In mammals, the process of X-chromosome inactivation ensures equivalent levels of X-linked gene expression between males and females through the silencing of one of the two X chromosomes in female cells. The process is established early in development and is initiated by a unique locus, which produces a long noncoding RNA, Xist. The Xist transcript triggers gene silencing in by coating the future inactive X chromosome. It also induces a cascade of chromatin changes, including posttranslational histone modifications and DNA methylation, and leads to the stable repression of all X-linked genes throughout development and adult life. We review here recent progress in our understanding of the molecular mechanisms involved in the initiation of expression, the propagation of the Xist RNA along the chromosome, and the -elements and -acting factors involved in the maintenance of the repressed state. We also describe the diverse strategies used by nonplacental mammals for X-chromosome dosage compensation and highlight the common features and differences between eutherians and metatherians, in particular regarding the involvement of long noncoding RNAs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abrusan G, Giordano J, Warburton PE. 2008. Analysis of transposon interruptions suggests selection for L1 elements on the X chromosome. PLOS Genet. 4:e1000172 [Google Scholar]
  2. Agrelo R, Souabni A, Novatchkova M, Haslinger C, Leeb M. et al. 2009. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev. Cell 16:507–16 [Google Scholar]
  3. Augui S, Nora EP, Heard E. 2011. Regulation of X-chromosome inactivation by the X-inactivation centre. Nat. Rev. Genet. 12:429–42 [Google Scholar]
  4. Bailey JA, Carrel L, Chakravarti A, Eichler EE. 2000. Molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl. Acad. Sci. USA 97:6634–39 [Google Scholar]
  5. Barakat TS, Gunhanlar N, Pardo CG, Achame EM, Ghazvini M. et al. 2011. RNF12 activates Xist and is essential for X chromosome inactivation. PLOS Genet. 7:e1002001 [Google Scholar]
  6. Barr ML, Bertram EG. 1949. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676–77 [Google Scholar]
  7. Barton DE, David FN, Merrington M. 1964. The positions of the sex chromosomes in the human cell in mitosis. Ann. Hum. Genet. 28:123–28 [Google Scholar]
  8. Berletch JB, Yang F, Disteche CM. 2010. Escape from X inactivation in mice and humans. Genome Biol. 11:213 [Google Scholar]
  9. Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD. 2006. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 26:2560–69 [Google Scholar]
  10. Borden J, Manuelidis L. 1988. Movement of the X chromosome in epilepsy. Science 242:1687–91 [Google Scholar]
  11. Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D. et al. 1991. Characterization of a murine gene expressed from the inactive X chromosome. Nature 351:325–29 [Google Scholar]
  12. Bourgeois CA, Laquerriere F, Hemon D, Hubert J, Bouteille M. 1985. New data on the in-situ position of the inactive X chromosome in the interphase nucleus of human fibroblasts. Hum. Genet. 69:122–29 [Google Scholar]
  13. Boyle AL, Ballard SG, Ward DC. 1990. Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc. Natl. Acad. Sci. USA 87:7757–61 [Google Scholar]
  14. Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S. et al. 1991. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351:329–31 [Google Scholar]
  15. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M. et al. 1991. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44 [Google Scholar]
  16. Brown CJ, Willard HF. 1994. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368:154–56 [Google Scholar]
  17. Buzin CH, Mann JR, Singer-Sam J. 1994. Quantitative RT-PCR assays show Xist RNA levels are low in mouse female adult tissue, embryos and embryoid bodies. Development 120:3529–36 [Google Scholar]
  18. Cai S, Han HJ, Kohwi-Shigematsu T. 2003. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat. Genet. 34:42–51 [Google Scholar]
  19. Cai S, Lee CC, Kohwi-Shigematsu T. 2006. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat. Genet. 38:1278–88 [Google Scholar]
  20. Calabrese JM, Sun W, Song L, Mugford JW, Williams L. et al. 2012. Site-specific silencing of regulatory elements as a mechanism of X inactivation. Cell 151:951–63 [Google Scholar]
  21. Casanova M, Preissner T, Cerase A, Poot R, Yamada D. et al. 2011. Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 138:1471–82 [Google Scholar]
  22. Cattanach BM, Williams CE. 1972. Evidence of non-random X chromosome activity in the mouse. Genet. Res. 19:229–40 [Google Scholar]
  23. Cerase A, Smeets D, Tang YA, Gdula M, Kraus F. et al. 2014. Spatial separation of Xist RNA and polycomb proteins revealed by super-resolution microscopy. Proc. Natl. Acad. Sci. USA 111:2235–40 [Google Scholar]
  24. Chaumeil J, Le Baccon P, Wutz A, Heard E. 2006. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20:2223–37 [Google Scholar]
  25. Chaumeil J, Okamoto I, Heard E. 2004. X-chromosome inactivation in mouse embryonic stem cells: analysis of histone modifications and transcriptional activity using immunofluorescence and FISH. Methods Enzymol. 376:405–19 [Google Scholar]
  26. Chaumeil J, Waters PD, Koina E, Gilbert C, Robinson TJ, Graves JA. 2011. Evolution from XIST-independent to XIST-controlled X-chromosome inactivation: epigenetic modifications in distantly related mammals. PLOS ONE 6:e19040 [Google Scholar]
  27. Chow J, Heard E. 2009. X inactivation and the complexities of silencing a sex chromosome. Curr. Opin. Cell Biol. 21:359–66 [Google Scholar]
  28. Chow JC, Ciaudo C, Fazzari MJ, Mise N, Servant N. et al. 2010. LINE-1 activity in facultative heterochromatin formation during X chromosome inactivation. Cell 141:956–69 [Google Scholar]
  29. Chow JC, Yen Z, Ziesche SM, Brown CJ. 2005. Silencing of the mammalian X chromosome. Annu. Rev. Genomics Hum. Genet. 6:69–92 [Google Scholar]
  30. Chureau C, Chantalat S, Romito A, Galvani A, Duret L. et al. 2011. Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum. Mol. Genet. 20:705–18 [Google Scholar]
  31. Clemson CM, Hall LL, Byron M, McNeil J, Lawrence JB. 2006. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc. Natl. Acad. Sci. USA 103:7688–93 [Google Scholar]
  32. Clemson CM, McNeil JA, Willard HF, Lawrence JB. 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132:259–75 [Google Scholar]
  33. Clerc P, Avner P. 1998. Role of the region 3′ to Xist exon 6 in the counting process of X-chromosome inactivation. Nat. Genet. 19:249–53 [Google Scholar]
  34. Csankovszki G, Nagy A, Jaenisch R. 2001. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol. 153:773–84 [Google Scholar]
  35. Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R. 1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat. Genet. 22:323–24 [Google Scholar]
  36. da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C. et al. 2014. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 53:301–16 [Google Scholar]
  37. de Belle I, Cai S, Kohwi-Shigematsu T. 1998. The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J. Cell Biol. 141:335–48 [Google Scholar]
  38. de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M. et al. 2004. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7:663–76 [Google Scholar]
  39. Deakin JE, Chaumeil J, Hore TA, Marshall Graves JA. 2009. Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. Chromosome Res. 17:671–85 [Google Scholar]
  40. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T. et al. 2012. Landscape of transcription in human cells. Nature 489:101–8 [Google Scholar]
  41. Duret L, Chureau C, Samain S, Weissenbach J, Avner P. 2006. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312:1653–55 [Google Scholar]
  42. Duthie SM, Nesterova TB, Formstone EJ, Keohane AM, Turner BM. et al. 1999. Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum. Mol. Genet. 8:195–204 [Google Scholar]
  43. Dyer KA, Canfield TK, Gartler SM. 1989. Molecular cytological differentiation of active from inactive X domains in interphase: implications for X chromosome inactivation. Cytogenet. Cell Genet. 50:116–20 [Google Scholar]
  44. Elisaphenko EA, Kolesnikov NN, Shevchenko AI, Rogozin IB, Nesterova TB. et al. 2008. A dual origin of the Xist gene from a protein-coding gene and a set of transposable elements. PLOS ONE 3:e2521 [Google Scholar]
  45. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K. et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973 [Google Scholar]
  46. Fang J, Chen T, Chadwick B, Li E, Zhang Y. 2004. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J. Biol. Chem. 279:52812–15 [Google Scholar]
  47. Fatica A, Bozzoni I. 2014. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15:7–21 [Google Scholar]
  48. Galande S, Purbey PK, Notani D, Kumar PP. 2007. The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr. Opin. Genet. Dev. 17:408–14 [Google Scholar]
  49. Gartler SM, Riggs AD. 1983. Mammalian X-chromosome inactivation. Annu. Rev. Genet. 17:155–90 [Google Scholar]
  50. Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M. et al. 2007. Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat. Methods 4:747–53 [Google Scholar]
  51. Gontan C, Achame EM, Demmers J, Barakat TS, Rentmeester E. et al. 2012. RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 485:386–90 [Google Scholar]
  52. Grant J, Mahadevaiah SK, Khil P, Sangrithi MN, Royo H. et al. 2012. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487:254–58 [Google Scholar]
  53. Graves JA. 2006. Sex chromosome specialization and degeneration in mammals. Cell 124:901–14 [Google Scholar]
  54. Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Nakagawa S. 2010. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19:469–76 [Google Scholar]
  55. Heard E, Mongelard F, Arnaud D, Avner P. 1999. Xist yeast artificial chromosome transgenes function as X-inactivation centers only in multicopy arrays and not as single copies. Mol. Cell. Biol. 19:3156–66 [Google Scholar]
  56. Helbig R, Fackelmayer FO. 2003. Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma 112:173–82 [Google Scholar]
  57. Herzing LB, Romer JT, Horn JM, Ashworth A. 1997. Xist has properties of the X-chromosome inactivation centre. Nature 386:272–75 [Google Scholar]
  58. Jiang J, Jing Y, Cost GJ, Chiang JC, Kolpa HJ. et al. 2013. Translating dosage compensation to trisomy 21. Nature 500:296–300 [Google Scholar]
  59. Jonkers I, Barakat TS, Achame EM, Monkhorst K, Kenter A. et al. 2009. RNF12 is an X-encoded dose-dependent activator of X chromosome inactivation. Cell 139:999–1011 [Google Scholar]
  60. Jonkers I, Monkhorst K, Rentmeester E, Grootegoed JA, Grosveld F, Gribnau J. 2008. Xist RNA is confined to the nuclear territory of the silenced X chromosome throughout the cell cycle. Mol. Cell. Biol. 28:5583–94 [Google Scholar]
  61. Kaslow DC, Migeon BR. 1987. DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: evidence for multistep maintenance of mammalian X dosage compensation. Proc. Natl. Acad. Sci. USA 84:6210–14 [Google Scholar]
  62. Kay GF, Penny GD, Patel D, Ashworth A, Brockdorff N, Rastan S. 1993. Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72:171–82 [Google Scholar]
  63. Kipp M, Gohring F, Ostendorp T, van Drunen CM, van Driel R. et al. 2000. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol. Cell. Biol. 20:7480–89 [Google Scholar]
  64. Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A. 2004. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLOS Biol. 2:E171 [Google Scholar]
  65. Laemmli UK, Kas E, Poljak L, Adachi Y. 1992. Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr. Opin. Genet. Dev. 2:275–85 [Google Scholar]
  66. Lee JT, Jaenisch R. 1997. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386:275–79 [Google Scholar]
  67. Lee JT, Lu N. 1999. Targeted mutagenesis of Tsix leads to nonrandom X inactivation. Cell 99:47–57 [Google Scholar]
  68. Lin H, Gupta V, Vermilyea MD, Falciani F, Lee JT. et al. 2007. Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLOS Biol. 5:e326 [Google Scholar]
  69. Loebel DA, Johnston PG. 1996. Methylation analysis of a marsupial X-linked CpG island by bisulfite genomic sequencing. Genome Res. 6:114–23 [Google Scholar]
  70. Lyon MF. 1961. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–73 [Google Scholar]
  71. Lyon MF. 1962. Sex chromatin and gene action in the mammalian X-chromosome. Am. J. Hum. Genet. 14:135–48 [Google Scholar]
  72. Lyon MF. 1998a. X-chromosome inactivation spreads itself: effects in autosomes. Am. J. Hum. Genet. 63:17–19 [Google Scholar]
  73. Lyon MF. 1998b. X-chromosome inactivation: a repeat hypothesis. Cytogenet. Cell Genet. 80:133–37 [Google Scholar]
  74. Maenner S, Blaud M, Fouillen L, Savoye A, Marchand V. et al. 2010. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLOS Biol. 8:e1000276 [Google Scholar]
  75. Mahadevaiah SK, Royo H, VandeBerg JL, McCarrey JR, Mackay S, Turner JM. 2009. Key features of the X inactivation process are conserved between marsupials and eutherians. Curr. Biol. 19:1478–84 [Google Scholar]
  76. Mak W, Baxter J, Silva J, Newall AE, Otte AP, Brockdorff N. 2002. Mitotically stable association of polycomb group proteins eed and enx1 with the inactive x chromosome in trophoblast stem cells. Curr. Biol. 12:1016–20 [Google Scholar]
  77. Mak W, Nesterova TB, de Napoles M, Appanah R, Yamanaka S. et al. 2004. Reactivation of the paternal X chromosome in early mouse embryos. Science 303:666–69 [Google Scholar]
  78. Marahrens Y, Loring J, Jaenisch R. 1998. Role of the Xist gene in X chromosome choosing. Cell 92:657–64 [Google Scholar]
  79. Marks H, Chow JC, Denissov S, Francoijs KJ, Brockdorff N. et al. 2009. High-resolution analysis of epigenetic changes associated with X inactivation. Genome Res. 19:1361–73 [Google Scholar]
  80. Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL. et al. 2007. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447:167–77 [Google Scholar]
  81. Minkovsky A, Barakat TS, Sellami N, Chin MH, Gunhanlar N. et al. 2013. The pluripotency factor-bound intron 1 of Xist is dispensable for X chromosome inactivation and reactivation in vitro and in vivo. Cell Rep. 3:905–18 [Google Scholar]
  82. de Mello JC, de Araujo ES, Stabellini R, Fraga AM, de Souza JE. Moreira et al. 2010. Random X inactivation and extensive mosaicism in human placenta revealed by analysis of allele-specific gene expression along the X chromosome. PLOS ONE 5:e10947 [Google Scholar]
  83. Morey C, Arnaud D, Avner P, Clerc P. 2001. Tsix-mediated repression of Xist accumulation is not sufficient for normal random X inactivation. Hum. Mol. Genet. 10:1403–11 [Google Scholar]
  84. Namekawa SH, Payer B, Huynh KD, Jaenisch R, Lee JT. 2010. Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol. Cell. Biol. 30:3187–205 [Google Scholar]
  85. Navarro P, Chambers I, Karwacki-Neisius V, Chureau C, Morey C. et al. 2008. Molecular coupling of Xist regulation and pluripotency. Science 321:1693–95 [Google Scholar]
  86. Navarro P, Moffat M, Mullin NP, Chambers I. 2011. The X-inactivation trans-activator Rnf12 is negatively regulated by pluripotency factors in embryonic stem cells. Hum. Genet. 130:255–64 [Google Scholar]
  87. Navarro P, Oldfield A, Legoupi J, Festuccia N, Dubois A. et al. 2010. Molecular coupling of Tsix regulation and pluripotency. Nature 468:457–60 [Google Scholar]
  88. Nechanitzky R, Dávila A, Savarese F, Fietze S, Grosschedl R. 2012. Satb1 and Satb2 are dispensable for X chromosome inactivation in mice. Dev. Cell 23:866–71 [Google Scholar]
  89. Nesterova TB, Senner CE, Schneider J, Alcayna-Stevens T, Tattermusch A. et al. 2011. Pluripotency factor binding and Tsix expression act synergistically to repress Xist in undifferentiated embryonic stem cells. Epigenetics Chromatin 4:17 [Google Scholar]
  90. Ng K, Daigle N, Bancaud A, Ohhata T, Humphreys P. et al. 2011. A system for imaging the regulatory noncoding Xist RNA in living mouse embryonic stem cells. Mol. Biol. Cell 22:2634–45 [Google Scholar]
  91. Ohhata T, Wutz A. 2013. Reactivation of the inactive X chromosome in development and reprogramming. Cell. Mol. Life Sci. 70:2443–61 [Google Scholar]
  92. Ohno S. 1967. Sex Chromosomes and Sex Linked Genes Berlin: Springer Verlag [Google Scholar]
  93. Okamoto I, Arnaud D, Le Baccon P, Otte AP, Disteche CM. et al. 2005. Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438:369–73 [Google Scholar]
  94. Okamoto I, Heard E. 2009. Lessons from comparative analysis of X-chromosome inactivation in mammals. Chromosome Res. 17:659–69 [Google Scholar]
  95. Okamoto I, Otte AP, Allis CD, Reinberg D, Heard E. 2004. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303:644–49 [Google Scholar]
  96. Okamoto I, Patrat C, Thepot D, Peynot N, Fauque P. et al. 2011. Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development. Nature 472:370–74 [Google Scholar]
  97. Panning B, Jaenisch R. 1996. DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev. 10:1991–2002 [Google Scholar]
  98. Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. 1996. Requirement for Xist in X chromosome inactivation. Nature 379:131–37 [Google Scholar]
  99. Pinter SF, Sadreyev RI, Yildirim E, Jeon Y, Ohsumi TK. et al. 2012. Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res. 22:1864–76 [Google Scholar]
  100. Piper AA, Bennett AM, Noyce L, Swanton MK, Cooper DW. 1993. Isolation of a clone partially encoding hill kangaroo X-linked hypoxanthine phosphoribosyltransferase: sex differences in methylation in the body of the gene. Somat. Cell Mol. Genet. 19:141–59 [Google Scholar]
  101. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA. et al. 2003. Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–35 [Google Scholar]
  102. Pollex T, Heard E. 2012. Recent advances in X-chromosome inactivation research. Curr. Opin. Cell Biol. 24:825–32 [Google Scholar]
  103. Popova BC, Tada T, Takagi N, Brockdorff N, Nesterova TB. 2006. Attenuated spread of X-inactivation in an X;autosome translocation. Proc. Natl. Acad. Sci. USA 103:7706–11 [Google Scholar]
  104. Pullirsch D, Hartel R, Kishimoto H, Leeb M, Steiner G, Wutz A. 2010. The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137:935–43 [Google Scholar]
  105. Rastan S. 1983. Non-random X-chromosome inactivation in mouse X-autosome translocation embryos—location of the inactivation centre. J. Embryol. Exp. Morphol. 78:1–22 [Google Scholar]
  106. Rens W, Wallduck MS, Lovell FL, Ferguson-Smith MA, Ferguson-Smith AC. 2010. Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation. Proc. Natl. Acad. Sci. USA 107:17657–62 [Google Scholar]
  107. Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K. et al. 2005. The DNA sequence of the human X chromosome. Nature 434:325–37 [Google Scholar]
  108. Russell LB, Montgomery CS. 1970. Comparative studies on X-autosome translocations in the mouse. II. Inactivation of autosomal loci, segregation, and mapping of autosomal breakpoints in five T(x;1)'s. Genetics 64:281–312 [Google Scholar]
  109. Sarma K, Levasseur P, Aristarkhov A, Lee JT. 2010. Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome. Proc. Natl. Acad. Sci. USA 107:22196–201 [Google Scholar]
  110. Schulz EG, Meisig J, Nakamura T, Okamoto I, Sieber A. et al. 2014. The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell 14:203–16 [Google Scholar]
  111. Schulz EG, Heard E. 2013. Role and control of X chromosome dosage in mammalian development. Curr. Opin. Genet. Dev. 23:109–15 [Google Scholar]
  112. Sharman GB. 1971. Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230:231–32 [Google Scholar]
  113. Sharp AJ, Spotswood HT, Robinson DO, Turner BM, Jacobs PA. 2002. Molecular and cytogenetic analysis of the spreading of X inactivation in X;autosome translocations. Hum. Mol. Genet. 11:3145–56 [Google Scholar]
  114. Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB. et al. 2003. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4:481–95 [Google Scholar]
  115. Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M. et al. 2013. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504:465–69 [Google Scholar]
  116. Smith KP, Byron M, Clemson CM, Lawrence JB. 2004. Ubiquitinated proteins including uH2A on the human and mouse inactive X chromosome: enrichment in gene rich bands. Chromosoma 113:324–35 [Google Scholar]
  117. Splinter E, de Wit E, Nora EP, Klous P, van de Werken HJ. et al. 2011. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25:1371–83 [Google Scholar]
  118. Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT. 2013. Jpx RNA activates Xist by evicting CTCF. Cell 153:1537–51 [Google Scholar]
  119. Takagi N, Sasaki M. 1975. Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256:640–42 [Google Scholar]
  120. Tang YA, Huntley D, Montana G, Cerase A, Nesterova TB, Brockdorff N. 2010. Efficiency of Xist-mediated silencing on autosomes is linked to chromosomal domain organisation. Epigenetics Chromatin 3:10 [Google Scholar]
  121. Tian D, Sun S, Lee JT. 2010. The long noncoding RNA, Jpx, is a molecular switch for X chromosome inactivation. Cell 143:390–403 [Google Scholar]
  122. Vallot C, Huret C, Lesecque Y, Resch A, Oudrhiri N. et al. 2013. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat. Genet. 45:239–41 [Google Scholar]
  123. Wang X, Miller DC, Clark AG, Antczak DF. 2012. Random X inactivation in the mule and horse placenta. Genome Res. 22:1855–63 [Google Scholar]
  124. Warburton PE, Giordano J, Cheung F, Gelfand Y, Benson G. 2004. Inverted repeat structure of the human genome: The X-chromosome contains a preponderance of large, highly homologous inverted repeats that contain testes genes. Genome Res. 14:1861–69 [Google Scholar]
  125. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF. et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–62 [Google Scholar]
  126. Wutz A, Agrelo R. 2012. Response: the diversity of proteins linking Xist to gene silencing. Dev. Cell 23:680 [Google Scholar]
  127. Wutz A, Jaenisch R. 2000. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5:695–705 [Google Scholar]
  128. Wutz A, Rasmussen TP, Jaenisch R. 2002. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30:167–74 [Google Scholar]
  129. Yen ZC, Meyer IM, Karalic S, Brown CJ. 2007. A cross-species comparison of X-chromosome inactivation in Eutheria. Genomics 90:453–63 [Google Scholar]
  130. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. 2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–56 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error