1932

Abstract

Nongenetic plasticity has emerged as a key driver of cancer drug resistance, yet its precise origins, nature, and consequences are not fully clarified. This review examines technological, computational, and conceptual developments in the nongenetic determinants of drug resistance. We begin by proposing refined definitions of cellular state, fate, and plasticity. We subsequently contextualize the findings from multimodal approaches to investigate plasticity, highlighting how new single-cell lineage-tracing methods provide opportunities for quantitatively capturing state transitions, their timescales and heritability, and how they contribute to resistance mechanisms. We also draw parallels with concepts from developmental biology and microbial persistence research. Next, we cover the role that computational approaches have played in revealing the otherwise latent patterns of heterogeneity that underlie plasticity from complex datasets. We conclude by emphasizing the need for standardized terminology in this rapidly evolving field and the path from bench to bedside.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-071924-084617
2025-04-11
2025-06-16
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-071924-084617.html?itemId=/content/journals/10.1146/annurev-cancerbio-071924-084617&mimeType=html&fmt=ahah

Literature Cited

  1. Agustinus AS, Al-Rawi D, Dameracharla B, Raviram R, Jones BSCL, et al. 2023.. Epigenetic dysregulation from chromosomal transit in micronuclei. . Nature 619::17683
    [Crossref] [Google Scholar]
  2. Aissa AF, Islam ABMMK, Ariss MM, Go CC, Rader AE, et al. 2021.. Single-cell transcriptional changes associated with drug tolerance and response to combination therapies in cancer. . Nat. Commun. 12::1628
    [Crossref] [Google Scholar]
  3. Alumkal JJ, Sun D, Lu E, Beer TM, Thomas GV, et al. 2020.. Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance. . PNAS 117::1231523
    [Crossref] [Google Scholar]
  4. Arora M, Moser J, Hoffman TE, Watts LP, Min M, et al. 2023.. Rapid adaptation to CDK2 inhibition exposes intrinsic cell-cycle plasticity. . Cell 186::262843.e21
    [Crossref] [Google Scholar]
  5. Arora M, Spencer SL. 2017.. A cell-cycle “safe space” for surviving chemotherapy. . Cell Syst. 5::16162
    [Crossref] [Google Scholar]
  6. Baggiolini A, Callahan SJ, Montal E, Weiss JM, Trieu T, et al. 2021.. Developmental chromatin programs determine oncogenic competence in melanoma. . Science 373::eabc1048
    [Crossref] [Google Scholar]
  7. Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, et al. 2019.. Definitions and guidelines for research on antibiotic persistence. . Nat. Rev. Microbiol. 17::44148
    [Crossref] [Google Scholar]
  8. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004.. Bacterial persistence as a phenotypic switch. . Science 305::162225
    [Crossref] [Google Scholar]
  9. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, et al. 2006.. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. . Nature 444::75660
    [Crossref] [Google Scholar]
  10. Baym M, Stone LK, Kishony R. 2016.. Multidrug evolutionary strategies to reverse antibiotic resistance. . Science 351::aad3292
    [Crossref] [Google Scholar]
  11. Bell CC, Fennell KA, Chan Y-C, Rambow F, Yeung MM, et al. 2019.. Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. . Nat. Commun. 10::2723
    [Crossref] [Google Scholar]
  12. Bellio C, DiGloria C, Foster R, James K, Konstantinopoulos PA, et al. 2019.. PARP inhibition induces enrichment of DNA repair-proficient CD133 and CD117 positive ovarian cancer stem cells. . Mol. Cancer Res. 17::43145
    [Crossref] [Google Scholar]
  13. Bergen V, Soldatov RA, Kharchenko PV, Theis FJ. 2021.. RNA velocity-current challenges and future perspectives. . Mol. Syst. Biol. 17::e10282
    [Crossref] [Google Scholar]
  14. Bhang H-EC, Ruddy DA, Krishnamurthy Radhakrishna V, Caushi JX, Zhao R, et al. 2015.. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. . Nat. Med. 21::44048
    [Crossref] [Google Scholar]
  15. Biehs B, Dijkgraaf GJP, Piskol R, Alicke B, Boumahdi S, et al. 2018.. A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition. . Nature 562::42933
    [Crossref] [Google Scholar]
  16. Boveri T. 1914.. Zur Frage der Entstehung maligner Tumoren. Jena, Ger:.: Fischer.
    [Google Scholar]
  17. Bradshaw AD. 1965.. Evolutionary significance of phenotypic plasticity in plants. . In Advances in Genetics, ed. EW Caspari, JM Thoday , pp. 11555. New York:: Academic
    [Google Scholar]
  18. Brauner A, Fridman O, Gefen O, Balaban NQ. 2016.. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. . Nat. Rev. Microbiol. 14::32030
    [Crossref] [Google Scholar]
  19. Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM, et al. 2023.. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. . Science 380::eadd5327
    [Crossref] [Google Scholar]
  20. Byers LA, Diao L, Wang J, Saintigny P, Girard L, et al. 2013.. An epithelial–mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. . Clin. Cancer Res. 19::27990
    [Crossref] [Google Scholar]
  21. Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA. 2010.. Rb regulates fate choice and lineage commitment in vivo. . Nature 466::111014
    [Crossref] [Google Scholar]
  22. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, et al. 2011.. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. . PNAS 108::795055
    [Crossref] [Google Scholar]
  23. Chaligne R, Gaiti F, Silverbush D, Schiffman JS, Weisman HR, et al. 2021.. Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states. . Nat. Genet. 53::146979
    [Crossref] [Google Scholar]
  24. Chan JM, Quintanal-Villalonga Á, Gao VR, Xie Y, Allaj V, et al. 2021.. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. . Cancer Cell 39::147996.e18
    [Crossref] [Google Scholar]
  25. Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, et al. 2022.. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. . Science 377::118091
    [Crossref] [Google Scholar]
  26. Cipponi A, Goode DL, Bedo J, McCabe MJ, Pajic M, et al. 2020.. MTOR signaling orchestrates stress-induced mutagenesis, facilitating adaptive evolution in cancer. . Science 368::112731
    [Crossref] [Google Scholar]
  27. Dance A. 2024.. What is a cell type, really? The quest to categorize life's myriad forms. . Nature 633::75456
    [Crossref] [Google Scholar]
  28. Debaugnies M, Rodríguez-Acebes S, Blondeau J, Parent M-A, Zocco M, et al. 2023.. RHOJ controls EMT-associated resistance to chemotherapy. . Nature 616::16875
    [Crossref] [Google Scholar]
  29. Dhimolea E, de Matos Simoes R, Kansara D, Al'Khafaji A, Bouyssou J, et al. 2021.. An embryonic diapause-like adaptation with suppressed Myc activity enables tumor treatment persistence. . Cancer Cell 39::24056.e11
    [Crossref] [Google Scholar]
  30. Domcke S, Shendure J. 2023.. A reference cell tree will serve science better than a reference cell atlas. . Cell 186::110314
    [Crossref] [Google Scholar]
  31. Echeverria GV, Powell E, Seth S, Ge Z, Carugo A, et al. 2018.. High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. . Nat. Commun. 9::5079
    [Crossref] [Google Scholar]
  32. Eisele AS, Tarbier M, Dormann AA, Pelechano V, Suter DM. 2024.. Gene-expression memory-based prediction of cell lineages from scRNA-seq datasets. . Nat. Commun. 15::2744
    [Crossref] [Google Scholar]
  33. Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002.. Stochastic gene expression in a single cell. . Science 297::118386
    [Crossref] [Google Scholar]
  34. Emert BL, Cote CJ, Torre EA, Dardani IP, Jiang CL, et al. 2021.. Variability within rare cell states enables multiple paths toward drug resistance. . Nat. Biotechnol. 39::86576
    [Crossref] [Google Scholar]
  35. Eyler CE, Matsunaga H, Hovestadt V, Vantine SJ, van Galen P, Bernstein BE. 2020.. Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance. . Genome Biol. 21::174
    [Crossref] [Google Scholar]
  36. Fallahi-Sichani M, Becker V, Izar B, Baker GJ, Lin J-R, et al. 2017.. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. . Mol. Syst. Biol. 13::905
    [Crossref] [Google Scholar]
  37. Feldman D, Tsai F, Garrity AJ, O'Rourke R, Brenan L, et al. 2020.. CloneSifter: enrichment of rare clones from heterogeneous cell populations. . BMC Biol. 18::177
    [Crossref] [Google Scholar]
  38. Fennell KA, Vassiliadis D, Lam EYN, Martelotto LG, Balic JJ, et al. 2022.. Non-genetic determinants of malignant clonal fitness at single-cell resolution. . Nature 601::12531
    [Crossref] [Google Scholar]
  39. Fischer KR, Durrans A, Lee S, Sheng J, Li F, et al. 2015.. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. . Nature 527::47276
    [Crossref] [Google Scholar]
  40. França GS, Baron M, King BR, Bossowski JP, Bjornberg A, et al. 2024.. Cellular adaptation to cancer therapy along a resistance continuum. . Nature 631::87683
    [Crossref] [Google Scholar]
  41. Fridman O, Goldberg A, Ronin I, Shoresh N, Balaban NQ. 2014.. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. . Nature 513::41821
    [Crossref] [Google Scholar]
  42. Fröhlich F, Gerosa L, Muhlich J, Sorger PK. 2023.. Mechanistic model of MAPK signaling reveals how allostery and rewiring contribute to drug resistance. . Mol. Syst. Biol. 19::e10988
    [Crossref] [Google Scholar]
  43. Fu S, Li Z, Xiao L, Hu W, Zhang L, et al. 2019.. Glutamine synthetase promotes radiation resistance via facilitating nucleotide metabolism and subsequent DNA damage repair. . Cell Rep. 28::113643.e4
    [Crossref] [Google Scholar]
  44. Gay CM, Stewart CA, Park EM, Diao L, Groves SM, et al. 2021.. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. . Cancer Cell 39::34660.e7
    [Crossref] [Google Scholar]
  45. Gerosa L, Chidley C, Fröhlich F, Sanchez G, Lim SK, et al. 2020.. Receptor-driven ERK pulses reconfigure MAPK signaling and enable persistence of drug-adapted BRAF-mutant melanoma cells. . Cell Syst. 11::47894.e9
    [Crossref] [Google Scholar]
  46. Gonzalez Rajal A, Marzec KA, McCloy RA, Nobis M, Chin V, et al. 2021.. A non-genetic, cell cycle-dependent mechanism of platinum resistance in lung adenocarcinoma. . eLife 10::e65234
    [Crossref] [Google Scholar]
  47. Gorin G, Fang M, Chari T, Pachter L. 2022.. RNA velocity unraveled. . PLOS Comput. Biol. 18::e1010492
    [Crossref] [Google Scholar]
  48. Goyal Y, Busch GT, Pillai M, Li J, Boe RH, et al. 2023.. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. . Nature 620::65159
    [Crossref] [Google Scholar]
  49. Grody EI, Abraham A, Shukla V, Goyal Y. 2023.. Toward a systems-level probing of tumor clonality. . iScience 26::106574
    [Crossref] [Google Scholar]
  50. Groves SM, Ildefonso GV, McAtee CO, Ozawa PMM, Ireland AS, et al. 2022.. Archetype tasks link intratumoral heterogeneity to plasticity and cancer hallmarks in small cell lung cancer. . Cell Syst. 13::690710.e17
    [Crossref] [Google Scholar]
  51. Groves SM, Quaranta V. 2023.. Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics. . Front. Netw. Physiol. 3::1225736
    [Crossref] [Google Scholar]
  52. Guernet A, Mungamuri Sathish K, Cartier D, Sachidanandam R, Jayaprakash A, et al. 2016.. CRISPR-barcoding for intratumor genetic heterogeneity modeling and functional analysis of oncogenic driver mutations. . Mol. Cell 63::52638
    [Crossref] [Google Scholar]
  53. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, et al. 2011.. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. . Cell 146::63344
    [Crossref] [Google Scholar]
  54. Gutierrez C, Al'Khafaji AM, Brenner E, Johnson KE, Gohil SH, et al. 2021.. Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. . Nat. Cancer 2::75872
    [Crossref] [Google Scholar]
  55. Haas L, Elewaut A, Gerard CL, Umkehrer C, Leiendecker L, et al. 2021.. Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma. . Nat. Cancer 2::693708
    [Crossref] [Google Scholar]
  56. Haghverdi L, Büttner M, Wolf FA, Buettner F, Theis FJ. 2016.. Diffusion pseudotime robustly reconstructs lineage branching. . Nat. Methods 13::84548
    [Crossref] [Google Scholar]
  57. Han G, Sinjab A, Rahal Z, Lynch AM, Treekitkarnmongkol W, et al. 2024.. An atlas of epithelial cell states and plasticity in lung adenocarcinoma. . Nature 627::65663
    [Crossref] [Google Scholar]
  58. Hanahan D. 2022.. Hallmarks of cancer: new dimensions. . Cancer Discov. 12::3146
    [Crossref] [Google Scholar]
  59. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, et al. 2017.. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. . Nature 551::24750
    [Crossref] [Google Scholar]
  60. Harmange G, Hueros RAR, Schaff DL, Emert B, Saint-Antoine M, et al. 2023.. Disrupting cellular memory to overcome drug resistance. . Nat. Commun. 14::7130
    [Crossref] [Google Scholar]
  61. Havas KM, Milchevskaya V, Radic K, Alladin A, Kafkia E, et al. 2017.. Metabolic shifts in residual breast cancer drive tumor recurrence. . J. Clin. Investig. 127::2091105
    [Crossref] [Google Scholar]
  62. Hay ED. 1995.. An overview of epithelio-mesenchymal transformation. . Acta Anat. 154::820
    [Crossref] [Google Scholar]
  63. He MX, Cuoco MS, Crowdis J, Bosma-Moody A, Zhang Z, et al. 2021.. Transcriptional mediators of treatment resistance in lethal prostate cancer. . Nat. Med. 27::42633
    [Crossref] [Google Scholar]
  64. Hinohara K, Wu H-J, Vigneau S, McDonald TO, Igarashi KJ, et al. 2018.. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. . Cancer Cell 34::93953.e9
    [Crossref] [Google Scholar]
  65. Hu K, Wu W, Li Y, Lin L, Chen D, et al. 2019.. Poly(ADP-ribosyl)ation of BRD7 by PARP1 confers resistance to DNA-damaging chemotherapeutic agents. . EMBO Rep. 20::e46166
    [Crossref] [Google Scholar]
  66. Jain N, Goyal Y, Dunagin MC, Cote CJ, Mellis IA, et al. 2024.. Retrospective identification of cell-intrinsic factors that mark pluripotency potential in rare somatic cells. . Cell Syst. 15::10933.e10
    [Crossref] [Google Scholar]
  67. Kaufman T, Nitzan E, Firestein N, Ginzberg MB, Iyengar S, et al. 2022.. Visual barcodes for clonal-multiplexing of live microscopy-based assays. . Nat. Commun. 13::2725
    [Crossref] [Google Scholar]
  68. Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ. 2014.. Stochasticity of metabolism and growth at the single-cell level. . Nature 514::37679
    [Crossref] [Google Scholar]
  69. Klein AM, Simons BD. 2011.. Universal patterns of stem cell fate in cycling adult tissues. . Development 138::310311
    [Crossref] [Google Scholar]
  70. Kondo H, Ratcliffe CDH, Hooper S, Ellis J, MacRae JI, et al. 2021.. Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. . Cell Rep. 34::108750
    [Crossref] [Google Scholar]
  71. Konorski J. 1948.. Conditioned Reflexes and Neuron Organization. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  72. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, et al. 2017.. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. . Science 355::7883
    [Crossref] [Google Scholar]
  73. Kussell E, Leibler S. 2005.. Phenotypic diversity, population growth, and information in fluctuating environments. . Science 309::207578
    [Crossref] [Google Scholar]
  74. La Manno G, Soldatov R, Zeisel A, Braun E, Hochgerner H, et al. 2018.. RNA velocity of single cells. . Nature 560::49498
    [Crossref] [Google Scholar]
  75. Lan X, Jörg DJ, Cavalli FMG, Richards LM, Nguyen LV, et al. 2017.. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. . Nature 549::22732
    [Crossref] [Google Scholar]
  76. Landsberg J, Kohlmeyer J, Renn M, Bald T, Rogava M, et al. 2012.. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. . Nature 490::41216
    [Crossref] [Google Scholar]
  77. Lareau CA, Chapman MS, Penter L, Nawy T, Pe'er D, Ludwig LS. 2024.. Artifacts in single-cell mitochondrial DNA mutation analyses misinform phylogenetic inference. . bioRxiv 2024.07.28.605517. https://doi.org/10.1101/2024.07.28.605517
  78. Lederberg J, Lederberg EM. 1952.. Replica plating and indirect selection of bacterial mutants. . J. Bacteriol. 63::399406
    [Crossref] [Google Scholar]
  79. Li L-Y, Guan Y-D, Chen X-S, Yang J-M, Cheng Y. 2020.. DNA repair pathways in cancer therapy and resistance. . Front. Pharmacol. 11::629266
    [Crossref] [Google Scholar]
  80. Li Y, Eshein A, Virk RKA, Eid A, Wu W, et al. 2021.. Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function. . Sci. Adv. 7::eabe4310
    [Crossref] [Google Scholar]
  81. Lin Z, Niu Y, Wan A, Chen D, Liang H, et al. 2020.. RNA m6A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. . EMBO J. 39::e103181
    [Crossref] [Google Scholar]
  82. Liu J, Gefen O, Ronin I, Bar-Meir M, Balaban NQ. 2020.. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. . Science 367::2004
    [Crossref] [Google Scholar]
  83. Lu Y, Singh H, Singh A, Dar RD. 2021.. A transient heritable memory regulates HIV reactivation from latency. . iScience 24::102291
    [Crossref] [Google Scholar]
  84. Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, et al. 2019.. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. . Cell 176::132539.e22
    [Crossref] [Google Scholar]
  85. Luecken MD, Theis FJ. 2019.. Current best practices in single-cell RNA-seq analysis: a tutorial. . Mol. Syst. Biol. 15::e8746
    [Crossref] [Google Scholar]
  86. Maltas J, Killarney ST, Singleton KR, Strobl MAR, Washart R, et al. 2024.. Drug dependence in cancer is exploitable by optimally constructed treatment holidays. . Nat. Ecol. Evol. 8::14762
    [Crossref] [Google Scholar]
  87. Maynard A, McCoach CE, Rotow JK, Harris L, Haderk F, et al. 2020.. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. . Cell 182::123251.e22
    [Crossref] [Google Scholar]
  88. Mehta A, Stanger BZ. 2024.. Lineage plasticity: the new cancer hallmark on the block. . Cancer Res. 84::18491
    [Crossref] [Google Scholar]
  89. Mellis IA, Bodkin N, Melzer ME, Goyal Y. 2023.. Prevalence of and gene regulatory constraints on transcriptional adaptation in single cells. . bioRxiv 2023.08.14.553318. https://doi.org/10.1101/2023.08.14.553318
  90. Mellis IA, Edelstein HI, Truitt R, Goyal Y, Beck LE, et al. 2021.. Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. . Cell Syst. 12::88599.e8
    [Crossref] [Google Scholar]
  91. Miller TE, Lareau CA, Verga JA, DePasquale EAK, Liu V, et al. 2022.. Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations. . Nat. Biotechnol. 40::103034
    [Crossref] [Google Scholar]
  92. Mold JE, Weissman MH, Ratz M, Hagemann-Jensen M, Hård J, et al. 2024.. Clonally heritable gene expression imparts a layer of diversity within cell types. . Cell Syst. 15::14965.e10
    [Crossref] [Google Scholar]
  93. Morgan TJH, Suchow JW, Griffiths TL. 2020.. What the Baldwin Effect affects depends on the nature of plasticity. . Cognition 197::104165
    [Crossref] [Google Scholar]
  94. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, et al. 2017.. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. . Science 355::8488
    [Crossref] [Google Scholar]
  95. Navin N, Krasnitz A, Rodgers L, Cook K, Meth J, et al. 2010.. Inferring tumor progression from genomic heterogeneity. . Genome Res. 20::6880
    [Crossref] [Google Scholar]
  96. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, et al. 2019.. An integrative model of cellular states, plasticity, and genetics for glioblastoma. . Cell 178::83549.e21
    [Crossref] [Google Scholar]
  97. Nowell PC. 1976.. The clonal evolution of tumor cell populations. . Science 194::2328
    [Crossref] [Google Scholar]
  98. Oren Y, Tsabar M, Cuoco MS, Amir-Zilberstein L, Cabanos HF, et al. 2021.. Cycling cancer persister cells arise from lineages with distinct programs. . Nature 596::57682
    [Crossref] [Google Scholar]
  99. Ousset M, Van Keymeulen A, Bouvencourt G, Sharma N, Achouri Y, et al. 2012.. Multipotent and unipotent progenitors contribute to prostate postnatal development. . Nat. Cell Biol. 14::113138
    [Crossref] [Google Scholar]
  100. Papathanasiou S, Mynhier NA, Liu S, Brunette G, Stokasimov E, et al. 2023.. Heritable transcriptional defects from aberrations of nuclear architecture. . Nature 619::18492
    [Crossref] [Google Scholar]
  101. Park NI, Guilhamon P, Desai K, McAdam RF, Langille E, et al. 2017.. ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells. . Cell Stem Cell 21::20924.e7
    [Crossref] [Google Scholar]
  102. Patel AS, Yanai I. 2024.. A developmental constraint model of cancer cell states and tumor heterogeneity. . Cell 187::290718
    [Crossref] [Google Scholar]
  103. Paudel BB, Harris LA, Hardeman KN, Abugable AA, Hayford CE, et al. 2018.. A nonquiescent “idling” population state in drug-treated, BRAF-mutated melanoma. . Biophys. J. 114::1499511
    [Crossref] [Google Scholar]
  104. Pillai M, Hojel E, Jolly MK, Goyal Y. 2023.. Unraveling non-genetic heterogeneity in cancer with dynamical models and computational tools. . Nat. Comput. Sci. 3::30113
    [Crossref] [Google Scholar]
  105. Pisco AO, Brock A, Zhou J, Moor A, Mojtahedi M, et al. 2013.. Non-Darwinian dynamics in therapy-induced cancer drug resistance. . Nat. Commun. 4::2467
    [Crossref] [Google Scholar]
  106. Pleška M, Jordan D, Frentz Z, Xue B, Leibler S. 2021.. Nongenetic individuality, changeability, and inheritance in bacterial behavior. . PNAS 118::e2023322118
    [Crossref] [Google Scholar]
  107. Qiu X, Zhang Y, Martin-Rufino JD, Weng C, Hosseinzadeh S, et al. 2022.. Mapping transcriptomic vector fields of single cells. . Cell 185::690711.e45
    [Crossref] [Google Scholar]
  108. Quinn JJ, Jones MG, Okimoto RA, Nanjo S, Chan MM, et al. 2021.. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. . Science 371::eabc1944
    [Crossref] [Google Scholar]
  109. Rafelski SM, Theriot JA. 2024.. Establishing a conceptual framework for holistic cell states and state transitions. . Cell 187::263351
    [Crossref] [Google Scholar]
  110. Raj A, van Oudenaarden A. 2008.. Nature, nurture, or chance: stochastic gene expression and its consequences. . Cell 135::21626
    [Crossref] [Google Scholar]
  111. Rambow F, Rogiers A, Marin-Bejar O, Aibar S, Femel J, et al. 2018.. Toward minimal residual disease-directed therapy in melanoma. . Cell 174::84355.e19
    [Crossref] [Google Scholar]
  112. Ramirez M, Rajaram S, Steininger RJ, Osipchuk D, Roth MA, et al. 2016.. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. . Nat. Commun. 7::10690
    [Crossref] [Google Scholar]
  113. Ramsdale R, Jorissen RN, Li FZ, Al-Obaidi S, Ward T, et al. 2015.. The transcription cofactor c-JUN mediates phenotype switching and BRAF inhibitor resistance in melanoma. . Sci. Signal. 8::ra82
    [Crossref] [Google Scholar]
  114. Rehman SK, Haynes J, Collignon E, Brown KR, Wang Y, et al. 2021.. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. . Cell 184::22642.e21
    [Crossref] [Google Scholar]
  115. Risom T, Langer EM, Chapman MP, Rantala J, Fields AJ, et al. 2018.. Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. . Nat. Commun. 9::3815
    [Crossref] [Google Scholar]
  116. Rodrigues M, Sabaeifard P, Yildiz MS, Lyon A, Coughlin L, et al. 2024.. Susceptible bacteria can survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance. . Cell Host Microbe 32::396410.e6
    [Crossref] [Google Scholar]
  117. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, et al. 2010.. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. . Cell 141::58394
    [Crossref] [Google Scholar]
  118. Russo M, Chen M, Mariella E, Peng H, Rehman SK, et al. 2024.. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. . Nat. Rev. Cancer 24::694717
    [Crossref] [Google Scholar]
  119. Ryl T, Kuchen EE, Bell E, Shao C, Flórez AF, et al. 2017.. Cell-cycle position of single MYC-driven cancer cells dictates their susceptibility to a chemotherapeutic drug. . Cell Syst. 5::23750.e8
    [Crossref] [Google Scholar]
  120. Sahoo S, Mishra A, Kaur H, Hari K, Muralidharan S, et al. 2021.. A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. . NAR Cancer 3::zcab027
    [Crossref] [Google Scholar]
  121. Sampaio NMV, Blassick CM, Andreani V, Lugagne J-B, Dunlop MJ. 2022.. Dynamic gene expression and growth underlie cell-to-cell heterogeneity in Escherichia coli stress response. . PNAS 119::e2115032119
    [Crossref] [Google Scholar]
  122. Sankaran VG, Weissman JS, Zon LI. 2022.. Cellular barcoding to decipher clonal dynamics in disease. . Science 378::eabm5874
    [Crossref] [Google Scholar]
  123. Schiffman JS, D'Avino AR, Prieto T, Pang Y, Fan Y, et al. 2024.. Defining heritability, plasticity, and transition dynamics of cellular phenotypes in somatic evolution. . Nat. Genet. 56::217484
    [Crossref] [Google Scholar]
  124. Schuh L, Saint-Antoine M, Sanford EM, Emert BL, Singh A, et al. 2020.. Gene networks with transcriptional bursting recapitulate rare transient coordinated high expression states in cancer. . Cell Syst. 10::36378.e12
    [Crossref] [Google Scholar]
  125. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, et al. 2011.. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. . Sci. Transl. Med. 3::75ra26
    [Crossref] [Google Scholar]
  126. Setty M, Kiseliovas V, Levine J, Gayoso A, Mazutis L, Pe'er D. 2019.. Characterization of cell fate probabilities in single-cell data with Palantir. . Nat. Biotechnol. 37::45160
    [Crossref] [Google Scholar]
  127. Shackleton M, Quintana E, Fearon ER, Morrison SJ. 2009.. Heterogeneity in cancer: cancer stem cells versus clonal evolution. . Cell 138::82229
    [Crossref] [Google Scholar]
  128. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, et al. 2017.. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. . Nature 546::43135
    [Crossref] [Google Scholar]
  129. Shaffer SM, Emert BL, Reyes Hueros RA, Cote C, Harmange G, et al. 2020.. Memory sequencing reveals heritable single-cell gene expression programs associated with distinct cellular behaviors. . Cell 182::94759.e17
    [Crossref] [Google Scholar]
  130. Sharma A, Cao EY, Kumar V, Zhang X, Leong HS, et al. 2018.. Longitudinal single-cell RNA sequencing of patient-derived primary cells reveals drug-induced infidelity in stem cell hierarchy. . Nat. Commun. 9::4931
    [Crossref] [Google Scholar]
  131. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, et al. 2010.. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. . Cell 141::6980
    [Crossref] [Google Scholar]
  132. Singh A, Saint-Antoine M. 2022.. Probing transient memory of cellular states using single-cell lineages. . Front. Microbiol. 13::1050516
    [Crossref] [Google Scholar]
  133. Singh A, Settleman J. 2010.. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. . Oncogene 29::474151
    [Crossref] [Google Scholar]
  134. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, et al. 2003.. Identification of a cancer stem cell in human brain tumors. . Cancer Res. 63::582128
    [Google Scholar]
  135. Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK. 2009.. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. . Nature 459::42832
    [Crossref] [Google Scholar]
  136. Street K, Risso D, Fletcher RB, Das D, Ngai J, et al. 2018.. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. . BMC Genom. 19::477
    [Crossref] [Google Scholar]
  137. Strunz M, Simon LM, Ansari M, Kathiriya JJ, Angelidis I, et al. 2020.. Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung fibrosis. . Nat. Commun. 11::3559
    [Crossref] [Google Scholar]
  138. Su Y, Wei W, Robert L, Xue M, Tsoi J, et al. 2017.. Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. . PNAS 114::1367984
    [Crossref] [Google Scholar]
  139. Sun C, Wang L, Huang S, Heynen GJJE, Prahallad A, et al. 2014.. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. . Nature 508::11822
    [Crossref] [Google Scholar]
  140. Sutton WS. 1903.. The chromosomes in heredity. . Biol. Bull. 4::23150
    [Crossref] [Google Scholar]
  141. Torre EA, Arai E, Bayatpour S, Jiang CL, Beck LE, et al. 2021.. Genetic screening for single-cell variability modulators driving therapy resistance. . Nat. Genet. 53::7685
    [Crossref] [Google Scholar]
  142. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, et al. 2014.. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. . Nat. Biotechnol. 32::38186
    [Crossref] [Google Scholar]
  143. Trivedi P, Steele CD, Au FKC, Alexandrov LB, Cleveland DW. 2023.. Mitotic tethering enables inheritance of shattered micronuclear chromosomes. . Nature 618::104956
    [Crossref] [Google Scholar]
  144. Udyavar AR, Wooten DJ, Hoeksema M, Bansal M, Califano A, et al. 2017.. Novel hybrid phenotype revealed in small cell lung cancer by a transcription factor network model that can explain tumor heterogeneity. . Cancer Res. 77::106374
    [Crossref] [Google Scholar]
  145. Umkehrer C, Holstein F, Formenti L, Jude J, Froussios K, et al. 2021.. Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters. . Nat. Biotechnol. 39::17478
    [Crossref] [Google Scholar]
  146. Van Eyndhoven LC, Verberne VPG, Bouten CVC, Singh A, Tel J. 2023.. Transiently heritable fates and quorum sensing drive early IFN-I response dynamics. . eLife 12::e83055
    [Crossref] [Google Scholar]
  147. Vipparthi K, Hari K, Chakraborty P, Ghosh S, Patel AK, et al. 2022.. Emergence of hybrid states of stem-like cancer cells correlates with poor prognosis in oral cancer. . iScience 25::104317
    [Crossref] [Google Scholar]
  148. Virk RKA, Wu W, Almassalha LM, Bauer GM, Li Y, et al. 2020.. Disordered chromatin packing regulates phenotypic plasticity. . Sci. Adv. 6::eaax6232
    [Crossref] [Google Scholar]
  149. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, et al. 2017.. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. . Nature 547::45357
    [Crossref] [Google Scholar]
  150. Waddington CH. 1953.. Genetic assimilation of an acquired character. . Evolution 7::11826
    [Crossref] [Google Scholar]
  151. Waddington CH. 2014.. The Strategy of the Genes. London:: Routledge
    [Google Scholar]
  152. Weng C, Weissman JS, Sankaran VG. 2024.. Robustness and reliability of single-cell regulatory multi-omics with deep mitochondrial mutation profiling. . bioRxiv 2024.08.23.609473. https://doi.org/10.1101/2024.08.23.609473
  153. Westbrook TC, Guan X, Rodansky E, Flores D, Liu CJ, et al. 2022.. Transcriptional profiling of matched patient biopsies clarifies molecular determinants of enzalutamide-induced lineage plasticity. . Nat. Commun. 13::5345
    [Crossref] [Google Scholar]
  154. Whiting FJH, Househam J, Baker A-M, Sottoriva A, Graham TA. 2024.. Phenotypic noise and plasticity in cancer evolution. . Trends Cell Biol. 34::45164
    [Crossref] [Google Scholar]
  155. Woltereck R. 1913.. Weitere experimentelle untersuchungen über Artänderung, speziell über das Wesen quantitativer Artunterschiede bei Daphniden. . Z. Indukt. Abstamm. Vererbungsl. 9::146
    [Google Scholar]
  156. Wooten DJ, Groves SM, Tyson DR, Liu Q, Lim JS, et al. 2019.. Systems-level network modeling of small cell lung cancer subtypes identifies master regulators and destabilizers. . PLOS Comput. Biol. 15::e1007343
    [Crossref] [Google Scholar]
  157. Xue B, Leibler S. 2018.. Benefits of phenotypic plasticity for population growth in varying environments. . PNAS 115::1274550
    [Crossref] [Google Scholar]
  158. Yan F, Al-Kali A, Zhang Z, Liu J, Pang J, et al. 2018.. A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. . Cell Res. 28::106276
    [Crossref] [Google Scholar]
  159. Yang C, Tian C, Hoffman TE, Jacobsen NK, Spencer SL. 2021.. Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signalling. . Nat. Commun. 12::1747
    [Crossref] [Google Scholar]
  160. Yu W-K, Wang Z, Fong C-C, Liu D, Yip T-C, et al. 2017.. Chemoresistant lung cancer stem cells display high DNA repair capability to remove cisplatin-induced DNA damage. . Br. J. Pharmacol. 174::30213
    [Crossref] [Google Scholar]
  161. Zhang Z, Melzer ME, Arun KM, Sun H, Eriksson C-J, et al. 2024.. Synthetic DNA barcodes identify singlets in scRNA-seq datasets and evaluate doublet algorithms. . Cell Genom. 4::100592
    [Crossref] [Google Scholar]
  162. Zhou W, Yao Y, Scott AJ, Wilder-Romans K, Dresser JJ, et al. 2020.. Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. . Nat. Commun. 11::3811
    [Crossref] [Google Scholar]
  163. Zikry TM, Wolff SC, Ranek JS, Davis HM, Naugle A, et al. 2024.. Cell cycle plasticity underlies fractional resistance to palbociclib in ER+/HER2− breast tumor cells. . PNAS 121::e2309261121
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-071924-084617
Loading
/content/journals/10.1146/annurev-cancerbio-071924-084617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error