1932

Abstract

The mitochondrial genome, which encodes genes essential for respiration and cellular homeostasis, is the target of abundant and highly diverse somatic alterations in cancers. Somatic alterations to mitochondrial DNA (mtDNA) nearly always arise heteroplasmically, producing heterogeneous ensembles of mtDNA within single cells. Here, we review new insights derived from exponential increases in genomic sequencing data that have uncovered the nature of, selective pressure for, and functional consequences of cancer-associated mtDNA alterations. As many discoveries have been limited by their ability to determine cell-to-cell variation in mtDNA genotype, we describe a new generation of single-cell sequencing approaches that resolve otherwise indeterminate models of mtDNA heteroplasmy. In tandem with novel approaches for mtDNA editing and modeling of mutations, these advances foreshadow the quantitative dissection of dosage-dependent mtDNA phenotypes that underlie both tumor evolution and heterogeneous response to therapies.

Keyword(s): cancergenomicsmtDNAsingle cell
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-080124-102241
2025-04-11
2025-06-21
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/9/1/annurev-cancerbio-080124-102241.html?itemId=/content/journals/10.1146/annurev-cancerbio-080124-102241&mimeType=html&fmt=ahah

Literature Cited

  1. Aaltonen LA, Abascal F, Abeshouse A, Aburatani H, Adams DJ, et al. 2020.. Pan-cancer analysis of whole genomes. . Nature 578:(7793):8293. https://doi.org/10.1038/s41586-020-1969-6
    [Crossref] [Google Scholar]
  2. Abbott KL, Ali A, Reinfeld BI, Deik A, Subudhi S, et al. 2024.. Metabolite profiling of human renal cell carcinoma reveals tissue-origin dominance in nutrient availability. . Preprint , eLife 13::RP95652. https://doi.org/10.7554/eLife.95652.2
    [Crossref] [Google Scholar]
  3. Alston CL, Morak M, Reid C, Hargreaves IP, Pope SAS, et al. 2010.. A novel mitochondrial MTND5 frameshift mutation causing isolated complex I deficiency, renal failure and myopathy. . Neuromuscul. Disord. 20:(2):13135. https://doi.org/10.1016/j.nmd.2009.10.010
    [Crossref] [Google Scholar]
  4. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, et al. 1981.. Sequence and organization of the human mitochondrial genome. . Nature 290:(5806):45765. https://doi.org/10.1038/290457a0
    [Crossref] [Google Scholar]
  5. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. 2013.. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. . Nat. Med. 19:(9):111113. https://doi.org/10.1038/nm.3261
    [Crossref] [Google Scholar]
  6. Bai U, Seidman MD, Hinojosa R, Quirk WS. 1997.. Mitochondrial DNA deletions associated with aging and possibly presbycusis: a human archival temporal bone study. . Am. J. Otol. 18:(4):44953
    [Google Scholar]
  7. Baysoy A, Bai Z, Satija R, Fan R. 2023.. The technological landscape and applications of single-cell multi-omics. . Nat. Rev. Mol. Cell Biol. 24:(10):695713. https://doi.org/10.1038/s41580-023-00615-w
    [Crossref] [Google Scholar]
  8. Bekiaris PS, Klamt S. 2023.. Network-wide thermodynamic constraints shape NAD(P)H cofactor specificity of biochemical reactions. . Nat. Commun. 14:(1):4660. https://doi.org/10.1038/s41467-023-40297-8
    [Crossref] [Google Scholar]
  9. Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W, et al. 2018.. Genome doubling shapes the evolution and prognosis of advanced cancers. . Nat. Genet. 50:(8):118995. https://doi.org/10.1038/s41588-018-0165-1
    [Crossref] [Google Scholar]
  10. Birsoy K, Possemato R, Lorbeer FK, Bayraktar EC, Thiru P, et al. 2014.. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. . Nature 508:(7494):10812. https://doi.org/10.1038/nature13110
    [Crossref] [Google Scholar]
  11. Blackwood JK, Williamson SC, Greaves LC, Wilson L, Rigas AC, et al. 2011.. In situ lineage tracking of human prostatic epithelial stem cell fate reveals a common clonal origin for basal and luminal cells. . J. Pathol. 225:(2):18188. https://doi.org/10.1002/path.2965
    [Crossref] [Google Scholar]
  12. Bonora M, Patergnani S, Rimessi A, De Marchi E, Suski JM, et al. 2012.. ATP synthesis and storage. . Purinergic Signal. 8:(3):34357. https://doi.org/10.1007/s11302-012-9305-8
    [Crossref] [Google Scholar]
  13. Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, et al. 2015.. Single-cell chromatin accessibility reveals principles of regulatory variation. . Nature 523:(7561):48690. https://doi.org/10.1038/nature14590
    [Crossref] [Google Scholar]
  14. Burgart LJ, Zheng J, Shu Q, Strickler JG, Shibata D. 1995.. Somatic mitochondrial mutation in gastric cancer. . Am. J. Pathol. 147:(4):110511
    [Google Scholar]
  15. Burgstaller JP, Kolbe T, Havlicek V, Hembach S, Poulton J, et al. 2018.. Large-scale genetic analysis reveals mammalian mtDNA heteroplasmy dynamics and variance increase through lifetimes and generations. . Nat. Commun. 9:(1):2488. https://doi.org/10.1038/s41467-018-04797-2
    [Crossref] [Google Scholar]
  16. Cereser B, Jansen M, Austin E, Elia G, McFarlane T, et al. 2018.. Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells. . J. Pathol. 244:(1):6170. https://doi.org/10.1002/path.4989
    [Crossref] [Google Scholar]
  17. Chandel NS. 2014.. Mitochondria as signaling organelles. . BMC Biol. 12:(1):34. https://doi.org/10.1186/1741-7007-12-34
    [Crossref] [Google Scholar]
  18. Chen T, He J, Huang Y, Zhao W. 2011.. The generation of mitochondrial DNA large-scale deletions in human cells. . J. Hum. Genet. 56:(10):68994. https://doi.org/10.1038/jhg.2011.97
    [Crossref] [Google Scholar]
  19. Cho S-I, Lee S, Mok YG, Lim K, Lee J, et al. 2022.. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. . Cell 185:(10):176476.e12. https://doi.org/10.1016/j.cell.2022.03.039
    [Crossref] [Google Scholar]
  20. Choi B-O, Hwang JH, Cho EM, Jeong EH, Hyun YS, et al. 2010.. Mutational analysis of whole mitochondrial DNA in patients with MELAS and MERRF diseases. . Exp. Mol. Med. 42:(6):44655. https://doi.org/10.3858/emm.2010.42.6.046
    [Crossref] [Google Scholar]
  21. Copeland WC. 2012.. Defects in mitochondrial DNA replication and human disease. . Crit. Rev. Biochem. Mol. Biol. 47:(1):6474. https://doi.org/10.3109/10409238.2011.632763
    [Crossref] [Google Scholar]
  22. Cortopassi GA, Shibata D, Soong NW, Arnheim N. 1992.. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. . PNAS 89:(16):737074. https://doi.org/10.1073/pnas.89.16.7370
    [Crossref] [Google Scholar]
  23. Diaz F, Bayona-Bafaluy MP, Rana M, Mora M, Hao H, Moraes CT. 2002.. Human mitochondrial DNA with large deletions repopulates organelles faster than full-length genomes under relaxed copy number control. . Nucleic Acids Res. 30:(21):462633. https://doi.org/10.1093/nar/gkf602
    [Crossref] [Google Scholar]
  24. Druzhyna NM, Wilson GL, LeDoux SP. 2008.. Mitochondrial DNA repair in aging and disease. . Mech. Ageing Dev. 129:(7–8):38390. https://doi.org/10.1016/j.mad.2008.03.002
    [Crossref] [Google Scholar]
  25. Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. 2008.. Pathogenic mitochondrial DNA mutations are common in the general population. . Am. J. Hum. Genet. 83:(2):25460. https://doi.org/10.1016/j.ajhg.2008.07.004
    [Crossref] [Google Scholar]
  26. Fellous TG, Islam S, Tadrous PJ, Elia G, Kocher HM, et al. 2009.. Locating the stem cell niche and tracing hepatocyte lineages in human liver. . Hepatology 49:(5):165563. https://doi.org/10.1002/hep.22791
    [Crossref] [Google Scholar]
  27. Fendt L, Fazzini F, Weissensteiner H, Bruckmoser E, Schönherr S, et al. 2020.. Profiling of mitochondrial DNA heteroplasmy in a prospective oral squamous cell carcinoma study. . Cancers 12:(7):1933. https://doi.org/10.3390/cancers12071933
    [Crossref] [Google Scholar]
  28. Fiskin E, Lareau CA, Ludwig LS, Eraslan G, Liu F, et al. 2022.. Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC. . Nat. Biotechnol. 40:(3):37481. https://doi.org/10.1038/s41587-021-01065-5
    [Crossref] [Google Scholar]
  29. Frank AR, Li V, Shelton SD, Kim J, Stott GM, et al. 2023.. Mitochondrial-encoded complex I impairment induces a targetable dependency on aerobic fermentation in Hürthle cell carcinoma of the thyroid. . Cancer Discov. 13:(8):1884903. https://doi.org/10.1158/2159-8290.CD-22-0982
    [Crossref] [Google Scholar]
  30. Gammage PA, Minczuk M. 2018.. Enhanced manipulation of human mitochondrial DNA heteroplasmy in vitro using tunable mtZFN technology. . In Zinc Finger Proteins: Methods and Protocols, ed. J Liu , pp. 4356. New York:: Springer. https://doi.org/10.1007/978-1-4939-8799-3_4
    [Google Scholar]
  31. Gammage PA, Moraes CT, Minczuk M. 2018a.. Mitochondrial genome engineering: The revolution may not be CRISPR-ized. . Trends Genet. 34:(2):10110. https://doi.org/10.1016/j.tig.2017.11.001
    [Crossref] [Google Scholar]
  32. Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M. 2014.. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. . EMBO Mol. Med. 6:(4):45866. https://doi.org/10.1002/emmm.201303672
    [Crossref] [Google Scholar]
  33. Gammage PA, Viscomi C, Simard M-L, Costa ASH, Gaude E, et al. 2018b.. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. . Nat. Med. 24:(11):169195. https://doi.org/10.1038/s41591-018-0165-9
    [Crossref] [Google Scholar]
  34. Ganly I, Makarov V, Deraje S, Dong Y, Reznik E, et al. 2018.. Integrated genomic analysis of Hürthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. . Cancer Cell 34:(2):25670.e5. https://doi.org/10.1016/j.ccell.2018.07.002
    [Crossref] [Google Scholar]
  35. Gaude E, Schmidt C, Gammage PA, Dugourd A, Blacker T, et al. 2018.. NADH shuttling couples cytosolic reductive carboxylation of glutamine with glycolysis in cells with mitochondrial dysfunction. . Mol. Cell 69:(4):58193. https://doi.org/10.1016/j.molcel.2018.01.034
    [Crossref] [Google Scholar]
  36. Glynos A, Bozhilova LV, Frison M, Burr S, Stewart JB, Chinnery PF. 2023.. High-throughput single-cell analysis reveals progressive mitochondrial DNA mosaicism throughout life. . Sci. Adv. 9:(43):eadi4038. https://doi.org/10.1126/sciadv.adi4038
    [Crossref] [Google Scholar]
  37. Gopal RK, Kübler K, Calvo SE, Polak P, Livitz D, et al. 2018.. Widespread chromosomal losses and mitochondrial DNA alterations as genetic drivers in Hürthle cell carcinoma. . Cancer Cell 34:(2):24255.e5. https://doi.org/10.1016/j.ccell.2018.06.013
    [Crossref] [Google Scholar]
  38. Gorelick AN, Kim M, Chatila WK, La K, Ari Hakimi A, et al. 2021.. Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. . Nat. Metab. 3:(4):55870. https://doi.org/10.1038/s42255-021-00378-8
    [Crossref] [Google Scholar]
  39. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, et al. 2016.. Mitochondrial diseases. . Nat. Rev. Dis. Primers 2:(1):16080. https://doi.org/10.1038/nrdp.2016.80
    [Crossref] [Google Scholar]
  40. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, et al. 2015.. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. . Ann. Neurol. 77:(5):75359. https://doi.org/10.1002/ana.24362
    [Crossref] [Google Scholar]
  41. Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ, et al. 2006.. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. . PNAS 103:(3):71419. https://doi.org/10.1073/pnas.0505903103
    [Crossref] [Google Scholar]
  42. Green AP, Klimm F, Marshall AS, Leetmaa R, Aryaman J, et al. 2023.. Cryptic mitochondrial ageing coincides with mid-late life and is pathophysiologically informative in single cells across tissues and species. . bioRxiv 2023.07.04.547509. https://doi.org/10.1101/2023.07.04.547509
  43. Guo J, Chen X, Liu Z, Sun H, Zhou Y, et al. 2022.. DdCBE mediates efficient and inheritable modifications in mouse mitochondrial genome. . Mol. Ther. Nucleic Acids 27::7380. https://doi.org/10.1016/j.omtn.2021.11.016
    [Crossref] [Google Scholar]
  44. Gupta R, Kanai M, Durham TJ, Tsuo K, McCoy JG, et al. 2023.. Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. . Nature 620:(7975):83948. https://doi.org/10.1038/s41586-023-06426-5
    [Crossref] [Google Scholar]
  45. Habano W, Sugai T, Yoshida T, Nakamura S. 1999.. Mitochondrial gene mutation, but not large-scale deletion, is a feature of colorectal carcinomas with mitochondrial microsatellite instability. . Int. J. Cancer 83:(5):62529. https://doi.org/10.1002/(sici)1097-0215(19991126)83:5〈625::aid-ijc10〉3.0.co;2-n
    [Crossref] [Google Scholar]
  46. Hamanaka RB, Chandel NS. 2010.. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. . Trends Biochem. Sci. 35:(9):50513. https://doi.org/10.1016/j.tibs.2010.04.002
    [Crossref] [Google Scholar]
  47. Harbauer AB, Zahedi RP, Sickmann A, Pfanner N, Meisinger C. 2014.. The protein import machinery of mitochondria—a regulatory hub in metabolism, stress, and disease. . Cell Metab. 19:(3):35772. https://doi.org/10.1016/j.cmet.2014.01.010
    [Crossref] [Google Scholar]
  48. Hatefi Y. 1985.. The mitochondrial electron transport and oxidative phosphorylation system. . Annu. Rev. Biochem. 54::101569. https://doi.org/10.1146/annurev.bi.54.070185.005055
    [Crossref] [Google Scholar]
  49. Hazkani-Covo E, Zeller RM, Martin W. 2010.. Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. . PLOS Genet. 6:(2):e1000834. https://doi.org/10.1371/journal.pgen.1000834
    [Crossref] [Google Scholar]
  50. Hertweck KL, Dasgupta S. 2017.. The landscape of mtDNA modifications in cancer: a tale of two cities. . Front. Oncol. 7::262. https://doi.org/10.3389/fonc.2017.00262
    [Crossref] [Google Scholar]
  51. Hjelm BE, Ramiro C, Rollins BL, Omidsalar AA, Gerke DS, et al. 2023.. Large common mitochondrial DNA deletions are associated with a mitochondrial SNP T14798C near the 3′ breakpoints. . Complex Psychiatry 8:(3–4):9098. https://doi.org/10.1159/000528051
    [Google Scholar]
  52. Holt IJ, Harding AE, Morgan-Hughes JA. 1988.. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. . Nature 331:(6158):71719. https://doi.org/10.1038/331717a0
    [Crossref] [Google Scholar]
  53. Hong YS, Battle SL, Shi W, Puiu D, Pillalamarri V, et al. 2023.. Deleterious heteroplasmic mitochondrial mutations are associated with an increased risk of overall and cancer-specific mortality. . Nat. Commun. 14:(1):6113. https://doi.org/10.1038/s41467-023-41785-7
    [Crossref] [Google Scholar]
  54. Horton TM, Petros JA, Heddi A, Shoffner J, Kaufman AE, et al. 1996.. Novel mitochondrial DNA deletion found in a renal cell carcinoma. . Genes Chromosomes Cancer 15:(2):95101. https://doi.org/10.1002/(SICI)1098-2264(199602)15:2〈95::AID-GCC3〉3.0.CO;2-Z
    [Crossref] [Google Scholar]
  55. Hosgood HD III, Liu C-S, Rothman N, Weinstein SJ, Bonner MR, et al. 2010.. Mitochondrial DNA copy number and lung cancer risk in a prospective cohort study. . Carcinogenesis 31:(5):84749. https://doi.org/10.1093/carcin/bgq045
    [Crossref] [Google Scholar]
  56. Hsieh Y-T, Tu H-F, Yang M-H, Chen Y-F, Lan X-Y, et al. 2021.. Mitochondrial genome and its regulator TFAM modulates head and neck tumourigenesis through intracellular metabolic reprogramming and activation of oncogenic effectors. . Cell Death Dis. 12:(11):961. https://doi.org/10.1038/s41419-021-04255-w
    [Crossref] [Google Scholar]
  57. Imanishi H, Hattori K, Wada R, Ishikawa K, Fukuda S, et al. 2011.. Mitochondrial DNA mutations regulate metastasis of human breast cancer cells. . PLOS ONE 6:(8):e23401. https://doi.org/10.1371/journal.pone.0023401
    [Crossref] [Google Scholar]
  58. Indo HP, Davidson M, Yen H-C, Suenaga S, Tomita K, et al. 2007.. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. . Mitochondrion 7:(1):10618. https://doi.org/10.1016/j.mito.2006.11.026
    [Crossref] [Google Scholar]
  59. Isaac RS, Tullius TW, Hansen KG, Dubocanin D, Couvillion M, et al. 2024.. Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA. . Nat. Struct. Mol. Biol. 31:(3):56877. https://doi.org/10.1038/s41594-024-01225-6
    [Crossref] [Google Scholar]
  60. Ju YS, Alexandrov LB, Gerstung M, Martincorena I, Nik-Zainal S, et al. 2014.. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer. . eLife 3::e02935. https://doi.org/10.7554/eLife.02935
    [Crossref] [Google Scholar]
  61. Ju YS, Tubio JMC, Mifsud W, Fu B, Davies HR, et al. 2015.. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells. . Genome Res. 25:(6):81424. https://doi.org/10.1101/gr.190470.115
    [Crossref] [Google Scholar]
  62. Kang I, Chu CT, Kaufman BA. 2018.. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. . FEBS Lett. 592:(5):793811. https://doi.org/10.1002/1873-3468.12989
    [Crossref] [Google Scholar]
  63. Kennedy SR, Salk JJ, Schmitt MW, Loeb LA. 2013.. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. . PLOS Genet. 9:(9):e1003794. https://doi.org/10.1371/journal.pgen.1003794
    [Crossref] [Google Scholar]
  64. Kim M, Gorelick AN, Vàzquez-García I, Williams MJ, Salehi S, et al. 2024.. Single-cell mtDNA dynamics in tumors is driven by coregulation of nuclear and mitochondrial genomes. . Nat. Genet. 56:(5):88999. https://doi.org/10.1038/s41588-024-01724-8
    [Crossref] [Google Scholar]
  65. Kim M, Mahmood M, Reznik E, Gammage PA. 2022.. Mitochondrial DNA is a major source of driver mutations in cancer. . Trends Cancer 8:(12):104659. https://doi.org/10.1016/j.trecan.2022.08.001
    [Crossref] [Google Scholar]
  66. Kotake K, Nonami T, Kurokawa T, Nakao A, Murakami T, Shimomura Y. 1999.. Human livers with cirrhosis and hepatocellular carcinoma have less mitochondrial DNA deletion than normal human livers. . Life Sci. 64:(19):178591. https://doi.org/10.1016/s0024-3205(99)00117-4
    [Crossref] [Google Scholar]
  67. Laks E, McPherson A, Zahn H, Lai D, Steif A, et al. 2019.. Clonal decomposition and DNA replication states defined by scaled single-cell genome sequencing. . Cell 179:(5):120721.e22. https://doi.org/10.1016/j.cell.2019.10.026
    [Crossref] [Google Scholar]
  68. Lareau CA, Dubois SM, Buquicchio FA, Hsieh Y-H, Garg K, et al. 2023a.. Single-cell multi-omics of mitochondrial DNA disorders reveals dynamics of purifying selection across human immune cells. . Nat. Genet. 55:(7):1198209. https://doi.org/10.1038/s41588-023-01433-8
    [Crossref] [Google Scholar]
  69. Lareau CA, Liu V, Muus C, Praktiknjo SD, Nitsch L, et al. 2023b.. Mitochondrial single-cell ATAC-seq for high-throughput multi-omic detection of mitochondrial genotypes and chromatin accessibility. . Nat. Protoc. 18:(5):141640. https://doi.org/10.1038/s41596-022-00795-3
    [Crossref] [Google Scholar]
  70. Lareau CA, Ludwig LS, Muus C, Gohil SH, Zhao T, et al. 2021.. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. . Nat. Biotechnol. 39:(4):45161. https://doi.org/10.1038/s41587-020-0645–6
    [Crossref] [Google Scholar]
  71. Lee H, Lee S, Baek G, Kim A, Kang B-C, et al. 2021.. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. . Nat. Commun. 12:(1):1190. https://doi.org/10.1038/s41467-021-21464-1
    [Crossref] [Google Scholar]
  72. Lee HC, Pang CY, Hsu HS, Wei YH. 1994.. Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. . Biochim. Biophys. Acta Mol. Basis Dis. 1226:(1):3743. https://doi.org/10.1016/0925-4439(94)90056-6
    [Crossref] [Google Scholar]
  73. Lee S, Lee H, Baek G, Kim J-S. 2023.. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors. . Nat. Biotechnol. 41:(3):37886. https://doi.org/10.1038/s41587-022-01486-w
    [Crossref] [Google Scholar]
  74. Lestienne P, Ponsot G. 1988.. Kearns-Sayre syndrome with muscle mitochondrial DNA deletion. . Lancet 331:(8590):885. https://doi.org/10.1016/s0140-6736(88)91632-7
    [Crossref] [Google Scholar]
  75. Li D, Liang C, Zhang T, Marley JL, Zou W, et al. 2022.. Pathogenic mitochondrial DNA 3243A>G mutation: from genetics to phenotype. . Front. Genet. 13::951185. https://doi.org/10.3389/fgene.2022.951185
    [Crossref] [Google Scholar]
  76. Liao S, Chen L, Song Z, He H. 2022.. The fate of damaged mitochondrial DNA in the cell. . Biochim. Biophys. Acta Mol. Cell Res. 1869:(5):119233. https://doi.org/10.1016/j.bbamcr.2022.119233
    [Crossref] [Google Scholar]
  77. Lim K, Cho S-I, Kim J-S. 2022.. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. . Nat. Commun. 13:(1):366. https://doi.org/10.1038/s41467-022-27962-0
    [Crossref] [Google Scholar]
  78. Lin Y-H, Lim S-N, Chen C-Y, Chi H-C, Yeh C-T, Lin W-R. 2022.. Functional role of mitochondrial DNA in cancer progression. . Int. J. Mol. Sci. 23:(3):1659. https://doi.org/10.3390/ijms23031659
    [Crossref] [Google Scholar]
  79. Ludwig LS, Lareau CA, Ulirsch JC, Christian E, Muus C, et al. 2019.. Lineage tracing in humans enabled by mitochondrial mutations and single cell genomics. . Cell 176:(6):132539.e22. https://doi.org/10.1016/j.cell.2019.01.022
    [Crossref] [Google Scholar]
  80. Mahmood M, Liu EM, Shergold AL, Tolla E, Tait-Mulder J, et al. 2024.. Mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade response in melanoma. . Nat. Cancer 5::65972. https://doi.org/10.1038/s43018-023-00721-w
    [Crossref] [Google Scholar]
  81. Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, et al. 2020.. Mitochondrial ubiquinol oxidation is necessary for tumor growth. . Nature 585:(7824):28892. https://doi.org/10.1038/s41586-020-2475-6
    [Crossref] [Google Scholar]
  82. Martínez-Reyes I, Chandel NS. 2020.. Mitochondrial TCA cycle metabolites control physiology and disease. . Nat. Commun. 11:(1):102. https://doi.org/10.1038/s41467-019-13668-3
    [Crossref] [Google Scholar]
  83. Máximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simões M. 2002.. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hürthle cell tumors. . Am. J. Pathol. 160:(5):185765. https://doi.org/10.1016/S0002-9440(10)61132-7
    [Crossref] [Google Scholar]
  84. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G. 1999.. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. . Science 286:(5440):77479. https://doi.org/10.1126/science.286.5440.774
    [Crossref] [Google Scholar]
  85. Miller TE, Lareau CA, Verga JA, DePasquale EAK, Liu V, et al. 2022.. Mitochondrial variant enrichment from high-throughput single-cell RNA-seq resolves clonal populations. . Nat. Biotechnol. 40:(7):103034. https://doi.org/10.1038/s41587-022-01210-8
    [Crossref] [Google Scholar]
  86. Mimitou EP, Lareau CA, Chen KY, Zorzetto-Fernandes AL, Hao Y, et al. 2021.. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. . Nat. Biotechnol. 39:(10):124658. https://doi.org/10.1038/s41587-021-00927-2
    [Crossref] [Google Scholar]
  87. Mitchell E, Chapman MS, Williams N, Dawson KJ, Mende N, et al. 2022.. Clonal dynamics of haematopoiesis across the human lifespan. . Nature 606:(7913):34350. https://doi.org/10.1038/s41586-022-04786-y
    [Crossref] [Google Scholar]
  88. Mitchell P. 1961.. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. . Nature 191:(4784):14448. https://doi.org/10.1038/191144a0
    [Crossref] [Google Scholar]
  89. Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, et al. 2020.. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. . Nature 583:(7817):63137. https://doi.org/10.1038/s41586-020-2477-4
    [Crossref] [Google Scholar]
  90. Moraes CT, Kenyon L, Hao H. 1999.. Mechanisms of human mitochondrial DNA maintenance: the determining role of primary sequence and length over function. . Mol. Biol. Cell 10:(10):334556. https://doi.org/10.1091/mbc.10.10.3345
    [Crossref] [Google Scholar]
  91. Myers RM, Izzo F, Kottapalli S, Prieto T, Dunbar A, et al. 2022.. Integrated single-cell genotyping and chromatin accessibility charts JAK2V617F human hematopoietic differentiation. . bioRxiv 2022.05.11.491515. https://doi.org/10.1101/2022.05.11.491515
  92. Nicholson AM, Graham TA, Simpson A, Humphries A, Burch N. 2012.. Barrett's metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. . Gut 61:(10):138089. https://doi.org/10.1136/gutjnl-2011-301174
    [Crossref] [Google Scholar]
  93. Nitsch L, Lareau CA, Ludwig LS. 2024.. Mitochondrial genetics through the lens of single-cell multi-omics. . Nat. Genet. 56:(7):135565. https://doi.org/10.1038/s41588-024-01794-8
    [Crossref] [Google Scholar]
  94. Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, et al. 2012.. The oxidative phosphorylation system in mammalian mitochondria. . In Advances in Mitochondrial Medicine, ed. R Scatena, P Bottoni, B Giardina , pp. 337. Dordrecht, Neth:.: Springer. https://doi.org/10.1007/978-94-007-2869-1_1
    [Google Scholar]
  95. Penter L, Gohil SH, Lareau C, Ludwig LS, Parry EM, et al. 2021.. Longitudinal single-cell dynamics of chromatin accessibility and mitochondrial mutations in chronic lymphocytic leukemia mirror disease history. . Cancer Discov. 11:(12):304863. https://doi.org/10.1158/2159-8290.CD-21-0276
    [Crossref] [Google Scholar]
  96. Persson Ö, Muthukumar Y, Basu S, Jenninger L, Uhler JP, et al. 2019.. Copy-choice recombination during mitochondrial L-strand synthesis causes DNA deletions. . Nat. Commun. 10:(1):759. https://doi.org/10.1038/s41467-019-08673-5
    [Crossref] [Google Scholar]
  97. Phillips AF, Millet AR, Tigano M, Dubois SM, Crimmins H, et al. 2017.. Single-molecule analysis of mtDNA replication uncovers the basis of the common deletion. . Mol. Cell 65:(3):52738.e6. https://doi.org/10.1016/j.molcel.2016.12.014
    [Crossref] [Google Scholar]
  98. Picard M, Zhang J, Hancock S, Derbeneva O, Golhar R, et al. 2014.. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. . PNAS 111:(38):E403342. https://doi.org/10.1073/pnas.1414028111
    [Crossref] [Google Scholar]
  99. Poos AM, Prokoph N, Przybilla MJ, Mallm J-P, Steiger S, et al. 2023.. Resolving therapy resistance mechanisms in multiple myeloma by multiomics subclone analysis. . Blood 142:(19):163346. https://doi.org/10.1182/blood.2023019758
    [Crossref] [Google Scholar]
  100. Qi Y, Wei Y, Wang Q, Xu H, Wang Y, et al. 2016.. Heteroplasmy of mutant mitochondrial DNA A10398G and analysis of its prognostic value in non-small cell lung cancer. . Oncol. Lett. 12:(5):308188. https://doi.org/10.3892/ol.2016.5086
    [Crossref] [Google Scholar]
  101. Rath S, Sharma R, Gupta R, Ast T, Chan C, et al. 2021.. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. . Nucleic Acids Res. 49:(D1):D154147. https://doi.org/10.1093/nar/gkaa1011
    [Crossref] [Google Scholar]
  102. Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, et al. 2016.. Mitochondrial DNA copy number variation across human cancers. . eLife 5::e10769. https://doi.org/10.7554/eLife.10769
    [Crossref] [Google Scholar]
  103. Richly E, Leister D. 2004.. NUMTs in sequenced eukaryotic genomes. . Mol. Biol. Evol. 21:(6):108184. https://doi.org/10.1093/molbev/msh110
    [Crossref] [Google Scholar]
  104. Rossignol R, Faustin B, Rocher C, Malgat M, Mazat J-P, Letellier T. 2003.. Mitochondrial threshold effects. . Biochem. J. 370:(Part 3):75162. https://doi.org/10.1042/BJ20021594
    [Crossref] [Google Scholar]
  105. Rotig A, Colonna M, Bonnefont JP, Blanche S, Fischer A, et al. 1989.. Mitochondrial DNA deletion in Pearson's marrow/pancreas syndrome. . Lancet 333:(8643):9023. https://doi.org/10.1016/s0140-6736(89)92897-3
    [Crossref] [Google Scholar]
  106. Sanchez-Contreras M, Sweetwyne MT, Tsantilas KA, Whitson JA, Campbell MD, et al. 2023.. The multi-tissue landscape of somatic mtDNA mutations indicates tissue specific accumulation and removal in aging. . eLife 12::e83395. https://doi.org/10.7554/eLife.83395
    [Crossref] [Google Scholar]
  107. Sankaran VG, Weissman JS, Zon LI. 2022.. Cellular barcoding to decipher clonal dynamics in disease. . Science 378:(6616):eabm5874. https://doi.org/10.1126/science.abm5874
    [Crossref] [Google Scholar]
  108. Savre-Train I, Piatyszek MA, Shay JW. 1992.. Transcription of deleted mitochondrial DNA in human colon adenocarcinoma cells. . Hum. Mol. Genet. 1:(3):2034. https://doi.org/10.1093/hmg/1.3.203
    [Crossref] [Google Scholar]
  109. Schieber M, Chandel NS. 2014.. ROS function in redox signaling and oxidative stress. . Curr. Biol. 24:(10):R45362. https://doi.org/10.1016/j.cub.2014.03.034
    [Crossref] [Google Scholar]
  110. Senior AE. 1988.. ATP synthesis by oxidative phosphorylation. . Physiol. Rev. 68:(1):177231. https://doi.org/10.1152/physrev.1988.68.1.177
    [Crossref] [Google Scholar]
  111. Sharma LK, Fang H, Liu J, Vartak R, Deng J, Bai Y. 2011.. Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation. . Hum. Mol. Genet. 20:(23):460516. https://doi.org/10.1093/hmg/ddr395
    [Crossref] [Google Scholar]
  112. Shoffner JM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. 1989.. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. . PNAS 86:(20):795256. https://doi.org/10.1073/pnas.86.20.7952
    [Crossref] [Google Scholar]
  113. Smith ALM, Whitehall JC, Bradshaw C, Gay D, Robertson F, et al. 2020.. Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis. . Nat. Cancer 1:(10):97689. https://doi.org/10.1038/s43018-020-00112-5
    [Crossref] [Google Scholar]
  114. Spencer Chapman M, Ranzoni AM, Myers B, Williams N, Coorens THH, et al. 2021.. Lineage tracing of human development through somatic mutations. . Nature 595:(7865):8590. https://doi.org/10.1038/s41586-021-03548-6
    [Crossref] [Google Scholar]
  115. Spinelli JB, Haigis MC. 2018.. The multifaceted contributions of mitochondria to cellular metabolism. . Nat. Cell Biol. 20:(7):74554. https://doi.org/10.1038/s41556-018-0124-1
    [Crossref] [Google Scholar]
  116. Stein LR, Imai S. 2012.. The dynamic regulation of NAD metabolism in mitochondria. . Trends Endocrinol. Metab. 23:(9):42028. https://doi.org/10.1016/j.tem.2012.06.005
    [Crossref] [Google Scholar]
  117. Stewart JB, Alaei-Mahabadi B, Sabarinathan R, Samuelsson T, Gorodkin J, et al. 2015.. Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers. . PLOS Genet. 11:(6):e1005333. https://doi.org/10.1371/journal.pgen.1005333
    [Crossref] [Google Scholar]
  118. Stewart JB, Chinnery PF. 2015.. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. . Nat. Rev. Genet. 16:(9):53042. https://doi.org/10.1038/nrg3966
    [Crossref] [Google Scholar]
  119. Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, et al. 2017.. Simultaneous epitope and transcriptome measurement in single cells. . Nat. Methods 14:(9):86568. https://doi.org/10.1038/nmeth.4380
    [Crossref] [Google Scholar]
  120. Stojadinovic A, Ghossein RA, Hoos A, Urist MJ, Spiro RH, et al. 2001.. Hürthle cell carcinoma: a critical histopathologic appraisal. . J. Clin. Oncol. 19:(10):261625. https://doi.org/10.1200/JCO.2001.19.10.2616
    [Crossref] [Google Scholar]
  121. Sun X, Zhan L, Chen Y, Wang G, He L, et al. 2018.. Increased mtDNA copy number promotes cancer progression by enhancing mitochondrial oxidative phosphorylation in microsatellite-stable colorectal cancer. . Signal Transduct. Target. Ther. 3:(1): 8:. https://doi.org/10.1038/s41392-018-0011-z
    [Google Scholar]
  122. Tan AS, Baty JW, Dong L-F, Bezawork-Geleta A, Endaya B, et al. 2015.. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. . Cell Metab. 21:(1):8194. https://doi.org/10.1016/j.cmet.2014.12.003
    [Crossref] [Google Scholar]
  123. Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, et al. 2003.. Mitochondrial DNA mutations in human colonic crypt stem cells. . J. Clin. Investig. 112:(9):135160. https://doi.org/10.1172/JCI200319435
    [Crossref] [Google Scholar]
  124. Teixeira VH, Nadarajan P, Graham TA, Pipinikas CP, Brown JM, et al. 2013.. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. . eLife 2::e00966. https://doi.org/10.7554/eLife.00966
    [Crossref] [Google Scholar]
  125. Temperley RJ, Seneca SH, Tonska K, Bartnik E, Bindoff LA, et al. 2003.. Investigation of a pathogenic mtDNA microdeletion reveals a translation-dependent deadenylation decay pathway in human mitochondria. . Hum. Mol. Genet. 12:(18):234148. https://doi.org/10.1093/hmg/ddg238
    [Crossref] [Google Scholar]
  126. Tempest N, Jansen M, Baker A-M, Hill CJ, Hale M, et al. 2020.. Histological 3D reconstruction and in vivo lineage tracing of the human endometrium. . J. Pathol. 251:(4):44051. https://doi.org/10.1002/path.5478
    [Crossref] [Google Scholar]
  127. Tigano M, Vargas DC, Tremblay-Belzile S, Fu Y, Sfeir A. 2021.. Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance. . Nature 591:(7850):47781. https://doi.org/10.1038/s41586-021-03269-w
    [Crossref] [Google Scholar]
  128. Tseng L-M, Yin P-H, Chi C-W, Hsu C-Y, Wu C-W, et al. 2006.. Mitochondrial DNA mutations and mitochondrial DNA depletion in breast cancer. . Genes Chromosomes Cancer 45:(7):62938. https://doi.org/10.1002/gcc.20326
    [Crossref] [Google Scholar]
  129. Turner C, Killoran C, Thomas NST, Rosenberg M, Chuzhanova NA, et al. 2003.. Human genetic disease caused by de novo mitochondrial-nuclear DNA transfer. . Hum. Genet. 112:(3):3039. https://doi.org/10.1007/s00439-002-0892-2
    [Crossref] [Google Scholar]
  130. Velten L, Story BA, Hernández-Malmierca P, Raffel S, Leonce DR, et al. 2021.. Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. . Nat. Commun. 12:(1):1366. https://doi.org/10.1038/s41467-021-21650-1
    [Crossref] [Google Scholar]
  131. Victorelli S, Salmonowicz H, Chapman J, Martini H, Vizioli MG, et al. 2023.. Apoptotic stress causes mtDNA release during senescence and drives the SASP. . Nature 622:(7983):62736. https://doi.org/10.1038/s41586-023-06621-4
    [Crossref] [Google Scholar]
  132. Vyas S, Zaganjor E, Haigis MC. 2016.. Mitochondria and cancer. . Cell 166:(3):55566. https://doi.org/10.1016/j.cell.2016.07.002
    [Crossref] [Google Scholar]
  133. Wallace DC. 2010.. Mitochondrial DNA mutations in disease and aging. . Environ. Mol. Mutagen. 51:(5):44050. https://doi.org/10.1002/em.20586
    [Crossref] [Google Scholar]
  134. Watt IN, Montgomery MG, Runswick MJ, Leslie AGW, Walker JE. 2010.. Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. . PNAS 107:(39):1682327. https://doi.org/10.1073/pnas.1011099107
    [Crossref] [Google Scholar]
  135. Wei W, Schon KR, Elgar G, Orioli A, Tanguy M, et al. 2022.. Nuclear-embedded mitochondrial DNA sequences in 66,083 human genomes. . Nature 611:(7934):10514. https://doi.org/10.1038/s41586-022-05288-7
    [Crossref] [Google Scholar]
  136. Wei Y, Jin M, Huang S, Yao F, Ren N, et al. 2024.. Enhanced C-to-T and A-to-G base editing in mitochondrial DNA with engineered DdCBE and TALED. . Adv. Sci. 11:(3):2304113. https://doi.org/10.1002/advs.202304113
    [Crossref] [Google Scholar]
  137. Weinberg F, Chandel NS. 2009.. Mitochondrial metabolism and cancer. . Ann. N. Y. Acad. Sci. 1177:(1):6673. https://doi.org/10.1111/j.1749-6632.2009.05039.x
    [Crossref] [Google Scholar]
  138. Weng C, Yu F, Yang D, Poeschla M, Liggett LA, et al. 2024.. Deciphering cell states and genealogies of human haematopoiesis. . Nature 627:(8003):38998. https://doi.org/10.1038/s41586-024-07066-z
    [Crossref] [Google Scholar]
  139. Wilson DF. 2013.. Regulation of cellular metabolism: programming and maintaining metabolic homeostasis. . J. Appl. Physiol. 115:(11):158388. https://doi.org/10.1152/japplphysiol.00894.2013
    [Crossref] [Google Scholar]
  140. Wonnapinij P, Chinnery PF, Samuels DC. 2008.. The distribution of mitochondrial DNA heteroplasmy due to random genetic drift. . Am. J. Hum. Genet. 83:(5):58293. https://doi.org/10.1016/j.ajhg.2008.10.007
    [Crossref] [Google Scholar]
  141. Wu C-W, Yin P-H, Hung W-Y, Li AF-Y, Li S-H, et al. 2005.. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. . Genes Chromosomes Cancer 44:(1):1928. https://doi.org/10.1002/gcc.20213
    [Crossref] [Google Scholar]
  142. Xu J, Nuno K, Litzenburger UM, Qi Y, Corces MR, et al. 2019.. Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA. . eLife 8::e45105. https://doi.org/10.7554/eLife.45105
    [Crossref] [Google Scholar]
  143. Xue L, Moreira JD, Smith KK, Fetterman JL. 2023.. The mighty NUMT: mitochondrial DNA flexing its code in the nuclear genome. . Biomolecules 13:(5):753. https://doi.org/10.3390/biom13050753
    [Crossref] [Google Scholar]
  144. Yuan Y, Ju YS, Kim Y, Li J, Wang Y, et al. 2020.. Comprehensive molecular characterization of mitochondrial genomes in human cancers. . Nat. Genet. 52:(3):34252. https://doi.org/10.1038/s41588-019-0557-x
    [Crossref] [Google Scholar]
  145. Zeviani M, Moraes CT, DiMauro S, Nakase H, Bonilla E, et al. 1988.. Deletions of mitochondrial DNA in Kearns-Sayre syndrome. . Neurology 38:(9):133946. https://doi.org/10.1212/wnl.38.9.1339
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-080124-102241
Loading
/content/journals/10.1146/annurev-cancerbio-080124-102241
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error