1932

Abstract

Most animal genomes are diploid, and mammalian development depends on specific adaptations that have evolved secondary to diploidy. Genomic imprinting and dosage compensation restrict haploid development to early embryos. Recently, haploid mammalian development has been reinvestigated since the establishment of haploid embryonic stem cells (ESCs) from mouse embryos. Haploid cells possess one copy of each gene, facilitating the generation of loss-of-function mutations in a single step. Recessive mutations can then be assessed in forward genetic screens. Applications of haploid mammalian cell systems in screens have been illustrated in several recent publications. Haploid ESCs are characterized by a wide developmental potential and can contribute to chimeric embryos and mice. Different strategies for introducing genetic modifications from haploid ESCs into the mouse germline have been further developed. Haploid ESCs therefore introduce new possibilities in mammalian genetics and could offer an unprecedented tool for genome exploration in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100913-012920
2014-10-06
2025-02-13
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-cellbio-100913-012920
Loading
/content/journals/10.1146/annurev-cellbio-100913-012920
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error