
    [Crossref] [Google Scholar]
  71. Pisco AO, Brock A, Zhou J, Moor A, Mojtahedi M, et al. 2013.. Non-Darwinian dynamics in therapy-induced cancer drug resistance. . Nat. Commun. 4::2467
    [Crossref] [Google Scholar]
  72. Qin S, Jiang J, Lu Y, Nice EC, Huang C, et al. 2020.. Emerging role of tumor cell plasticity in modifying therapeutic response. . Signal. Transduct. Target. Ther. 5::228
    [Crossref] [Google Scholar]
  73. Quintanal-Villalonga A, Chan JM, Yu HA, Pe'er D, Sawyers CL, et al. 2020.. Publisher correction: lineage plasticity in cancer: a shared pathway of therapeutic resistance. . Nat. Rev. Clin. Oncol. 17::382
    [Crossref] [Google Scholar]
  74. Raimondi C, Gianni W, Cortesi E, Gazzaniga P. 2010.. Cancer stem cells and epithelial-mesenchymal transition: revisiting minimal residual disease. . Curr. Cancer Drug Targets 10::496508
    [Crossref] [Google Scholar]
  75. Rambow F, Rogiers A, Marin-Bejar O, Aibar S, Femel J, et al. 2018.. Toward minimal residual disease-directed therapy in melanoma. . Cell 174::84355.e19
    [Crossref] [Google Scholar]
  76. Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA, et al. 2016.. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. . Nat. Commun. 7::10690
    [Crossref] [Google Scholar]
  77. Razavi P, Li BT, Brown DN, Jung B, Hubbell E, et al. 2019.. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. . Nat. Med. 25::192837
    [Crossref] [Google Scholar]
  78. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, et al. 2010.. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. . Cell 141::58394
    [Crossref] [Google Scholar]
  79. Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, et al. 2013.. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. . Cancer Cell 23::81125
    [Crossref] [Google Scholar]
  80. Ruffell B, Coussens LM. 2015.. Macrophages and therapeutic resistance in cancer. . Cancer Cell 27::46272
    [Crossref] [Google Scholar]
  81. Russo M, Pompei S, Sogari A, Corigliano M, Crisafulli G, et al. 2022.. A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. . Nat. Genet. 54::97684
    [Crossref] [Google Scholar]
  82. Ruth JR, Pant DK, Pan TC, Seidel HE, Baksh SC, et al. 2021.. Cellular dormancy in minimal residual disease following targeted therapy. . Breast Cancer Res. 23::63
    [Crossref] [Google Scholar]
  83. Sebastian J, Swaminath S, Nair RR, Jakkala K, Pradhan A, Ajitkumar P. 2017.. De novo emergence of genetically resistant mutants of mycobacterium tuberculosis from the persistence phase cells formed against antituberculosis drugs in vitro. . Antimicrob. Agents Chemother. 61::e01343-16
    [Crossref] [Google Scholar]
  84. Semenkovich NP, Szymanski JJ, Earland N, Chauhan PS, Pellini B, Chaudhuri AA. 2023.. Genomic approaches to cancer and minimal residual disease detection using circulating tumor DNA. . J. Immunother. Cancer 11::e006284
    [Crossref] [Google Scholar]
  85. Sharma A, Merritt E, Hu X, Cruz A, Jiang C, et al. 2019.. Non-genetic intra-tumor heterogeneity is a major predictor of phenotypic heterogeneity and ongoing evolutionary dynamics in lung tumors. . Cell Rep. 29::216474.e5
    [Crossref] [Google Scholar]
  86. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, et al. 2010.. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. . Cell 141::6980
    [Crossref] [Google Scholar]
  87. Shen S, Faouzi S, Souquere S, Roy S, Routier E, et al. 2020a.. Melanoma persister cells are tolerant to BRAF/MEK inhibitors via ACOX1-mediated fatty acid oxidation. . Cell Rep. 33::108421
    [Crossref] [Google Scholar]
  88. Shen S, Vagner S, Robert C. 2020b.. Persistent cancer cells: the deadly survivors. . Cell 183::86074
    [Crossref] [Google Scholar]
  89. Shibue T, Weinberg RA. 2017.. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. . Nat. Rev. Clin. Oncol. 14::61129
    [Crossref] [Google Scholar]
  90. Shiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, et al. 2010.. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. . Neoplasia 12::11627
    [Crossref] [Google Scholar]
  91. Simon JA, Kingston RE. 2013.. Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. . Mol. Cell 49::80824
    [Crossref] [Google Scholar]
  92. Snyder MW, Kircher M, Hill AJ, Daza RM, Shendure J. 2016.. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. . Cell 164::5768
    [Crossref] [Google Scholar]
  93. Somasundaram R, Ahsberg J, Okuyama K, Ungerback J, Lilljebjorn H, et al. 2016.. Clonal conversion of B lymphoid leukemia reveals cross-lineage transfer of malignant states. . Genes Dev. 30::248699
    [Crossref] [Google Scholar]
  94. Stejskal P, Goodarzi H, Srovnal J, Hajduch M, van ’t Veer LJ, Magbanua MJM. 2023.. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. . Mol. Cancer 22::15
    [Crossref] [Google Scholar]
  95. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, et al. 2012.. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. . Nature 487::5004
    [Crossref] [Google Scholar]
  96. Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, et al. 2014.. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. . Nature 508::11822
    [Crossref] [Google Scholar]
  97. Takahashi N, Chen HY, Harris IS, Stover DG, Selfors LM, et al. 2018.. Cancer cells co-opt the neuronal redox-sensing channel TRPA1 to promote oxidative-stress tolerance. . Cancer Cell 33::9851003.e7
    [Crossref] [Google Scholar]
  98. Takebe N, Harris PJ, Warren RQ, Ivy SP. 2011.. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. . Nat. Rev. Clin. Oncol. 8::97106
    [Crossref] [Google Scholar]
  99. Taniguchi H, Yamada T, Wang R, Tanimura K, Adachi Y, et al. 2019.. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. . Nat. Commun. 10::259
    [Crossref] [Google Scholar]
  100. Teicher BA, Holden SA, Ara G, Chen G. 1996.. Transforming growth factor-β in in vivo resistance. . Cancer Chemother. Pharmacol. 37::6019
    [Crossref] [Google Scholar]
  101. Tie J, Cohen JD, Lahouel K, Lo SN, Wang Y, et al. 2022.. Circulating tumor DNA analysis guiding adjuvant therapy in stage II colon cancer. . N. Engl. J. Med. 386::226172
    [Crossref] [Google Scholar]
  102. Tonnessen-Murray CA, Frey WD, Rao SG, Shahbandi A, Ungerleider NA, et al. 2019.. Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. . J. Cell Biol. 218::382744
    [Crossref] [Google Scholar]
  103. Tripathi V, Shin JH, Stuelten CH, Zhang YE. 2019.. TGF-β-induced alternative splicing of TAK1 promotes EMT and drug resistance. . Oncogene 38::3185200
    [Crossref] [Google Scholar]
  104. van Dongen JJ, Breit TM, Adriaansen HJ, Beishuizen A, Hooijkaas H. 1992.. Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. . Leukemia 6:(Suppl. 1):4759
    [Google Scholar]
  105. Vera-Ramirez L, Vodnala SK, Nini R, Hunter KW, Green JE. 2018.. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. . Nat. Commun. 9::1944
    [Crossref] [Google Scholar]
  106. Viale A, Pettazzoni P, Lyssiotis CA, Ying H, Sanchez N, et al. 2014.. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. . Nature 514::62832
    [Crossref] [Google Scholar]
  107. Vinogradova M, Gehling VS, Gustafson A, Arora S, Tindell CA, et al. 2016.. An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. . Nat. Chem. Biol. 12::53138
    [Crossref] [Google Scholar]
  108. Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, et al. 2014.. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells. . Gastroenterology 147::1393404
    [Crossref] [Google Scholar]
  109. Wang L, Yang Q, Peng S, Liu X. 2019.. The combination of the glycolysis inhibitor 2-DG and sorafenib can be effective against sorafenib-tolerant persister cancer cells. . OncoTargets Ther. 12::535973
    [Crossref] [Google Scholar]
  110. Yang C, Tian C, Hoffman TE, Jacobsen NK, Spencer SL. 2021.. Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signalling. . Nat. Commun. 12::1747
    [Crossref] [Google Scholar]
  111. Yao Z, Fenoglio S, Gao DC, Camiolo M, Stiles B, et al. 2010.. TGF-β IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. . PNAS 107::1553540
    [Crossref] [Google Scholar]
  112. Yumoto K, Eber MR, Wang J, Cackowski FC, Decker AM, et al. 2016.. Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. . Sci. Rep. 6::36520
    [Crossref] [Google Scholar]
  113. Yumoto K, Rashid J, Ibrahim KG, Zielske SP, Wang Y, et al. 2023.. HER2 as a potential therapeutic target on quiescent prostate cancer cells. . Transl. Oncol. 31::101642
    [Crossref] [Google Scholar]
  114. Zhang JT, Liu SY, Gao W, Liu SM, Yan HH, et al. 2022.. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. . Cancer Discov. 12::1690701
    [Crossref] [Google Scholar]
  115. Zhang M, Zhang YY, Chen Y, Wang J, Wang Q, Lu H. 2021.. TGF-β signaling and resistance to cancer therapy. . Front. Cell Dev. Biol. 9::786728
    [Crossref] [Google Scholar]
  116. Zhang X, Ma Y, Ma J, Yang L, Song Q, et al. 2022.. Glutathione peroxidase 4 as a therapeutic target for anti-colorectal cancer drug-tolerant persister cells. . Front. Oncol. 12::913669
    [Crossref] [Google Scholar]
  117. Zhu L, Xu R, Yang L, Shi W, Zhang Y, et al. 2023.. Minimal residual disease (MRD) detection in solid tumors using circulating tumor DNA: a systematic review. . Front. Genet. 14::1172108
    [Crossref] [Google Scholar]
  118. Zhu Y, Liu H, Zhang S, Liang Y, Xiao M, et al. 2020.. A case report of lineage switch from T-cell acute leukemia to B-cell acute leukemia. . Medicine 99::e22490
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-070924-120742
Loading
/content/journals/10.1146/annurev-cancerbio-070924-120742
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error