For effective adaptive immunity to foreign antigens (Ag), secondary lymphoid organs (SLO) provide the confined environment in which Ag-restricted lymphocytes, with very low precursor frequencies, interact with Ag on Ag-presenting cells (APC). The spleen is the primordial SLO, arising in conjunction with adaptive immunity in early jawed vertebrates. The spleen, especially the spleen's lymphoid compartment, the white pulp (WP), has undergone numerous modifications over evolutionary time. We describe the progressive advancement of splenic WP complexity, which evolved in parallel with the increasing functionality of adaptive immunity. The Ag-presenting function of follicular dendritic cells (FDC) also likely emerged at the inception of adaptive immunity, and we propose that a single type of hematopoietically derived APC displayed Ag to both T and B cells. A dedicated FDC, derived from a vascular precursor, is a recent evolutionary innovation that likely permitted the robust affinity maturation found in mammals.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aghaallaei N, Bajoghli B, Schwarz H, Schorpp M, Boehm T. 2010. Characterization of mononuclear phagocytic cells in medaka fish transgenic for a cxcr3a:gfp reporter. PNAS 107:18079–84 [Google Scholar]
  2. Aguzzi A, Kranich J, Krautler NJ. 2014. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends Immunol 35:105–13 [Google Scholar]
  3. Alder MN, Herrin BR, Sadlonova A, Stockard CR, Grizzle WE. et al. 2008. Antibody responses of variable lymphocyte receptors in the lamprey. Nat. Immunol. 9:319–27 [Google Scholar]
  4. Allen CD, Cyster JG. 2008. Follicular dendritic cell networks of primary follicles and germinal centers: phenotype and function. Semin. Immunol. 20:14–25 [Google Scholar]
  5. Ansel KM, Ngo VN, Hyman PL, Luther SA, Forster R. et al. 2000. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406:309–14 [Google Scholar]
  6. Bajenoff M, Glaichenhaus N, Germain RN. 2008. Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. J. Immunol. 181:3947–54 [Google Scholar]
  7. Bajoghli B, Guo P, Aghaallaei N, Hirano M, Strohmeier C. et al. 2011. A thymus candidate in lampreys. Nature 470:90–94 [Google Scholar]
  8. Baldwin WM 3rd. 1983. Antigen trapping cells in Xenopus laevis: tissue distribution. Dev. Comp. Immunol. 7:709–10 [Google Scholar]
  9. Baldwin WM 3rd, Cohen N. 1981. A giant cell with dendritic cell properties in spleens of the anuran amphibian Xenopus laevis. Dev. Comp. Immunol. 5:461–73 [Google Scholar]
  10. Boehm T, Hess I, Swann JB. 2012a. Evolution of lymphoid tissues. Trends Immunol. 33:315–21 [Google Scholar]
  11. Boehm T, McCurley N, Sutoh Y, Schorpp M, Kasahara M, Cooper MD. 2012b. VLR-based adaptive immunity. Annu. Rev. Immunol. 30:203–20 [Google Scholar]
  12. Borysenko M, Cooper EL. 1972. Lymphoid tissue in the snapping turtle, Chelydra serpentina. J. Morphol. 138:487–97 [Google Scholar]
  13. Castro CD, Ohta Y, Dooley H, Flajnik MF. 2013. Noncoordinate expression of J-chain and Blimp-1 define nurse shark plasma cell populations during ontogeny. Eur. J. Immunol. 43:3061–75 [Google Scholar]
  14. Cesta MF. 2006. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 34:455–65 [Google Scholar]
  15. Cheng HH, Kaiser P, Lamont SJ. 2013. Integrated genomic approaches to enhance genetic resistance in chickens. Annu. Rev. Anim. Biosci. 1:239–60 [Google Scholar]
  16. Cherrier M, Eberl G. 2012. The development of LTi cells. Curr. Opin. Immunol. 24:178–83 [Google Scholar]
  17. Choi YS, Dieter JA, Rothaeusler K, Luo Z, Baumgarth N. 2012. B-1 cells in the bone marrow are a significant source of natural IgM. Eur. J. Immunol. 42:120–29 [Google Scholar]
  18. Cyster JG. 2010. B cell follicles and antigen encounters of the third kind. Nat. Immunol. 11:989–96 [Google Scholar]
  19. De Silva NS, Klein U. 2015. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 15:137–48 [Google Scholar]
  20. Del Cacho E, Gallego M, Lillehoj HS, Lopez-Bernard F, Sanchez-Acedo C. 2009. Avian follicular and interdigitating dendritic cells: isolation and morphologic, phenotypic, and functional analyses. Vet. Immunol. Immunopathol. 129:66–75 [Google Scholar]
  21. den Haan JM, Mebius RE, Kraal G. 2012. Stromal cells of the mouse spleen. Front. Immunol. 3:201 [Google Scholar]
  22. Deng L, Velikovsky CA, Xu G, Iyer LM, Tasumi S. et al. 2010. A structural basis for antigen recognition by the T cell–like lymphocytes of sea lamprey. PNAS 107:13408–13 [Google Scholar]
  23. Diaz M, Velez J, Singh M, Cerny J, Flajnik MF. 1999. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int. Immunol. 11:825–33 [Google Scholar]
  24. Du Pasquier L, Flajnik MF. 1990. Expression of MHC class II antigens during Xenopus development. Dev. Immunol. 1:85–95 [Google Scholar]
  25. Du Pasquier L, Robert J, Courtet M, Mussmann R. 2000. B-cell development in the amphibian Xenopus. Immunol. Rev. 175:201–13 [Google Scholar]
  26. Endres R, Alimzhanov MB, Plitz T, Futterer A, Kosco-Vilbois MH. et al. 1999. Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J. Exp. Med. 189:159–68 [Google Scholar]
  27. Fange R, Pulsford A. 1983. Structural studies on lymphomyeloid tissues of the dogfish, Scyliorhinus canicula L. Cell Tissue Res 230:337–51 [Google Scholar]
  28. Flajnik MF. 2002. Comparative analyses of immunoglobulin genes: surprises and portents. Nat. Rev. Immunol. 2:688–98 [Google Scholar]
  29. Flajnik MF. 2014. Re-evaluation of the immunological Big Bang. Curr. Biol. 24:R1060–65 [Google Scholar]
  30. Flajnik MF, Du Pasquier L. 2004. Evolution of innate and adaptive immunity: Can we draw a line?. Trends Immunol 25:640–44 [Google Scholar]
  31. Flajnik MF, Du Pasquier L. 2013. Evolution of the immune system. Fundamental Immunology WE Paul 67–128 Philadelphia: Lippincroft-Raven, 7th ed.. [Google Scholar]
  32. Gorelik L, Gilbride K, Dobles M, Kalled SL, Zandman D, Scott ML. 2003. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J. Exp. Med. 198:937–45 [Google Scholar]
  33. Haugland GT, Jordal AE, Wergeland HI. 2012. Characterization of small, mononuclear blood cells from salmon having high phagocytic capacity and ability to differentiate into dendritic like cells. PLOS ONE 7:e49260 [Google Scholar]
  34. Hirano M, Guo P, McCurley N, Schorpp M, Das S. et al. 2013. Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501:435–38 [Google Scholar]
  35. Hofmann J, Greter M, Du Pasquier L, Becher B. 2010. B-cells need a proper house, whereas T-cells are happy in a cave: the dependence of lymphocytes on secondary lymphoid tissues during evolution. Trends Immunol. 31:144–53 [Google Scholar]
  36. Horton JD, Manning MJ. 1974. Effect of early thymectomy on the cellular changes occurring in the spleen of the clawed toad following administration of soluble antigen. Immunology 26:797–807 [Google Scholar]
  37. Hsu E. 1998. Mutation, selection, and memory in B lymphocytes of exothermic vertebrates. Immunol. Rev. 162:25–36 [Google Scholar]
  38. Jenkins MK, Moon JJ. 2012. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol. 188:4135–40 [Google Scholar]
  39. Klaus GG, Humphrey JH, Kunkl A, Dongworth DW. 1980. The follicular dendritic cell: its role in antigen presentation in the generation of immunological memory. Immunol. Rev. 53:3–28 [Google Scholar]
  40. Koni PA, Sacca R, Lawton P, Browning JL, Ruddle NH, Flavell RA. 1997. Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 6:491–500 [Google Scholar]
  41. Koopman G, Parmentier HK, Schuurman HJ, Newman W, Meijer CJ, Pals ST. 1991. Adhesion of human B cells to follicular dendritic cells involves both the lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 and very late antigen 4/vascular cell adhesion molecule 1 pathways. J. Exp. Med. 173:1297–304 [Google Scholar]
  42. Kranich J, Krautler NJ, Heinen E, Polymenidou M, Bridel C. et al. 2008. Follicular dendritic cells control engulfment of apoptotic bodies by secreting Mfge8. J. Exp. Med. 205:1293–302 [Google Scholar]
  43. Krautler NJ, Kana V, Kranich J, Tian Y, Perera D. et al. 2012. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150:194–206 [Google Scholar]
  44. Kroese FG, Leceta J, Dopp EA, Herraez MP, Nieuwenhuis P, Zapata A. 1985. Dendritic immune complex trapping cells in the spleen of the snake, Python reticulatus. Dev. Comp. Immunol. 9:641–52 [Google Scholar]
  45. Leceta J, Zapata A. 1985. Seasonal changes in the thymus and spleen of the turtle, Mauremys caspica. A morphometrical, light microscopical study. Dev. Comp. Immunol. 9:653–68 [Google Scholar]
  46. Leceta J, Zapata AG. 1991. White pulp compartments in the spleen of the turtle Mauremys caspica. Cell Tissue Res. 266:605–13 [Google Scholar]
  47. Li J, Das S, Herrin BR, Hirano M, Cooper MD. 2013. Definition of a third VLR gene in hagfish. PNAS 110:15013–18 [Google Scholar]
  48. Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H. et al. 2007. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8:1255–65 [Google Scholar]
  49. Litman GW, Hinds K, Berger L, Murphy K, Litman R. 1985. Structure and organization of immunoglobulin VH genes in Heterodontus, a phylogenetically primitive shark. Dev. Comp. Immunol. 9:749–58 [Google Scholar]
  50. Lugo-Villarino G, Balla KM, Stachura DL, Banuelos K, Werneck MB, Traver D. 2010. Identification of dendritic antigen-presenting cells in the zebrafish. PNAS 107:15850–55 [Google Scholar]
  51. Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG. 2000. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. PNAS 97:12694–99 [Google Scholar]
  52. Magor KE, Miranzo Navarro D, Barber MR, Petkau K, Fleming-Canepa X. et al. 2013. Defense genes missing from the flight division. Dev. Comp. Immunol. 41:377–88 [Google Scholar]
  53. Manning MJ, Horton JD. 1969. Histogenesis of lymphoid organs in larvae of the South African clawed toad, Xenopus laevis (Daudin). J. Embryol. Exp. Morphol. 22:265–77 [Google Scholar]
  54. Mebius RE, Kraal G. 2005. Structure and function of the spleen. Nat. Rev. Immunol. 5:606–16 [Google Scholar]
  55. Mescher AL, Wolf WL, Moseman EA, Hartman B, Harrison C. et al. 2007. Cells of cutaneous immunity in Xenopus: studies during larval development and limb regeneration. Dev. Comp. Immunol. 31:383–93 [Google Scholar]
  56. Mussmann R, Courtet M, Schwager J, Du Pasquier L. 1997. Microsites for immunoglobulin switch recombination breakpoints from Xenopus to mammals. Eur. J. Immunol. 27:2610–19 [Google Scholar]
  57. Mussmann R, Du Pasquier L, Hsu E. 1996. Is Xenopus IgX an analog of IgA?. Eur. J. Immunol. 26:2823–30 [Google Scholar]
  58. Neely HR, Flajnik MF. 2015. CXCL13 responsiveness but not CXCR5 expression by late transitional B cells initiates splenic white pulp formation. J. Immunol. 194:2616–23 [Google Scholar]
  59. Ngo VN, Korner H, Gunn MD, Schmidt KN, Riminton DS. et al. 1999. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189:403–12 [Google Scholar]
  60. Ohta Y, Flajnik M. 2006. IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates. PNAS 103:10723–28 [Google Scholar]
  61. Olah I, Nagy N. 2013. Retrospection to discovery of bursal function and recognition of avian dendritic cells; past and present. Dev. Comp. Immunol. 41:310–15 [Google Scholar]
  62. Pasparakis M, Alexopoulou L, Episkopou V, Kollias G. 1996. Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184:1397–411 [Google Scholar]
  63. Pitchappan R, Muthukkaruppan V. 1977. Thymus-dependent lymphoid regions in the spleen of the lizard, Calotes versicolor. J. Exp. Zool. 199:177–88 [Google Scholar]
  64. Roberts CW, Shutter JR, Korsmeyer SJ. 1994. Hox11 controls the genesis of the spleen. Nature 368:747–49 [Google Scholar]
  65. Rumfelt LL, Diaz M, Lohr RL, Mochon E, Flajnik MF. 2004. Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish. J. Immunol. 173:1129–39 [Google Scholar]
  66. Rumfelt LL, McKinney EC, Taylor E, Flajnik MF. 2002. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand. J. Immunol. 56:130–48 [Google Scholar]
  67. Salinas I. 2015. The mucosal immune system of teleost fish. Biology 4:525–39 [Google Scholar]
  68. Saunders HL, Oko AL, Scott AN, Fan CW, Magor BG. 2010. The cellular context of AID expressing cells in fish lymphoid tissues. Dev. Comp. Immunol. 34:669–76 [Google Scholar]
  69. Sepahi A, Salinas I. 2016. The evolution of nasal immune systems in vertebrates. Mol. Immunol. 69:131–38 [Google Scholar]
  70. Smith SL, Sim RB, Flajnik MF. 2015. Immunobiology of the Shark Boca Raton, FL: CRC Press
  71. Steiniger B, Ulfig N, Risse M, Barth PJ. 2007. Fetal and early post-natal development of the human spleen: from primordial arterial B cell lobules to a non-segmented organ. Histochem. Cell Biol. 128:205–15 [Google Scholar]
  72. Steiniger BS. 2015. Human spleen microanatomy: why mice do not suffice. Immunology 145:334–46 [Google Scholar]
  73. Steinman RM. 2012. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30:1–22 [Google Scholar]
  74. Sugimura M, Hashimoto Y, Nakanishi YH. 1977. Thymus- and bursa-dependent areas in duck lymph nodes. Jpn. J. Vet. Res. 25:7–16 [Google Scholar]
  75. Sun Y, Wei Z, Li N, Zhao Y. 2013. A comparative overview of immunoglobulin genes and the generation of their diversity in tetrapods. Dev. Comp. Immunol. 39:103–9 [Google Scholar]
  76. Suzuki K, Kawamoto S, Maruya M, Fagarasan S. 2010. GALT: organization and dynamics leading to IgA synthesis. Adv. Immunol. 107:153–85 [Google Scholar]
  77. Tangye SG. 2011. Staying alive: regulation of plasma cell survival. Trends Immunol. 32:595–602 [Google Scholar]
  78. Tonegawa S. 1983. Somatic generation of antibody diversity. Nature 302:575–81 [Google Scholar]
  79. Turpen JB, Smith PB. 1986. Analysis of hemopoietic lineage of accessory cells in the developing thymus of Xenopus laevis. J. Immunol. 136:412–21 [Google Scholar]
  80. Vondenhoff MF, Desanti GE, Cupedo T, Bertrand JY, Cumano A. et al. 2008. Separation of splenic red and white pulp occurs before birth in a LTαβ-independent manner. J. Leukoc. Biol. 84:152–61 [Google Scholar]
  81. Wittamer V, Bertrand JY, Gutschow PW, Traver D. 2011. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117:7126–35 [Google Scholar]
  82. Yasuda M, Kajiwara E, Ekino S, Taura Y, Hirota Y. et al. 2003. Immunobiology of chicken germinal center. I. Changes in surface Ig class expression in the chicken splenic germinal center after antigenic stimulation. Dev. Comp. Immunol. 27:159–66 [Google Scholar]
  83. Yasuda M, Taura Y, Yokomizo Y, Ekino S. 1998. A comparative study of germinal center: fowls and mammals. Comp. Immunol. Microbiol. Infect. Dis. 21:179–89 [Google Scholar]
  84. Yu P, Wang Y, Chin RK, Martinez-Pomares L, Gordon S. et al. 2002. B cells control the migration of a subset of dendritic cells into B cell follicles via CXC chemokine ligand 13 in a lymphotoxin-dependent fashion. J. Immunol. 168:5117–23 [Google Scholar]
  85. Zapata AG, Torroba M, Sacedón R, Varas A, Vicente A. 1996. Structure of the lymphoid organs of elasmobranchs. J. Exp. Zool. 275:125–43 [Google Scholar]
  86. Zhu C, Lee V, Finn A, Senger K, Zarrin AA. et al. 2012. Origin of immunoglobulin isotype switching. Curr. Biol. 22:872–80 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error