Although most modern dog breeds are less than 200 years old, the symbiosis between man and dog is ancient. Since prehistoric times, repeated selection events have transformed the wolf into man's guardians, laborers, athletes, and companions. The rapid transformation from pack predator to loyal companion is a feat that is arguably unique among domesticated animals. How this transformation came to pass remained a biological mystery until recently: Within the past decade, the deployment of genomic approaches to study population structure, detect signatures of selection, and identify genetic variants that underlie canine phenotypes is ushering into focus novel biological mechanisms that make dogs remarkable. Ironically, the very practices responsible for breed formation also spurned morbidity; today, many diseases are correlated with breed identity. In this review, we discuss man's best friend in the context of a genetic model to understand paradigms of heritable phenotypes, both desirable and disadvantageous.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acland GM, Ray K, Mellersh CS, Gu W, Langston AA. et al. 1998. Linkage analysis and comparative mapping of canine progressive rod-cone degeneration (prcd) establishes potential locus homology with retinitis pigmentosa (RP17) in humans. Proc. Natl. Acad. Sci. USA 96:3048–53 [Google Scholar]
  2. Ahonen SJ, Pietilä E, Mellersh CS, Tiira K, Hansen L. et al. 2013. Genome-wide association study identifies a novel canine glaucoma locus. PLOS ONE 8:e70903 [Google Scholar]
  3. Allendorph GP, Isaacs MJ, Kawakami Y, Izpisua Belmonte JC, Choe S. 2007. BMP-3 and BMP-6 structures illuminate the nature of binding specificity with receptors. Biochemistry 46:12238–47 [Google Scholar]
  4. Am. Kennel Club 1998. The Complete Dog Book. New York: Howell Book House790 [Google Scholar]
  5. Bannasch D, Young A, Myers J, Truvé K, Dickinson P. et al. 2010. Localization of canine brachycephaly using an across breed mapping approach. PLOS ONE 10:e9632 [Google Scholar]
  6. Battista S, Fidanza V, Fedele M, Klein-Szanto AJ, Outwater E. et al. 1999. The expression of a truncated HMGI-C gene induces gigantism associated with lipomatosis. Cancer Res. 59:4793–97 [Google Scholar]
  7. Benson KF, Chada K. 1994. Mini-mouse: phenotypic characterization of a transgenic insertional mutant allelic to pygmy. Genet. Res. 64:27–33 [Google Scholar]
  8. Boulet SL, Rasmussen SA, Honein MA. 2008. A population-based study of craniosynostosis in metropolitan Atlanta, 1989–2003. Am. J. Med. Genet. A 146A:984–91 [Google Scholar]
  9. Bouras T, Southey MC, Chang AC, Reddel RR, Willhite D. et al. 2002. Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the estrogen receptor in human breast cancer. Cancer Res. 62:1289–95 [Google Scholar]
  10. Boyko A, Quignon P, Li L, Schoenebeck J, Degenhardt J. et al. 2010. A simple genetic architecture underlies morphological variation in dogs. PLOS Biol. 8:e1000451 [Google Scholar]
  11. Bulman MP, Kusumi K, Frayling TM, McKeown C, Garrett C. et al. 2000. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet. 24:438–41 [Google Scholar]
  12. Cadieu E, Neff MW, Quignon P, Walsh K, Chase K. et al. 2009. Coat variation in the domestic dog is governed by variants in three genes. Science 326:150–53 [Google Scholar]
  13. Cadieu E, Ostrander EA. 2007. Canine genetics offers new mechanisms for the study of human cancer. Cancer Epidemiol. Biomark. Prev. 16:2181–83 [Google Scholar]
  14. Carty CL, Johnson NA, Hutter CM, Reiner AP, Peters U. et al. 2011. Genome-wide association study of body height in African Americans: the Women's Health Initiative SNP Health Association Resource (SHARe). Hum. Mol. Genet. 21:711–20 [Google Scholar]
  15. Chang AC, Hook J, Lemckert FA, McDonald MM, Nguyen MA. et al. 2008. The murine stanniocalcin 2 gene is a negative regulator of postnatal growth. Endocrinology 149:2403–10 [Google Scholar]
  16. Chang AC, Jellinek DA, Reddel RR. 2003. Mammalian stanniocalcins and cancer. Endocr. Relat. Cancer 10:359–73 [Google Scholar]
  17. Chang AC, Reddel RR. 1998. Identification of a second stanniocalcin cDNA in mouse and human: stanniocalcin 2. Molecular and cellular endocrinology. Mol. Cell. Endocrinol. 141:95–99 [Google Scholar]
  18. Chase K, Carrier DR, Adler FR, Jarvik T, Ostrander EA. et al. 2002. Genetic basis for systems of skeletal quantitative traits: principal component analysis of the canid skeleton. Proc. Natl. Acad. Sci. USA 99:9930–35 [Google Scholar]
  19. Chung J, Zhang X, Colins B, Howard K, Simpson S. et al. 2013. Disruption of the high mobility group at-hook 2 (HMGA2) gene in swine reduces postnatal growth. Reprod. Fertil. Dev. 26:117 [Google Scholar]
  20. Clark LA, Wahl JM, Rees CA, Murphy KE. 2006. Retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog. Proc. Natl. Acad. Sci. USA 103:1376–81 [Google Scholar]
  21. Cottereau E, Mortemousque I, Moizard MP, Bürglen L, Lacombe D. et al. 2013. Phenotypic spectrum of Simpson-Golabi-Behmel syndrome in a series of 42 cases with a mutation in GPC3 and review of the literature. Am. J. Med. Genet. 163C:92–105 [Google Scholar]
  22. Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E. et al. 2001. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat. Genet. 27:84–88 [Google Scholar]
  23. Deckelbaum RA, Majithia A, Booker T, Henderson JE, Loomis CA. 2006. The homeoprotein engrailed 1 has pleiotropic functions in calvarial intramembranous bone formation and remodeling. Development 133:63–74 [Google Scholar]
  24. Dobson JM. 2013. Breed-predispositions to cancer in pedigree dogs. ISRN Vet. Sci. 2013:941275 [Google Scholar]
  25. Dobson JM, Samuel S, Milstein H, Rogers K, Wood JL. 2002. Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J. Small Anim. Pract. 43:240–46 [Google Scholar]
  26. Dreger DL, Parker HG, Ostrander EA, Schmutz SM. 2013. Identification of a mutation that is associated with the saddle tan and black-and-tan phenotypes in Basset Hounds and Pembroke Welsh Corgis. J. Hered. 104:339–406 [Google Scholar]
  27. Dreger DL, Schmutz SM. 2011. A SINE insertion causes the black-and-tan and saddle tan phenotypes in domestic dogs. J. Hered. 1:S11–18 [Google Scholar]
  28. Drögemüller C, Karlsson EK, Hytönen MK, Perloski M, Dolf G. et al. 2008. A mutation in hairless dogs implicates FOXI3 in ectodermal development. Science 321:1462 [Google Scholar]
  29. Fogle B. 2000. The New Encyclopedia of the Dog New York: Dorling Kindersley416 [Google Scholar]
  30. Fondon JW 3rd, Garner HR. 2004. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci. USA 101:18058–63 [Google Scholar]
  31. Fox PR. 2012. Pathology of myxomatous mitral valve disease in the dog. J. Vet. Cardiol. 14:103–26 [Google Scholar]
  32. Freedman AH, Gronau I, Schweizer RM, Ortega-Del Vecchyo D, Han E. et al. 2014. Genome sequencing highlights the dynamic early history of dogs. PLOS Genet. 10:e1004016 [Google Scholar]
  33. French AT, Ogden R, Eland C, Hemani G, Pong-Wong R. et al. 2012. Genome-wide analysis of mitral valve disease in Cavalier King Charles Spaniels. Vet. J. 193:283–86 [Google Scholar]
  34. Frischknecht M, Niehof-Oellers H, Jagannathan V, Owczarek-Lipska M, Drögemüller C. et al. 2013. A COL11A2 mutation in Labrador retrievers with mild disproportionate dwarfism. PLOS ONE 8:e60149 [Google Scholar]
  35. Gagliardi AD, Kuo EYW, Raulic S, Wagner GF, DiMattia GE. 2005. Human stanniocalcin-2 exhibits potent growth-suppressive properties in transgenic mice independently of growth hormone and IGFs. Am. J. Physiol. Endocrinol. Metab. 288:E92–E105 [Google Scholar]
  36. Germonpré M, Sablin MV, Stevens RE, Hedges RE, Hofreiter M. et al. 2009. Fossil dogs and wolves from Palaeolithic sites in Belgium, the Ukraine and Russia: osteometry, ancient DNA and stable isotopes. J. Archaeol. Sci. 36:473–90 [Google Scholar]
  37. Grall A, Guaguère E, Planchais S, Grond S, Bourrat E. et al. 2012. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat. Genet. 44:140–47 [Google Scholar]
  38. Grandjean D. 2000. The Dog Encyclopedia Paris: R. Canin [Google Scholar]
  39. Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV. et al. 2008. Many sequence variants affecting diversity of adult human height. Nat. Genet. 40:609–15 [Google Scholar]
  40. Haworth KE, Putt W, Cattanach B, Breen M, Binns M. et al. 2001. Canine homolog of the T-box transcription factor T; failure of the protein to bind to its DNA target leads to a short-tail phenotype. Mamm. Genome 12:212–18 [Google Scholar]
  41. Hoopes BC, Rimbault M, Liebers D, Ostrander EA, Sutter NB. 2012. The insulin-like growth factor 1 receptor (IGF1R) contributes to reduced size in dogs. Mamm. Genome 23:780–90 [Google Scholar]
  42. Housley DJ, Venta PJ. 2006. The long and short of it: evidence that FGF5 is a major determinant of canine ‘hair’-itability. Anim. Genet. 37:309–15 [Google Scholar]
  43. Hytönen MK, Grall A, Hédan B, Dréano S, Seguin SJ. et al. 2009. Ancestral T-box mutation is present in many, but not all, short-tailed dog breeds. J. Hered. 100:236–40 [Google Scholar]
  44. Ishibashi K, Miyamoto K, Taketani Y, Morita K, Takeda E. et al. 1998. Molecular cloning of a second human stanniocalcin homologue (STC2). Biochem. Biophys. Res. Commun. 250:252–58 [Google Scholar]
  45. Isono T, Matsumoto T, Wada A, Suzaki M, Chano T. 2012. A global transcriptome analysis of a dog model of congestive heart failure with the human genome as a reference. J. Card. Fail. 18:872–78 [Google Scholar]
  46. Ito D, Walker JR, Thompson CS, Moroz I, Lin W. et al. 2004. Characterization of stanniocalcin 2, a novel target of the mammalian unfolded protein response with cytoprotective properties. Mol. Cell. Biol. 24:9456–69 [Google Scholar]
  47. Jellinek DA, Chang AC, Larsen MR, Wang X, Robinson PJ, Reddel RR. 2000. Stanniocalcin 1 and 2 are secreted as phosphoproteins from human fibrosarcoma cells. Biochem. J. 350:453–61 [Google Scholar]
  48. Jesty SA, Jung SW, Cordeiro JM, Gunn TM, Di Diego JM. et al. 2013. Cardiomyocyte calcium cycling in a naturally occurring German shepherd dog model of inherited ventricular arrhythmia and sudden cardiac death. J. Vet. Cardiol. 15:5–14 [Google Scholar]
  49. Jezela-Stanek A, Krajewska-Walasek M. 2013. Genetic causes of syndromic craniosynostoses. Eur. J. Paediatr. Neurol. 17:221–24 [Google Scholar]
  50. Jónasdóttir T, Mellersh CS, Moe L, Heggebø R, Gamlem H. et al. 2000. Genetic mapping of a naturally occurring hereditary renal cancer syndrome in dogs. Proc. Natl. Acad. Sci. USA 97:4132–37 [Google Scholar]
  51. Jones P, Chase K, Martin A, Davern P, Ostrander EA, Lark KG. 2008. Single-nucleotide-polymorphism-based association mapping of dog stereotypes. Genetics 179:1033–44 [Google Scholar]
  52. Justice CM, Yagnik G, Kim Y, Peter I, Jabs EW. et al. 2012. A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat. Genet. 44:1360–64 [Google Scholar]
  53. Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NHC, Zody MC. et al. 2007. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat. Genet. 39:1321–28 [Google Scholar]
  54. Karlsson EK, Lindblad-Toh K. 2008. Leader of the pack: gene mapping in dogs and other model organisms. Nat. Rev. Genet. 9:713–24 [Google Scholar]
  55. Karlsson EK, Sigurdsson S, Ivansson E, Thomas R, Elvers I. et al. 2013. Genome-wide analyses implicate 33 loci in heritable dog osteosarcoma, including regulatory variants near CDKN2A/B. Genome Biol. 14:R132 [Google Scholar]
  56. Karyadi DM, Karlins E, Decker B, vonHoldt BM, Carpintero-Ramirez G. et al. 2013. A copy number variant at the KITLG locus likely confers risk for canine squamous cell carcinoma of the digit. PLOS Genet. 9:e1003409 [Google Scholar]
  57. Kettunen P, Nie X, Kvinnsland IH, Luukko K. 2006. Histological development and dynamic expression of Bmp2-6 mRNAs in the embryonic and postnatal mouse cranial base. Anat. Rec. Part A 288:1250–58 [Google Scholar]
  58. Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K. et al. 2003. The dog genome: survey sequencing and comparative analysis. Science 301:1898–903 [Google Scholar]
  59. Kita Y, Mimori K, Iwatsuki M, Yokobori T, Leta K. et al. 2011. STC2: a predictive marker for lymph node metastasis in esophageal squamous-cell carcinoma. Ann. Surg. Oncol. 18:261–72 [Google Scholar]
  60. Koike N, Kassai Y, Kouta Y, Miwa H, Konishi M, Itoh N. 2007. Brorin, a novel secreted bone morphogenetic protein antagonist, promotes neurogenesis in mouse neural precursor cells. J. Biol. Chem. 282:15843–50 [Google Scholar]
  61. Lajeunie E, Le Merrer M, Bonaïti-Pellie C, Marchac D, Renier D. 1995. Genetic study of nonsyndromic coronal craniosynostosis. Am. J. Med. Genet. 55:500–4 [Google Scholar]
  62. Larson G, Karlsson EK, Perri A, Webster MT, Ho SY. et al. 2012. Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc. Natl. Acad. Sci. USA 109:8878–83 [Google Scholar]
  63. Laurent TC, Fraser JRE. 1992. Hyaluronan. FASEB J. 7:2397–404 [Google Scholar]
  64. Law AYS, Wong CKC. 2010. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia. Exp. Cell Res. 316:466–76 [Google Scholar]
  65. Leegwater PA, van Hagen MA, van Oost BA. 2007. Localization of white spotting locus in Boxer dogs on CFA20 by genome-wide linkage analysis with 1500 SNPs. J. Hered. 98:549–52 [Google Scholar]
  66. Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI. et al. 2008. Identification of ten loci associated with height highlights new biological pathways in human growth. Nat. Genet. 40:584–91 [Google Scholar]
  67. Ligon AH, Moore SDP, Parisi MA, Mealiffe ME, Harris DJ. et al. 2005. Constitutional rearrangement of the architectural factor HMGA2: a novel human phenotype including overgrowth and lipomas. Am. J. Hum. Genet. 76:340–48 [Google Scholar]
  68. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB. et al. 2005. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–19 [Google Scholar]
  69. Lups P. 1974. Biometric analysis of the skull base of domestic dogs. Zool. Anz. 192:383–413 (in German) [Google Scholar]
  70. Makvandi-Nejad S, Hoffman GE, Allen JJ, Chu E, Gu E. et al. 2012. Four loci explain 83% of size variation in the horse. PLOS ONE 7:e39929 [Google Scholar]
  71. Mathews LS, Hammer RE, Brinster RL, Palmiter RD. 1988. Expression of insulin-like growth factor I in transgenic mice with elevated levels of growth hormone is correlated with growth. Endocrinology 123:433–37 [Google Scholar]
  72. Mausberg TB, Wess G, Simak J, Keller L, Drögemüller M. et al. 2011. A locus on chromosome 5 is associated with dilated cardiomyopathy in Doberman Pinschers. PLOS ONE 6:e20042 [Google Scholar]
  73. Mellersh C, Holmes N, Binns M, Sampson J. 1994. Dinucleotide repeat polymorphisms at four canine loci (LEI 003, LEI 007, LEI 008 and LEI 015). Anim. Genet. 25:125–26 [Google Scholar]
  74. Menten B, Buysse K, Zahir F, Hellemans J, Hamilton SJ. et al. 2007. Osteopoikilosis, short stature and mental retardation as key features of a new microdeletion syndrome on 12q14. J. Med. Genet. 44:264–68 [Google Scholar]
  75. Meurs KM, Lahmers S, Keene BW, White SN, Oyama MA. et al. 2012. A splice site mutation in a gene encoding for PDK4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher. Hum. Genet. 131:1319–25 [Google Scholar]
  76. Meurs KM, Mauceli E, Lahmers S, Acland GM, White SN, Lindblad-Toh K. 2010. Genome-wide association identifies a deletion in the 3′ untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum. Genet. 128:315–24 [Google Scholar]
  77. Meurs KM, Stern JA, Sisson DD, Kittleson MD, Cunningham SM. et al. 2013. Association of dilated cardiomyopathy with the striatin mutation genotype in Boxer dogs. J. Vet. Intern. Med. 27:1437–40 [Google Scholar]
  78. Morriss-Kay GM, Wilkie AO. 2005. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J. Anat. 207:637–53 [Google Scholar]
  79. Murakami M, Suzuki M, Nishino Y, Funaba M. 2010. Regulatory expression of genes related to metastasis by TGF-β and activin A in B16 murine melanoma cells. Mol. Biol. Rep. 37:1279–86 [Google Scholar]
  80. N'Diaye A, Chen GK, Palmer CD, Ge B, Tayo B. et al. 2011. Identification, replication, and fine-mapping of loci associated with adult height in individuals of African ancestry. PLOS Genet. 7:e1002298 [Google Scholar]
  81. Nishiwaki T, Yamaguchi T, Zhao C, Amano H, Hankenson KD. et al. 2006. Reduced expression of thrombospondins and craniofacial dysmorphism in mice overexpressing Fra1. J. Bone Min. Res. 21:596–604 [Google Scholar]
  82. Ohad DG, Avrahami A, Waner T, David L. 2013. The occurrence and suspected mode of inheritance of congenital subaortic stenosis and tricuspid valve dysplasia in Dogue de Bordeaux dogs. Vet. J. 197:351–57 [Google Scholar]
  83. Olsson M, Meadows JRS, Truvé K, Rosengren Pielberg G, Puppo F. et al. 2011. A novel unstable duplication upstream of HAS2 predisposes to a breed-defining skin phenotype and a periodic fever syndrome in Chinese Shar-Pei dogs. PLOS Genet. 7:e1001332 [Google Scholar]
  84. Ostrander EA. 2012. Franklin H. Epstein Lecture. Both ends of the leash—the human links to good dogs with bad genes. N. Engl. J. Med. 367:636–46 [Google Scholar]
  85. Ostrander EA, Beale HC. 2012. Leading the way: finding genes for neurologic disease in dogs using genome-wide mRNA sequencing. BMC Genet. 13:56 [Google Scholar]
  86. Ostrander EA, Jong PM, Rine J, Duyk G. 1992. Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc. Natl. Acad. Sci. USA 89:3419–23 [Google Scholar]
  87. Ostrander EA, Mapa FA, Yee M, Rine J. 1995. One hundred and one simple sequence repeat-based markers for the canine genome. Mamm. Genome 6:192–95 [Google Scholar]
  88. Owczarek-Lipska M, Jagannathan V, Drögemüller C, Lutz S, Glanemann B. et al. 2013a. A frameshift mutation in the cubilin gene (CUBN) in border collies with Imerslund-Gräsbeck Syndrome (selective cobalamin malabsorption). PLOS ONE 8:e61144 [Google Scholar]
  89. Owczarek-Lipska M, Mausberg TB, Stephenson H, Dukes-McEwan J, Wess G, Leeb T. 2013b. A 16-bp deletion in the canine PDK4 gene is not associated with dilated cardiomyopathy in a European cohort of Doberman Pinschers. Anim. Genet. 44:239 [Google Scholar]
  90. Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD. et al. 2004. Genetic structure of the purebred domestic dog. Science 304:1160–64 [Google Scholar]
  91. Parker HG, Meurs KM, Ostrander EA. 2006. Finding cardiovascular disease genes in the dog. J. Vet. Cardiol. 8:115–27 [Google Scholar]
  92. Parker HG, Ostrander EA. 2014. Cancer. Hiding in plain view—an ancient dog in the modern world. Science 343:376–78 [Google Scholar]
  93. Parker HG, Shearin AL, Ostrander EA. 2010. Man's best friend becomes biology's best in show: genome analyses in the domestic dog. Annu. Rev. Genet. 44:309–36 [Google Scholar]
  94. Parker HG, VonHoldt BM, Quignon P, Margulies EH, Shao S. et al. 2009. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325:995–98 [Google Scholar]
  95. Philipp U, Vollmar A, Häggstrom J, Thomas A, Distl O. 2012. Multiple loci are associated with dilated cardiomyopathy in Irish wolfhounds. PLOS ONE 7:e36691 [Google Scholar]
  96. Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S. et al. 1993. IGF-I is required for normal embryonic growth in mice. Genes Dev. 7:2609–17 [Google Scholar]
  97. Pryce JE, Hayes BJ, Bolormaa S, Goddard ME. 2011. Polymorphic regions affecting human height also control stature in cattle. Genetics 187:981–84 [Google Scholar]
  98. Puré E, Assoian RK. 2009. Rheostatic signaling by CD44 and hyaluronan. Cell Signal. 21:651–55 [Google Scholar]
  99. Quilez J, Short AD, Martínez V, Kennedy LJ, Ollier W. et al. 2011. A selective sweep of >8 Mb on chromosome 26 in the Boxer genome. BMC Genomics 12:339 [Google Scholar]
  100. Ramsden CA, Bankier A, Brown TJ, Cowen PS, Frost GI. et al. 2000. A new disorder of hyaluronan metabolism associated with generalized folding and thickening of the skin. J. Pediatr. 136:62–68 [Google Scholar]
  101. Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G. et al. 1999. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat. Genet. 22:44–52 [Google Scholar]
  102. Ranieri G, Gadaleta CD, Patruno R, Zizzo N, Daidone MG. et al. 2013. A model of study for human cancer: spontaneous occurring tumors in dogs. Biological features and translation for new anticancer therapies. Crit. Rev. Oncol. Hematol. 88:187–97 [Google Scholar]
  103. Raychaudhuri S, Plenge RM, Rossin EJ, Ng AC, Purcell SM. et al. 2009. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLOS Genet. 5:e1000534 [Google Scholar]
  104. Reist-Marti SB, Dolf G, Leeb T, Kottmann S, Kietzmann S. et al. 2012. Genetic evidence of subaortic stenosis in the Newfoundland dog. Vet. Rec. 170:597 [Google Scholar]
  105. Rimbault M, Beale HC, Schoenebeck JJ, Hoopes BC, Allen JJ. et al. 2013. Derived variants at six genes explain nearly half of size reduction in dog breeds. Genome Res. 23:1985–95 [Google Scholar]
  106. Runkel F, Klaften M, Koch K, Böhnert V, Büssow H. et al. 2006. Morphologic and molecular characterization of two novel Krt71 (Krt2-6g) mutations: Krt71rco12 and Krt71rco13. Mamm. Genome 17:1172–82 [Google Scholar]
  107. Sablin MV, Khlopachev GA. 2002. The earliest Ice Age dogs: evidence from Eliseevichi I. Curr. Anthropol. 43:795–99 [Google Scholar]
  108. Salmon-Hillbertz NHC, Isaksson M, Karlsson EK, Hellmén E, Pielberg GR. et al. 2007. Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback dogs. Nat. Genet. 39:1318–20 [Google Scholar]
  109. Sandor C, Farnir F, Hansoul S, Coppieters W, Meuwissen T, Georges M. 2006. Linkage disequilibrium on the bovine X chromosome: characterization and use in quantitative trait locus mapping. Genetics 173:1777–86 [Google Scholar]
  110. Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen WM. et al. 2008. Common variants in the GDF5-UQCC region are associated with variation in human height. Nat. Genet. 40:198–203 [Google Scholar]
  111. Savage SA, Mirabello L, Wang Z, Gastier-Foster JM, Gorlick R. et al. 2013. Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat. Genet. 45:799–803 [Google Scholar]
  112. Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T. 2002. Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610–13 [Google Scholar]
  113. Schmidt MJ, Volk H, Klingler M, Failing K, Kramer M, Ondreka N. 2013. Comparison of closure times for cranial base synchondroses in mesaticephalic, brachycephalic, and Cavalier King Charles Spaniel dogs. Vet. Radiol. Ultrasound 54:497–503 [Google Scholar]
  114. Schoenebeck JJ, Hutchinson SA, Byers A, Beale HC, Carrington B. et al. 2012. Variation of BMP3 contributes to dog breed skull diversity. PLOS Genet. 8:e1002849 [Google Scholar]
  115. Shearin A, Hedan B, Cadieu E, Erich SA, Schmidt EV. et al. 2012. The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. Cancer Epidemiol. Biomark. Prev. 21:1019–27 [Google Scholar]
  116. Shearin AL, Ostrander EA. 2010a. Leading the way: canine models of genomics and disease. Dis. Model. Mech. 3:27–34 [Google Scholar]
  117. Shearin AL, Ostrander EA. 2010b. Canine morphology: hunting for genes and tracking mutations. PLOS Biol. 8e1000310 [Google Scholar]
  118. Simpson RM, Bastian BC, Michael HT, Webster JD, Prasad ML. et al. 2014. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma. Pigment Cell Melanoma Res. 27:37–47 [Google Scholar]
  119. Song C, Gu X, Feng C, Wang Y, Gao Y. et al. 2011. Evaluation of SNPs in the chicken HMGA2 gene as markers for body weight gain. Anim. Genet. 42:333–36 [Google Scholar]
  120. Stern JA, Meurs KM, Nelson OL, Lahmers SM, Lehmkuhl LB. 2012. Familial subvalvular aortic stenosis in Golden Retrievers: inheritance and echocardiographic findings. J. Small Anim. Pract. 53:213–16 [Google Scholar]
  121. Stern JA, White SN, Meurs KM. 2013. Extent of linkage disequilibrium in large-breed dogs: chromosomal and breed variation. Mamm. Genome 24:409–15 [Google Scholar]
  122. Steudemann C, Bauersachs S, Weber K, Wess G. 2013. Detection and comparison of microRNA expression in the serum of Doberman Pinschers with dilated cardiomyopathy and healthy controls. BMC Vet. Res. 9:12 [Google Scholar]
  123. Stockard CR. 1941. The Genetic and Endocrinic Basis for Differences in Form and Behavior Philadelphia: Wistar Inst. Anat. Biol775 [Google Scholar]
  124. Sundberg JP, Rourk MH, Boggess D, Hogan ME, Sundberg BA, Bertolino AP. 1997. Angora mouse mutation: altered hair cycle, follicular dystrophy, phenotypic maintenance of skin grafts, and changes in keratin expression. Vet. Pathol. 34:171–79 [Google Scholar]
  125. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K. et al. 2007. A single IGF1 allele is a major determinant of small size in dogs. Science 316:112–15 [Google Scholar]
  126. Sutter NB, Eberle MA, Parker HG, Pullar BJ, Kirkness EF. et al. 2004. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res. 14:2388–96 [Google Scholar]
  127. Ta HT, Dass CR, Choong PF, Dunstan DE. 2009. Osteosarcoma treatment: state of the art. Cancer Metastasis Rev. 28:247–63 [Google Scholar]
  128. Tannenbaum GS, Guyda HJ, Posner BI. 1983. Insulin-like growth factors: a role in growth hormone negative feedback and body weight regulation via brain. Science 220:77–79 [Google Scholar]
  129. Tengvall K, Kierczak M, Bergvall K, Olsson M, Frankowiack M. et al. 2013. Genome-wide analysis in German shepherd dogs reveals association of a locus on CFA 27 with atopic dermatitis. PLOS Genet. 9:e1003475 [Google Scholar]
  130. Thalmann O, Shapiro B, Cui P, Schuenemann VJ, Sawyer SK. et al. 2013. Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science 342:871–74 [Google Scholar]
  131. Thanos D, Maniatis T. 1995. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83:1091–100 [Google Scholar]
  132. Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. 2005. TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell 16:1987–2002 [Google Scholar]
  133. Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Rosengren Pielberg G. et al. 2011. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLOS Genet. 7:e1002316 [Google Scholar]
  134. Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE. et al. 1997. Multiple and ancient origins of the domestic dog. Science 276:1687–89 [Google Scholar]
  135. vonHoldt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG. et al. 2010. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:898–902 [Google Scholar]
  136. Wang G-D, Zhai W, Yang H-C, Fan R-X, Cao X. et al. 2013. The genomics of selection in dogs and the parallel evolution between dogs and humans. Nat. Commun. 4:1860 [Google Scholar]
  137. Wang J, Zhou J, Powell-Braxton L, Bondy C. 1999. Effects of Igf1 gene deletion on postnatal growth patterns. Endocrinology 140:3391–94 [Google Scholar]
  138. Wayne RK, Ostrander EA. 1999. Origin, genetic diversity, and genome structure of the domestic dog. BioEssays 21:247–57 [Google Scholar]
  139. Wayne RK, Ostrander EA. 2007. Lessons learned from the dog genome. Trends Genet. 23:557–67 [Google Scholar]
  140. Weedon M, Lango H, Lindgren CM, Wallace C, Evans DM. et al. 2008. Genome-wide association analysis identifies 20 loci that influence adult height. Nat. Genet. 40:575–83 [Google Scholar]
  141. Weedon M, Lettre G, Freathy RM, Lindgren CM, Voight BF. et al. 2007. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39:1245–50 [Google Scholar]
  142. Wilcox B, Walkowicz C. 1995. Atlas of Dog Breeds of the World Neptune City, NJ: T.F.H. Publ. [Google Scholar]
  143. Wilkinson S, Lu ZH, Megens HJ, Archibald AL, Haley C. et al. 2013. Signatures of diversifying selection in European pig breeds. PLOS Genet. 9:e10003453 [Google Scholar]
  144. Yokoyama JS, Lam ET, Ruhe AL, Erdmanm CA, Robertson KR, Webb AA. 2012. Variation in genes related to cochlear biology is strongly associated with adult-onset deafness in border collies. PLOS Genet. 8:e1002898 [Google Scholar]
  145. Young MF. 2003. Bone matrix proteins: their function, regulation, and relationship to osteoporosis. Osteoporos. Int. 14:Suppl. 3S35–42 [Google Scholar]
  146. Yuzbasiyan-Gurkan V, Blanton SH, Cao V, Ferguson P, Li J. et al. 1997. Linkage of a microsatellite marker to the canine copper toxicosis locus in Bedlington terriers. Am. J. Vet. Res. 58:23–27 [Google Scholar]
  147. Zanna G, Docampo MJ, Fondevila D, Bardagi M, Bassols A, Ferrer L. 2009. Hereditary cutaneous mucinosis in shar pei dogs is associated with increased hyaluronan synthase-2 mRNA transcription by cultured dermal fibroblasts. Vet. Dermatol. 20:377–82 [Google Scholar]
  148. Zhou X, Benson KF, Ashar HR, Chada K. 1995. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376:725–26 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error