Metastasis is responsible for most cancer-associated deaths. Accumulating evidence based on 3D migration models has revealed a diversity of invasive migratory schemes reflecting the plasticity of tumor cells to switch between proteolytic and nonproteolytic modes of invasion. Yet, initial stages of localized regional tumor dissemination require proteolytic remodeling of the extracellular matrix to overcome tissue barriers. Recent data indicate that surface-exposed membrane type 1–matrix metalloproteinase (MT1-MMP), belonging to a group of membrane-anchored MMPs, plays a central role in pericellular matrix degradation during basement membrane and interstitial tissue transmigration programs. In addition, a large body of work indicates that MT1-MMP is targeted to specialized actin-rich cell protrusions termed invadopodia, which are responsible for matrix degradation. This review describes the multistep assembly of actin-based invadopodia in molecular details. Mechanisms underlying MT1-MMP traffic to invadopodia through endocytosis/recycling cycles, which are key to the invasive program of carcinoma cells, are discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abe N, Almenar-Queralt A, Lillo C, Shen Z, Lozach J. et al. 2009. Sunday driver interacts with two distinct classes of axonal organelles. J. Biol. Chem. 284:34628–39 [Google Scholar]
  2. Abel AM, Schuldt KM, Rajasekaran K, Hwang D, Riese MJ. et al. 2015. IQGAP1: insights into the function of a molecular puppeteer. Mol. Immunol. 65:336–49 [Google Scholar]
  3. Abram CL, Seals DF, Pass I, Salinsky D, Maurer L. et al. 2003. The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J. Biol. Chem. 278:16844–51 [Google Scholar]
  4. Albiges-Rizo C, Destaing O, Fourcade B, Planus E, Block MR. 2009. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J. Cell Sci. 122:3037–49 [Google Scholar]
  5. Alexander NR, Branch KM, Parekh A, Clark ES, Iwueke IC. et al. 2008. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18:1295–99 [Google Scholar]
  6. Annabi B, Thibeault S, Moumdjian R, Beliveau R. 2004. Hyaluronan cell surface binding is induced by type I collagen and regulated by caveolae in glioma cells. J. Biol. Chem. 279:21888–96 [Google Scholar]
  7. Arimoto M, Koushika SP, Choudhary BC, Li C, Matsumoto K, Hisamoto N. 2011. The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. J. Neurosci. 31:2216–24 [Google Scholar]
  8. Artym VV, Swatkoski S, Matsumoto K, Campbell CB, Petrie RJ. et al. 2015. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. J. Cell Biol. 208:331–50 [Google Scholar]
  9. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC. 2006. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 66:3034–43 [Google Scholar]
  10. Ayala I, Baldassarre M, Giacchetti G, Caldieri G, Tete S. et al. 2008. Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J. Cell Sci. 121:369–78 [Google Scholar]
  11. Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S. et al. 2003. Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol. Biol. Cell 14:1074–84 [Google Scholar]
  12. Baldassarre T, Watt K, Truesdell P, Meens J, Schneider MM. et al. 2015. Endophilin A2 promotes TNBC cell invasion and tumor metastasis. Mol. Cancer Res. 13:1044–55 [Google Scholar]
  13. Beaty BT, Condeelis J. 2014. Digging a little deeper: the stages of invadopodium formation and maturation. Eur. J. Cell Biol. 93:438–44 [Google Scholar]
  14. Beaty BT, Sharma VP, Bravo-Cordero JJ, Simpson MA, Eddy RJ. et al. 2013. β1 integrin regulates Arg to promote invadopodial maturation and matrix degradation. Mol. Biol. Cell 24:1661–75S1–11 [Google Scholar]
  15. Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF. et al. 2012. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 72:4920–30 [Google Scholar]
  16. Bonnans C, Chou J, Werb Z. 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:786–801 [Google Scholar]
  17. Bowden ET, Barth M, Thomas D, Glazer RI, Mueller SC. 1999. An invasion-related complex of cortactin, paxillin and PKCμ associates with invadopodia at sites of extracellular matrix degradation. Oncogene 18:4440–49 [Google Scholar]
  18. Bowman AB, Kamal A, Ritchings BW, Philp AV, McGrail M. et al. 2000. Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103:583–94 [Google Scholar]
  19. Branch KM, Hoshino D, Weaver AM. 2012. Adhesion rings surround invadopodia and promote maturation. Biol. Open 1:711–22 [Google Scholar]
  20. Bravo-Cordero JJ, Marrero-Diaz R, Megias D, Genis L, Garcia-Grande A. et al. 2007. MT1-MMP proinvasive activity is regulated by a novel Rab8-dependent exocytic pathway. EMBO J. 26:1499–510 [Google Scholar]
  21. Brisson L, Driffort V, Benoist L, Poet M, Counillon L. et al. 2013. NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia. J. Cell Sci. 126:4835–42 [Google Scholar]
  22. Buday L, Downward J. 2007. Roles of cortactin in tumor pathogenesis. Biochim. Biophys. Acta 1775:263–73 [Google Scholar]
  23. Busco G, Cardone RA, Greco MR, Bellizzi A, Colella M. et al. 2010. NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. FASEB J. 24:3903–15 [Google Scholar]
  24. Castro-Castro A, Janke C, Montagnac G, Paul-Gilloteaux P, Chavrier P. 2012. ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of α-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion. Eur. J. Cell Biol. 91:950–60 [Google Scholar]
  25. Cavalli V, Kujala P, Klumperman J, Goldstein LS. 2005. Sunday Driver links axonal transport to damage signaling. J. Cell Biol. 168:775–87 [Google Scholar]
  26. Chaffer CL, Weinberg RA. 2011. A perspective on cancer cell metastasis. Science 331:1559–64 [Google Scholar]
  27. Charras G, Sahai E. 2014. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15:813–24 [Google Scholar]
  28. Chen WT. 1989. Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J. Exp. Zool. 251:167–85 [Google Scholar]
  29. Cheng JP, Nichols BJ. 2016. Caveolae: one function or many?. Trends Cell Biol. 26:177–89 [Google Scholar]
  30. Chevalier C, Collin G, Descamps S, Touaitahuata H, Simon V. et al. 2016. TOM1L1 drives membrane delivery of MT1-MMP to promote ERBB2-induced breast cancer cell invasion. Nat. Commun. 7:10765 [Google Scholar]
  31. Choi JA, Jung YS, Kim JY, Kim HM, Lim IK. 2016. Inhibition of breast cancer invasion by TIS21(/BTG2/Pc3)-Akt1-Sp1-Nox4 pathway targeting actin nucleators, mDia genes. Oncogene 35:83–93 [Google Scholar]
  32. Choi JA, Lim IK. 2013. TIS21/BTG2 inhibits invadopodia formation by downregulating reactive oxygen species level in MDA-MB-231 cells. J. Cancer Res. Clin. Oncol. 139:1657–65 [Google Scholar]
  33. Chou SY, Hsu KS, Otsu W, Hsu YC, Luo YC. et al. 2016. CLIC4 regulates apical exocytosis and renal tube luminogenesis through retromer- and actin-mediated endocytic trafficking. Nat. Commun. 7:10412 [Google Scholar]
  34. Clark ES, Whigham AS, Yarbrough WG, Weaver AM. 2007. Cortactin is an essential regulator of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia. Cancer Res. 67:4227–35 [Google Scholar]
  35. Colombo M, Raposo G, Thery C. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30:255–89 [Google Scholar]
  36. Conklin MW, Eickhoff JC, Riching KM, Pehlke CA, Eliceiri KW. et al. 2011. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178:1221–32 [Google Scholar]
  37. D'Souza-Schorey C, Chavrier P. 2006. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7:347–58 [Google Scholar]
  38. Demou ZN, Awad M, McKee T, Perentes JY, Wang X. et al. 2005. Lack of telopeptides in fibrillar collagen I promotes the invasion of a metastatic breast tumor cell line. Cancer Res. 65:5674–82 [Google Scholar]
  39. Derivery E, Helfer E, Henriot V, Gautreau A. 2012. Actin polymerization controls the organization of WASH domains at the surface of endosomes. PLOS ONE 7:e39774 [Google Scholar]
  40. Desmarais V, Yamaguchi H, Oser M, Soon L, Mouneimne G. et al. 2009. N-WASP and cortactin are involved in invadopodium-dependent chemotaxis to EGF in breast tumor cells. Cell Motil. Cytoskelet. 66:303–16 [Google Scholar]
  41. Destaing O, Block MR, Planus E, Albiges-Rizo C. 2011. Invadosome regulation by adhesion signaling. Curr. Opin. Cell Biol. 23:597–606 [Google Scholar]
  42. Destaing O, Planus E, Bouvard D, Oddou C, Badowski C. et al. 2010. β1A integrin is a master regulator of invadosome organization and function. Mol. Biol. Cell 21:4108–19 [Google Scholar]
  43. Diaz B, Courtneidge SA. 2012. Redox signaling at invasive microdomains in cancer cells. Free Radic. Biol. Med. 52:247–56 [Google Scholar]
  44. Diaz B, Shani G, Pass I, Anderson D, Quintavalle M, Courtneidge SA. 2009. Tks5-dependent, Nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci. Signal. 2:ra53 [Google Scholar]
  45. Drerup CM, Nechiporuk AV. 2013. JNK-interacting protein 3 mediates the retrograde transport of activated c-Jun N-terminal kinase and lysosomes. PLOS Genet. 9:e1003303 [Google Scholar]
  46. Eckert MA, Lwin TM, Chang AT, Kim J, Danis E. et al. 2011. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell 19:372–86 [Google Scholar]
  47. Ewing RM, Chu P, Elisma F, Li H, Taylor P. et al. 2007. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3:89 [Google Scholar]
  48. Fan H, Zhao X, Sun S, Luo M, Guan JL. 2013. Function of focal adhesion kinase scaffolding to mediate endophilin A2 phosphorylation promotes epithelial-mesenchymal transition and mammary cancer stem cell activities in vivo. J. Biol. Chem. 288:3322–33 [Google Scholar]
  49. Fisher KE, Sacharidou A, Stratman AN, Mayo AM, Fisher SB. et al. 2009. MT1-MMP- and Cdc42-dependent signaling co-regulate cell invasion and tunnel formation in 3D collagen matrices. J. Cell Sci. 122:4558–69 [Google Scholar]
  50. Friedl P, Alexander S. 2011. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009 [Google Scholar]
  51. Friedl P, Wolf K. 2009. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188:11–19 [Google Scholar]
  52. Friedl P, Wolf K, Lammerding J. 2011. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23:55–64 [Google Scholar]
  53. Frittoli E, Palamidessi A, Marighetti P, Confalonieri S, Bianchi F. et al. 2014. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination. J. Cell Biol. 206:307–28 [Google Scholar]
  54. Garg M, Chaurasiya D, Rana R, Jagadish N, Kanojia D. et al. 2007. Sperm-associated antigen 9, a novel cancer testis antigen, is a potential target for immunotherapy in epithelial ovarian cancer. Clin. Cancer Res. 13:1421–28 [Google Scholar]
  55. Garg M, Kanojia D, Khosla A, Dudha N, Sati S. et al. 2008. Sperm-associated antigen 9 is associated with tumor growth, migration, and invasion in renal cell carcinoma. Cancer Res. 68:8240–48 [Google Scholar]
  56. Gianni D, Diaz B, Taulet N, Fowler B, Courtneidge SA, Bokoch GM. 2009. Novel p47phox-related organizers regulate localized NADPH oxidase 1 (Nox1) activity. Sci. Signal. 2ra54 [Google Scholar]
  57. Gillet L, Roger S, Besson P, Lecaille F, Gore J. et al. 2009. Voltage-gated sodium channel activity promotes cysteine cathepsin-dependent invasiveness and colony growth of human cancer cells. J. Biol. Chem. 284:8680–91 [Google Scholar]
  58. Gligorijevic B, Bergman A, Condeelis J. 2014. Multiparametric classification links tumor microenvironments with tumor cell phenotype. PLOS Biol. 12:e1001995 [Google Scholar]
  59. Gligorijevic B, Wyckoff J, Yamaguchi H, Wang Y, Roussos ET, Condeelis J. 2012. N-WASP-mediated invadopodium formation is involved in intravasation and lung metastasis of mammary tumors. J. Cell Sci. 125:724–34 [Google Scholar]
  60. Goetz JG, Minguet S, Navarro-Lerida I, Lazcano JJ, Samaniego R. et al. 2011. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–63 [Google Scholar]
  61. Gomez TS, Billadeau DD. 2009. A FAM21-containing WASH complex regulates retromer-dependent sorting. Dev. Cell 17:699–711 [Google Scholar]
  62. Gomez TS, Gorman JA, de Narvajas AA, Koenig AO, Billadeau DD. 2012. Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks. Mol. Biol. Cell 23:3215–28 [Google Scholar]
  63. Hakulinen J, Sankkila L, Sugiyama N, Lehti K, Keski-Oja J. 2008. Secretion of active membrane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J. Cell Biochem. 105:1211–18 [Google Scholar]
  64. Harada T, Swift J, Irianto J, Shin JW, Spinler KR. et al. 2014. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204:669–82 [Google Scholar]
  65. Harbour ME, Breusegem SY, Antrobus R, Freeman C, Reid E, Seaman MN. 2010. The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics. J. Cell Sci. 123:3703–17 [Google Scholar]
  66. Hashimoto S, Onodera Y, Hashimoto A, Tanaka M, Hamaguchi M. et al. 2004. Requirement for Arf6 in breast cancer invasive activities. PNAS 101:6647–52 [Google Scholar]
  67. Heider MR, Munson M. 2012. Exorcising the exocyst complex. Traffic 13:898–907 [Google Scholar]
  68. Hoshino D, Branch KM, Weaver AM. 2013a. Signaling inputs to invadopodia and podosomes. J. Cell Sci. 126:2979–89 [Google Scholar]
  69. Hoshino D, Jourquin J, Emmons SW, Miller T, Goldgof M. et al. 2012a. Network analysis of the focal adhesion to invadopodia transition identifies a PI3K-PKCα invasive signaling axis. Sci. Signal. 5:ra66 [Google Scholar]
  70. Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S. et al. 2013b. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 5:1159–68 [Google Scholar]
  71. Hoshino D, Koshikawa N, Suzuki T, Quaranta V, Weaver AM. et al. 2012b. Establishment and validation of computational model for MT1-MMP dependent ECM degradation and intervention strategies. PLOS Comput. Biol. 8e1002479
  72. Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ. 2006. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 20:2673–86 [Google Scholar]
  73. Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ. 2003. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114:33–45 [Google Scholar]
  74. Hu B, Shi B, Jarzynka MJ, Yiin JJ, D'Souza-Schorey C, Cheng SY. 2009. ADP-ribosylation factor 6 regulates glioma cell invasion through the IQ-domain GTPase-activating protein 1-Rac1-mediated pathway. Cancer Res. 69:794–801 [Google Scholar]
  75. Isermann P, Lammerding J. 2013. Nuclear mechanics and mechanotransduction in health and disease. Curr. Biol. 23:R1113–21 [Google Scholar]
  76. Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N. et al. 1999. JSAP1, a novel Jun N-terminal protein kinase (JNK)-binding protein that functions as a scaffold factor in the JNK signaling pathway. Mol. Cell. Biol. 19:7539–48 [Google Scholar]
  77. Jacquemet G, Humphries MJ. 2013. IQGAP1 is a key node within the small GTPase network. Small GTPases 4:199–207 [Google Scholar]
  78. Jilg CA, Ketscher A, Metzger E, Hummel B, Willmann D. et al. 2014. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget 5:12646–64 [Google Scholar]
  79. Juin A, Billottet C, Moreau V, Destaing O, Albiges-Rizo C. et al. 2012. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes. Mol. Biol. Cell 23:297–309 [Google Scholar]
  80. Juin A, Di Martino J, Leitinger B, Henriet E, Gary AS. et al. 2014. Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42-Tuba pathway. J. Cell Biol. 207:517–33 [Google Scholar]
  81. Kalluri R. 2003. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat. Rev. Cancer 3:422–33 [Google Scholar]
  82. Kanojia D, Garg M, Gupta S, Gupta A, Suri A. 2009. Sperm-associated antigen 9, a novel biomarker for early detection of breast cancer. Cancer Epidemiol. Biomark. Prev. 18:630–39 [Google Scholar]
  83. Kanojia D, Garg M, Gupta S, Gupta A, Suri A. 2011. Sperm-associated antigen 9 is a novel biomarker for colorectal cancer and is involved in tumor growth and tumorigenicity. Am. J. Pathol. 178:1009–20 [Google Scholar]
  84. Kelkar N, Standen CL, Davis RJ. 2005. Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol. Cell. Biol. 25:2733–43 [Google Scholar]
  85. Kessenbrock K, Plaks V, Werb Z. 2010. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67 [Google Scholar]
  86. Kim D, Jung J, You E, Ko P, Oh S, Rhee S. 2016. mDia1 regulates breast cancer invasion by controlling membrane type 1-matrix metalloproteinase localization. Oncotarget 717829–43
  87. Lafleur MA, Mercuri FA, Ruangpanit N, Seiki M, Sato H, Thompson EW. 2006. Type I collagen abrogates the clathrin-mediated internalization of membrane type 1 matrix metalloproteinase (MT1-MMP) via the MT1-MMP hemopexin domain. J. Biol. Chem. 281:6826–40 [Google Scholar]
  88. Lammermann T, Sixt M. 2009. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21:636–44 [Google Scholar]
  89. Leong HS, Robertson AE, Stoletov K, Leith SJ, Chin CA. et al. 2014. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 8:1558–70 [Google Scholar]
  90. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M. et al. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906 [Google Scholar]
  91. Li A, Dawson JC, Forero-Vargas M, Spence HJ, Yu X. et al. 2010. The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr. Biol. 20:339–45 [Google Scholar]
  92. Linder S, Wiesner C, Himmel M. 2011. Degrading devices: invadosomes in proteolytic cell invasion. Annu. Rev. Cell Dev. Biol. 27:185–211 [Google Scholar]
  93. Liu J, Yue P, Artym VV, Mueller SC, Guo W. 2009. The role of the exocyst in matrix metalloproteinase secretion and actin dynamics during tumor cell invadopodia formation. Mol. Biol. Cell 20:3763–71 [Google Scholar]
  94. Lizarraga F, Poincloux R, Romao M, Montagnac G, Le Dez G. et al. 2009. Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res. 69:2792–800 [Google Scholar]
  95. Lodillinsky C, Infante E, Guichard A, Chaligne R, Fuhrmann L. et al. 2016. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene 35:344–57 [Google Scholar]
  96. Lohmer LL, Clay MR, Naegeli KM, Chi Q, Ziel JW. et al. 2016. A sensitized screen for genes promoting invadopodia function in vivo: CDC-42 and Rab GDI-1 direct distinct aspects of invadopodia formation. PLOS Genet. 12:e1005786 [Google Scholar]
  97. Loskutov YV, Kozyulina PY, Kozyreva VK, Ice RJ, Jones BC. et al. 2015. NEDD9/Arf6-dependent endocytic trafficking of matrix metalloproteinase 14: a novel mechanism for blocking mesenchymal cell invasion and metastasis of breast cancer. Oncogene 34:3662–75 [Google Scholar]
  98. Macpherson IR, Rainero E, Mitchell LE, van den Berghe PV, Speirs C. et al. 2014. CLIC3 controls recycling of late endosomal MT1-MMP and dictates invasion and metastasis in breast cancer. J. Cell Sci. 127:3893–901 [Google Scholar]
  99. Mader CC, Oser M, Magalhaes MA, Bravo-Cordero JJ, Condeelis J. et al. 2011. An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res. 71:1730–41 [Google Scholar]
  100. Magalhaes MA, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H. et al. 2011. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J. Cell Biol. 195:903–20 [Google Scholar]
  101. Marchesin V, Castro-Castro A, Lodillinsky C, Castagnino A, Cyrta J. et al. 2015. ARF6-JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion. J. Cell Biol. 211:339–58 [Google Scholar]
  102. Montagnac G, Sibarita JB, Loubery S, Daviet L, Romao M. et al. 2009. ARF6 interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr. Biol. 19:184–95 [Google Scholar]
  103. Monteiro P, Rosse C, Castro-Castro A, Irondelle M, Lagoutte E. et al. 2013. Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J. Cell Biol. 203:1063–79 [Google Scholar]
  104. Morishige M, Hashimoto S, Ogawa E, Toda Y, Kotani H. et al. 2008. GEP100 links epidermal growth factor receptor signalling to Arf6 activation to induce breast cancer invasion. Nat. Cell Biol. 10:85–92 [Google Scholar]
  105. Mouw JK, Ou G, Weaver VM. 2014. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15:771–85 [Google Scholar]
  106. Mueller SC, Ghersi G, Akiyama SK, Sang QX, Howard L. et al. 1999. A novel protease-docking function of integrin at invadopodia. J. Biol. Chem. 274:24947–52 [Google Scholar]
  107. Muralidharan-Chari V, Hoover H, Clancy J, Schweitzer J, Suckow MA. et al. 2009. ADP-ribosylation factor 6 regulates tumorigenic and invasive properties in vivo. Cancer Res. 69:2201–9 [Google Scholar]
  108. Murphy DA, Courtneidge SA. 2011. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12:413–26 [Google Scholar]
  109. Oikawa T, Itoh T, Takenawa T. 2008. Sequential signals toward podosome formation in NIH-src cells. J. Cell Biol. 182:157–69 [Google Scholar]
  110. Oser M, Mader CC, Gil-Henn H, Magalhaes M, Bravo-Cordero JJ. et al. 2010. Specific tyrosine phosphorylation sites on cortactin regulate Nck1-dependent actin polymerization in invadopodia. J. Cell Sci. 123:3662–73 [Google Scholar]
  111. Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M. et al. 2009. Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J. Cell Biol. 186:571–87 [Google Scholar]
  112. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G. et al. 2010. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12:19–30S1–13 [Google Scholar]
  113. Parekh A, Ruppender NS, Branch KM, Sewell-Loftin MK, Lin J. et al. 2011. Sensing and modulation of invadopodia across a wide range of rigidities. Biophys. J. 100:573–82 [Google Scholar]
  114. Parton RG, del Pozo MA. 2013. Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 14:98–112 [Google Scholar]
  115. Perentes JY, Kirkpatrick ND, Nagano S, Smith EY, Shaver CM. et al. 2011. Cancer cell–associated MT1-MMP promotes blood vessel invasion and distant metastasis in triple-negative mammary tumors. Cancer Res. 71:4527–38 [Google Scholar]
  116. Pickup MW, Mouw JK, Weaver VM. 2014. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15:1243–53 [Google Scholar]
  117. Pignatelli J, Tumbarello DA, Schmidt RP, Turner CE. 2012. Hic-5 promotes invadopodia formation and invasion during TGF-β-induced epithelial-mesenchymal transition. J. Cell Biol. 197:421–37 [Google Scholar]
  118. Poincloux R, Lizarraga F, Chavrier P. 2009. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J. Cell Sci. 122:3015–24 [Google Scholar]
  119. Provenzano PP, Inman DR, Eliceiri KW, Trier SM, Keely PJ. 2008. Contact guidance mediated 3D cell migration is regulated by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95:5374–84 [Google Scholar]
  120. Puthenveedu MA, Lauffer B, Temkin P, Vistein R, Carlton P. et al. 2010. Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal microdomains. Cell 143:761–73 [Google Scholar]
  121. Rajadurai CV, Havrylov S, Zaoui K, Vaillancourt R, Stuible M. et al. 2012. Met receptor tyrosine kinase signals through a cortactin-Gab1 scaffold complex, to mediate invadopodia. J. Cell Sci. 125:2940–53 [Google Scholar]
  122. Razidlo GL, Schroeder B, Chen J, Billadeau DD, McNiven MA. 2014. Vav1 as a central regulator of invadopodia assembly. Curr. Biol. 24:86–93 [Google Scholar]
  123. Remacle A, Murphy G, Roghi C. 2003. Membrane type I–matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface. J. Cell Sci. 116:3905–16 [Google Scholar]
  124. Ren J, Guo W. 2012. ERK1/2 regulate exocytosis through direct phosphorylation of the exocyst component Exo70. Dev. Cell 22:967–78 [Google Scholar]
  125. Revach OY, Weiner A, Rechav K, Sabanay I, Livne A, Geiger B. 2015. Mechanical interplay between invadopodia and the nucleus in cultured cancer cells. Sci. Rep. 5:9466 [Google Scholar]
  126. Rey M, Irondelle M, Waharte F, Lizarraga F, Chavrier P. 2011. HDAC6 is required for invadopodia activity and invasion by breast tumor cells. Eur. J. Cell Biol. 90:128–35 [Google Scholar]
  127. Rosse C, Lodillinsky C, Fuhrmann L, Nourieh M, Monteiro P. et al. 2014. Control of MT1-MMP transport by atypical PKC during breast-cancer progression. PNAS 111:E1872–79 [Google Scholar]
  128. Rothberg JM, Bailey KM, Wojtkowiak JW, Ben-Nun Y, Bogyo M. et al. 2013. Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 15:1125–37 [Google Scholar]
  129. Rowe RG, Weiss SJ. 2008. Breaching the basement membrane: who, when and how?. Trends Cell Biol. 18:560–74 [Google Scholar]
  130. Sabe H, Hashimoto S, Morishige M, Ogawa E, Hashimoto A. et al. 2009. The EGFR-GEP100-Arf6-AMAP1 signaling pathway specific to breast cancer invasion and metastasis. Traffic 10:982–93 [Google Scholar]
  131. Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P. et al. 2004. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J. Cell Biol. 167:769–81 [Google Scholar]
  132. Sabeh F, Shimizu-Hirota R, Weiss SJ. 2009. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J. Cell Biol. 185:11–19 [Google Scholar]
  133. Sahai E, Marshall CJ. 2003. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5:711–19 [Google Scholar]
  134. Sakurai-Yageta M, Recchi C, Le Dez G, Sibarita JB, Daviet L. et al. 2008. The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J. Cell Biol. 181:985–98 [Google Scholar]
  135. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P. et al. 2008. Rac activation and inactivation control plasticity of tumor cell movement. Cell 135:510–23 [Google Scholar]
  136. Sato T, Mushiake S, Kato Y, Sato K, Sato M. et al. 2007. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448:366–69 [Google Scholar]
  137. Schoumacher M, Goldman RD, Louvard D, Vignjevic DM. 2010. Actin, microtubules, and vimentin intermediate filaments cooperate for elongation of invadopodia. J. Cell Biol. 189:541–56 [Google Scholar]
  138. Seals DF, Azucena EF Jr., Pass I, Tesfay L, Gordon R. et al. 2005. The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell 7:155–65 [Google Scholar]
  139. Seiler C, Davuluri G, Abrams J, Byfield FJ, Janmey PA, Pack M. 2012. Smooth muscle tension induces invasive remodeling of the zebrafish intestine. PLOS Biol. 10:e1001386 [Google Scholar]
  140. Sharma VP, Eddy R, Entenberg D, Kai M, Gertler FB, Condeelis J. 2013. Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells. Curr. Biol. 23:2079–89 [Google Scholar]
  141. Smith JM, Hedman AC, Sacks DB. 2015. IQGAPs choreograph cellular signaling from the membrane to the nucleus. Trends Cell Biol. 25:171–84 [Google Scholar]
  142. Steffen A, Le Dez G, Poincloux R, Recchi C, Nassoy P. et al. 2008. MT1-MMP-dependent invasion is regulated by TI-VAMP/VAMP7. Curr. Biol. 18:926–31 [Google Scholar]
  143. Stylli SS, Stacey TT, Verhagen AM, Xu SS, Pass I. et al. 2009. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. J. Cell Sci. 122:2727–40 [Google Scholar]
  144. Sun F, Zhu C, Dixit R, Cavalli V. 2011. Sunday Driver/JIP3 binds kinesin heavy chain directly and enhances its motility. EMBO J. 30:3416–29 [Google Scholar]
  145. Suzuki A, Arikawa C, Kuwahara Y, Itoh K, Watanabe M. et al. 2010. The scaffold protein JIP3 functions as a downstream effector of the small GTPase ARF6 to regulate neurite morphogenesis of cortical neurons. FEBS Lett. 584:2801–6 [Google Scholar]
  146. Szabova L, Chrysovergis K, Yamada SS, Holmbeck K. 2008. MT1-MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene 27:3274–81 [Google Scholar]
  147. Takino T, Nakada M, Miyamori H, Watanabe Y, Sato T. et al. 2005. JSAP1/JIP3 cooperates with focal adhesion kinase to regulate c-Jun N-terminal kinase and cell migration. J. Biol. Chem. 280:37772–81 [Google Scholar]
  148. Tam EM, Wu YI, Butler GS, Stack MS, Overall CM. 2002. Collagen binding properties of the membrane type-1 matrix metalloproteinase (MT1-MMP) hemopexin C domain. J. Biol. Chem. 277:39005–14 [Google Scholar]
  149. Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E. 2013. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat. Cell Biol. 15:751–62 [Google Scholar]
  150. Ueno H, Nakamura H, Inoue M, Imai K, Noguchi M. et al. 1997. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res. 57:2055–60 [Google Scholar]
  151. Varon C, Tatin F, Moreau V, Van Obberghen–Schilling E, Fernandez-Sauze S. et al. 2006. Transforming growth factor β induces rosettes of podosomes in primary aortic endothelial cells. Mol. Cell. Biol. 26:3582–94 [Google Scholar]
  152. Weaver AM. 2008. Cortactin in tumor invasiveness. Cancer Lett. 265:157–66 [Google Scholar]
  153. Webb BA, Chimenti M, Jacobson MP, Barber DL. 2011. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11:671–77 [Google Scholar]
  154. White CD, Brown MD, Sacks DB. 2009. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett. 583:1817–24 [Google Scholar]
  155. Wiesner C, Faix J, Himmel M, Bentzien F, Linder S. 2010. KIF5B and KIF3A/KIF3B kinesins drive MT1-MMP surface exposure, CD44 shedding, and extracellular matrix degradation in primary macrophages. Blood 116:1559–69 [Google Scholar]
  156. Williams KC, Coppolino MG. 2011. Phosphorylation of membrane type 1–matrix metalloproteinase (MT1-MMP) and its vesicle-associated membrane protein 7 (VAMP7)-dependent trafficking facilitate cell invasion and migration. J. Biol. Chem. 286:43405–16 [Google Scholar]
  157. Williams KC, McNeilly RE, Coppolino MG. 2014. SNAP23, Syntaxin4, and vesicle-associated membrane protein 7 (VAMP7) mediate trafficking of membrane type 1–matrix metalloproteinase (MT1-MMP) during invadopodium formation and tumor cell invasion. Mol. Biol. Cell 25:2061–70 [Google Scholar]
  158. Willis AL, Sabeh F, Li XY, Weiss SJ. 2013. Extracellular matrix determinants and the regulation of cancer cell invasion stratagems. J. Microsc. 251:250–60 [Google Scholar]
  159. Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH. et al. 2003. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160:267–77 [Google Scholar]
  160. Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J. et al. 2013. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201:1069–84 [Google Scholar]
  161. Wolf K, Wu YI, Liu Y, Geiger J, Tam E. et al. 2007. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat. Cell Biol. 9:893–904 [Google Scholar]
  162. Wu X, Gan B, Yoo Y, Guan JL. 2005. FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev. Cell 9:185–96 [Google Scholar]
  163. Yamada KM, Cukierman E. 2007. Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–10 [Google Scholar]
  164. Yamaguchi H, Lorenz M, Kempiak S, Sarmiento C, Coniglio S. et al. 2005. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168:441–52 [Google Scholar]
  165. Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, Fukami K. 2009. Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res. 69:8594–602 [Google Scholar]
  166. Yamaguchi H, Yoshida S, Muroi E, Yoshida N, Kawamura M. et al. 2011. Phosphoinositide 3-kinase signaling pathway mediated by p110α regulates invadopodia formation. J. Cell Biol. 193:1275–88 [Google Scholar]
  167. Yana I, Weiss SJ. 2000. Regulation of membrane type-1 matrix metalloproteinase activation by proprotein convertases. Mol. Biol. Cell 11:2387–401 [Google Scholar]
  168. Yang H, Guan L, Li S, Jiang Y, Xiong N. et al. 2016. Mechanosensitive caveolin-1 activation–induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo. Oncotarget 716227–47
  169. Yu X, Zech T, McDonald L, Gonzalez EG, Li A. et al. 2012. N-WASP coordinates the delivery and F-actin-mediated capture of MT1-MMP at invasive pseudopods. J. Cell Biol. 199:527–44 [Google Scholar]
  170. Zaman MH, Trapani LM, Sieminski AL, MacKellar D, Gong H. et al. 2006. Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. PNAS 103:10889–94 [Google Scholar]
  171. Zech T, Calaminus SD, Caswell P, Spence HJ, Carnell M. et al. 2011. The Arp2/3 activator WASH regulates α5β1-integrin-mediated invasive migration. J. Cell Sci. 124:3753–59 [Google Scholar]
  172. Zhai Y, Hotary KB, Nan B, Bosch FX, Munoz N. et al. 2005. Expression of membrane type 1 matrix metalloproteinase is associated with cervical carcinoma progression and invasion. Cancer Res. 65:6543–50 [Google Scholar]
  173. Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A. et al. 2007. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 27:197–213 [Google Scholar]
  174. Zhang Y, Zhang M, Dong H, Yong S, Li X. et al. 2009. Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 28:445–60 [Google Scholar]
  175. Zhu L, Yu H, Liu SY, Xiao XS, Dong WH. et al. 2015. Prognostic value of tissue inhibitor of metalloproteinase-2 expression in patients with non–small cell lung cancer: a systematic review and meta-analysis. PLOS ONE 10:e0124230 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error