Classically, white adipose tissue (WAT) was considered an inert component of connective tissue but is now appreciated as a major regulator of metabolic physiology and endocrine homeostasis. Recent work defining how WAT develops and expands in vivo emphasizes the importance of specific locations of WAT or depots in metabolic regulation. Interestingly, mature white adipocytes are integrated into several tissues. A new perspective regarding the in vivo regulation and function of WAT in these tissues has highlighted an essential role of adipocytes in tissue homeostasis and regeneration. Finally, there has been significant progress in understanding how mature adipocytes regulate the pathology of several diseases. In this review, we discuss these novel roles of WAT in the homeostasis and regeneration of epithelial, muscle, and immune tissues and how they contribute to the pathology of several disorders.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Albu JB, Kovera AJ, Allen L, Wainwright M, Berk E. et al. 2005. Independent association of insulin resistance with larger amounts of intermuscular adipose tissue and a greater acute insulin response to glucose in African American than in white nondiabetic women. Am. J. Clin. Nutr. 82:61210–17 [Google Scholar]
  2. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S. et al. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:2149–61 [Google Scholar]
  3. Arkan MC, Hevener AL, Greten FR, Maeda S, Li Z-W. et al. 2005. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11:2191–98 [Google Scholar]
  4. Arrighi N, Moratal C, Ment NCE, Giorgetti-Peraldi S, Peraldi P. et al. 2015. Characterization of adipocytes derived from fibro/adipogenic progenitors resident in human skeletal muscle. Cell Death Dis. 6:4e1733–10 [Google Scholar]
  5. Asterholm IW, Tao C, Morley TS, Wang QA, Delgado-Lopez F. et al. 2014. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20:1103–18 [Google Scholar]
  6. Baer PC, Geiger H. 2012. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int. 2012:812693 [Google Scholar]
  7. Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. 2005. Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54:82351–59 [Google Scholar]
  8. Bapat SP, Suh JM, Fang S, Liu S, Zhang Y. et al. 2015. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528:7580137–41 [Google Scholar]
  9. Benoliel AM, Kahn-Perles B, Imbert J, Verrando P. 1997. Insulin stimulates haptotactic migration of human epidermal keratinocytes through activation of NF-κB transcription factor. J. Cell Sci. 110:Pt. 172089–97 [Google Scholar]
  10. Berry R, Rodeheffer MS. 2013. Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Biol. 15:3302–8 [Google Scholar]
  11. Billon N, Iannarelli P, Monteiro MC, Glavieux-Pardanaud C, Richardson WD. et al. 2007. The generation of adipocytes by the neural crest. Development 134:122283–92 [Google Scholar]
  12. Bing C, Russell S, Becket E, Pope M, Tisdale MJ. 2006. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br. J. Cancer 95:81028–37 [Google Scholar]
  13. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. 2004. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118:5635–48 [Google Scholar]
  14. Bochet L, Lehuédé C, Dauvillier S, Wang YY, Dirat B. 2013. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73:185657–68 [Google Scholar]
  15. Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M. et al. 2009. Increased bone marrow fat in anorexia nervosa. J. Clin. Endocrinol. Metab. 94:62129–36 [Google Scholar]
  16. Bridges AG, von Kuster LC, Estes SA. 2000. Lipedematous alopecia. Cutis 65:4199–202 [Google Scholar]
  17. Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L. et al. 2005. Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat. Med. 11:2183–90 [Google Scholar]
  18. Castellana D, Paus R, Perez-Moreno M. 2014. Macrophages contribute to the cyclic activation of adult hair follicle stem cells. PLOS Biol. 12:12e1002002 [Google Scholar]
  19. Chase HB, Montagna W, Malone JD. 1953. Changes in the skin in relation to the hair growth cycle. Anat. Rec. 116:175–81 [Google Scholar]
  20. Chavey C, Mari B, Monthouel M-N, Bonnafous S, Anglard P. et al. 2003. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278:1411888–96 [Google Scholar]
  21. Chun T-H, Hotary KB, Sabeh F, Saltiel AR, Allen ED, Weiss SJ. 2006. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125:3577–91 [Google Scholar]
  22. Cipolletta D, Cohen P, Spiegelman BM, Benoist C, Mathis D. 2015. Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects. PNAS 112:2482–87 [Google Scholar]
  23. Condé-Green A, Kotamarti V, Marano MA, Lee ES, Granick MS. 2016. Adipose stem cells isolated from excised burned tissue: Is there potential for clinical use?. Plast. Reconstr. Surg. 137:4767e–68e [Google Scholar]
  24. Cotsarelis G, Sun TT, Lavker RM. 1990. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:71329–37 [Google Scholar]
  25. Couldrey C, Moitra J, Vinson C, Anver M, Nagashima K, Green J. 2002. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev. Dyn. 223:4459–68 [Google Scholar]
  26. Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. 2010. The phenotype of murine wound macrophages. J. Leukoc. Biol. 87:159–67 [Google Scholar]
  27. Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S. et al. 2010. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J. Bone Miner. Res. 25:92078–88 [Google Scholar]
  28. Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S. et al. 2011. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:72455–65 [Google Scholar]
  29. DiSpirito JR, Mathis D. 2015. Immunological contributions to adipose tissue homeostasis. Semin. Immunol. 27:5315–21 [Google Scholar]
  30. Donati G, Proserpio V, Lichtenberger BM, Natsuga K, Sinclair R. et al. 2014. Epidermal Wnt/β-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. PNAS 111:15E1501–9 [Google Scholar]
  31. Driskell RR, Jahoda CAB, Chuong C-M, Watt FM, Horsley V. 2014. Defining dermal adipose tissue. Exp. Dermatol. 23:9629–31 [Google Scholar]
  32. Driskell RR, Lichtenberger BM, Hoste E, Kretzschmar K, Simons BD. et al. 2013. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504:7479277–81 [Google Scholar]
  33. Du B, Cawthorn WP, Su A, Doucette CR, Yao Y. et al. 2013. The transcription factor paired-related homeobox 1 (Prrx1) inhibits adipogenesis by activating transforming growth factor-β (TGFβ) signaling. J. Biol. Chem. 288:53036–47 [Google Scholar]
  34. Duong MN, Cleret A, Matera E-L, Chettab K, Mathé D. et al. 2015. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast Cancer Res. 17:157 [Google Scholar]
  35. Ebmeier S, Horsley V. 2015. Origin of fibrosing cells in systemic sclerosis. Curr. Opin. Rheumatol. 27:6555–62 [Google Scholar]
  36. Elias JJ, Pitelka DR, Armstrong RC. 1973. Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177:4533–47 [Google Scholar]
  37. Enser M, Avery NC. 1984. Mechanical and chemical properties of the skin and its collagen from lean and obese-hyperglycaemic (ob/ob) mice. Diabetologia 27:144–49 [Google Scholar]
  38. Fantuzzi G. 2008. Adiponectin and inflammation: consensus and controversy. J. Allergy Clin. Immunol. 121:2326–30 [Google Scholar]
  39. Fazeli PK, Bredella MA, Freedman L, Thomas BJ, Breggia A. et al. 2012. Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J. Bone Miner. Res. 27:91864–71 [Google Scholar]
  40. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS. et al. 2013. Marrow fat and bone—new perspectives. J. Clin. Endocrinol. Metab. 98:3935–45 [Google Scholar]
  41. Festa E, Fretz J, Berry R, Schmidt B, Rodeheffer M. et al. 2011. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146:5761–71 [Google Scholar]
  42. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J. et al. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15:8930–39 [Google Scholar]
  43. Fleischmajer R, Damanio V, Nedwich A. 1971. Scleroderma and the subcutaneous tissue. Science 171:39751019–21 [Google Scholar]
  44. Frank S, Stallmeyer B, Kämpfer H, Kolb N, Pfeilschifter J. 2000. Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J. Clin. Investig. 106:4501–9 [Google Scholar]
  45. Frayn KN, Arner P, Yki-Järvinen H. 2006. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 42:89–103 [Google Scholar]
  46. Friedman SL, Sheppard D, Duffield JS. 2013. Therapy for fibrotic diseases: nearing the starting line. Sci. Transl. Med. 5:167167sr1 [Google Scholar]
  47. Fukumoto D, Kubo Y, Saito M, Arase S. 2009. Centrifugal lipodystrophy of the scalp presenting with an arch-form alopecia: a 10-year follow-up observation. J. Dermatol. 36:9499–503 [Google Scholar]
  48. Furuhashi M, Fucho R, Görgün CZ, Tuncman G, Cao H, Hotamisligil GS. 2008. Adipocyte/macrophage fatty acid–binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J. Clin. Investig. 118:72640–50 [Google Scholar]
  49. Gabbiani G, Ryan GB, Majno G. 1971. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27:5549–50 [Google Scholar]
  50. Genander M, Cook PJ, Ramsköld D, Keyes BE, Mertz AF. et al. 2014. BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell 15:5619–33 [Google Scholar]
  51. Gerdes S, Rostami-Yazdi M, Mrowietz U. 2011. Adipokines and psoriasis. Exp. Dermatol. 20:281–87 [Google Scholar]
  52. Giordano C, Chemi F, Panza S, Barone I, Bonofiglio D. et al. 2015. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget 7:21262–75 [Google Scholar]
  53. Goodson WH, Hunt TK. 1979. Deficient collagen formation by obese mice in a standard wound model. Am. J. Surg. 138:5692–94 [Google Scholar]
  54. Goren I, Allmann N, Yogev N, Schürmann C, Linke A. et al. 2010. A transgenic mouse model of inducible macrophage depletion. AJPA 175:1132–47 [Google Scholar]
  55. Goren I, Kämpfer H, Podda M, Pfeilschifter J, Frank S. 2003. Leptin and wound inflammation in diabetic ob/ob mice: differential regulation of neutrophil and macrophage influx and a potential role for the scab as a sink for inflammatory cells and mediators. Diabetes 52:112821–32 [Google Scholar]
  56. Gouon-Evans V, Pollard JW. 2002. Unexpected deposition of brown fat in mammary gland during postnatal development. Mol. Endocrinol. 16:112618–27 [Google Scholar]
  57. Guilherme A, Virbasius JV, Puri V, Czech MP. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9:5367–77 [Google Scholar]
  58. Hausman GJ, Campion DR, Richardson RL, Martin RJ. 1981. Adipocyte development in the rat hypodermis. Am. J. Anat. 161:185–100 [Google Scholar]
  59. Hegele RA. 2005. Lessons from human mutations in PPARγ. Int. J. Obes. Relat. Metab. Disord. 29:S31–35 [Google Scholar]
  60. Herrmann T, van der Hoeven F, Grone H-J, Stewart AF, Langbein L. et al. 2003. Mice with targeted disruption of the fatty acid transport protein 4 (Fatp 4, Slc27a4) gene show features of lethal restrictive dermopathy. J. Cell Biol. 161:61105–15 [Google Scholar]
  61. Herroon MK, Rajagurubandara E, Hardaway AL, Powell K, Turchick A. et al. 2013. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms. Oncotarget 4:112108–23 [Google Scholar]
  62. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A. et al. 2012. Recent developments in myofibroblast biology. Am. J. Pathol. 180:41340–55 [Google Scholar]
  63. Hosoyama T, Ishiguro N, Yamanouchi K, Nishihara M. 2009. Degenerative muscle fiber accelerates adipogenesis of intramuscular cells via RhoA signaling pathway. Differentiation 77:4350–59 [Google Scholar]
  64. Hovey RC, McFadden TB, Akers RM. 1999. Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J. Mammary Gland Biol. Neoplasia 4:153–68 [Google Scholar]
  65. Howlett AR, Bissell MJ. 1993. The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epithel. Cell Biol. 2:279–89 [Google Scholar]
  66. Hu X, Juneja SC, Maihle NJ, Cleary MP. 2002. Leptin—a growth factor in normal and malignant breast cells and for normal mammary gland development. J. Natl. Cancer Inst. 94:221704–11 [Google Scholar]
  67. Itani SI, Ruderman NB, Schmieder F, Boden G. 2002. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes 51:72005–11 [Google Scholar]
  68. Iyengar P, Combs TP, Shah SJ, Gouon-Evans V, Pollard JW. et al. 2003. Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization. Oncogene 22:416408–23 [Google Scholar]
  69. Iyengar P, Espina V, Williams TW, Lin Y, Berry D. et al. 2005. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Investig. 115:51163–76 [Google Scholar]
  70. Jahoda CA, Horne KA, Oliver RF. 1984. Induction of hair growth by implantation of cultured dermal papilla cells. Nature 311:5986560–62 [Google Scholar]
  71. Janas-Kozik M, Stachowicz M, Krupka-Matuszczyk I, Szymszal J, Krysta K. et al. 2011. Plasma levels of leptin and orexin A in the restrictive type of anorexia nervosa. Regul. Pept. 168:1–35–9 [Google Scholar]
  72. Jankovic A, Golic I, Markelic M, Stancic A, Otasevic V. et al. 2015. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation. J. Physiol. 593:153267–80 [Google Scholar]
  73. Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS. 2015. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat. Cell Biol. 17:4376–85 [Google Scholar]
  74. Jeninga EH, Gurnell M, Kalkhoven E. 2009. Functional implications of genetic variation in human PPARγ. Trends Endocrinol. Metab. 20:8380–87 [Google Scholar]
  75. Jiang Y, Berry DC, Tang W, Graff JM. 2014. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep. 9:31007–22 [Google Scholar]
  76. Jin CE, Xiao L, Ge ZH, Zhan XB, Zhou HX. 2015. Role of adiponectin in adipose tissue wound healing. Genet. Mol. Res. 14:38883–91 [Google Scholar]
  77. Joe AWB, Yi L, Natarajan A, Le Grand F, So L. et al. 2010. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12:2153–63 [Google Scholar]
  78. Kandyba E, Leung Y, Chen Y-B, Widelitz R, Chuong C-M, Kobielak K. 2013. Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. PNAS 110:41351–56 [Google Scholar]
  79. Kanneganti T-D, Dixit VD. 2012. Immunological complications of obesity. Nat. Immunol. 13:8707–12 [Google Scholar]
  80. Kasza I, Suh Y, Wollny D, Clark RJ, Roopra A. et al. 2014. Syndecan-1 is required to maintain intradermal fat and prevent cold stress. PLOS Genet. 10:8e1004514 [Google Scholar]
  81. Kawai K, Kageyama A, Tsumano T, Nishimoto S, Fukuda K. et al. 2008. Effects of adiponectin on growth and differentiation of human keratinocytes—implication of impaired wound healing in diabetes. Biochem. Biophys. Res. Commun. 374:2269–73 [Google Scholar]
  82. Khan T, Muise ES, Iyengar P, Wang ZV, Chandalia M. et al. 2009. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29:61575–91 [Google Scholar]
  83. Kim W-S, Park B-S, Sung J-H, Yang J-M, Park S-B. et al. 2007. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci. 48:115–24 [Google Scholar]
  84. Kobielak K, Pasolli HA, Alonso L, Polak L, Fuchs E. 2003. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J. Cell Biol. 163:3609–23 [Google Scholar]
  85. Kobielak K, Stokes N, de la Cruz J, Polak L, Fuchs E. 2007. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. PNAS 104:2410063–68 [Google Scholar]
  86. Koellensperger E, Lampe K, Beierfuss A, Gramley F, Germann G, Leimer U. 2014. Intracutaneously injected human adipose tissue–derived stem cells in a mouse model stay at the site of injection. J. Plast. Reconstr. Aesthet. Surg. 67:6844–50 [Google Scholar]
  87. Kolodin D, van Panhuys N, Li C, Magnuson AM, Cipolletta D. et al. 2015. Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab. 21:4543–57 [Google Scholar]
  88. Krotkiewski M, Björntorp P. 1975. The effects of dexamethasone and starvation on body composition and regional adipose tissue cellularity in the rat. Acta Endocrinol. 80:4667–75 [Google Scholar]
  89. Krotkiewski M, Mandroukas K, Morgan L, William-Olsson T, Feurle GE. et al. 1983. Effects of physical training on adrenergic sensitivity in obesity. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55:61811–17 [Google Scholar]
  90. Kuk JL, Saunders TJ, Davidson LE, Ross R. 2009. Age-related changes in total and regional fat distribution. Ageing Res. Rev. 8:4339–48 [Google Scholar]
  91. Kwan KM, Li AG, Wang X-J, Wurst W, Behringer RR. 2004. Essential roles of BMPR-IA signaling in differentiation and growth of hair follicles and in skin tumorigenesis. Genesis 39:110–25 [Google Scholar]
  92. Landskroner-Eiger S, Park J, Israel D, Pollard JW, Scherer PE. 2010. Morphogenesis of the developing mammary gland: stage-dependent impact of adipocytes. Dev. Biol. 344:2968–78 [Google Scholar]
  93. Lee JO, Kim N, Lee HJ, Lee YW, Kim SJ. et al. 2016. Resistin, a fat-derived secretory factor, promotes metastasis of MDA-MB-231 human breast cancer cells through ERM activation. Sci. Rep. 6:18923 [Google Scholar]
  94. Lee M-J, Wu Y, Fried SK. 2013. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Aspects Med. 34:11–11 [Google Scholar]
  95. Liu Z, Xu J, He J, Liu H, Lin P. et al. 2015. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation. Oncotarget 6:3334329–41 [Google Scholar]
  96. Lowes MA, Suárez-Fariñas M, Krueger JG. 2014. Immunology of psoriasis. Annu. Rev. Immunol. 32:227–55 [Google Scholar]
  97. Lu CP, Polak L, Rocha AS, Pasolli HA, Chen S-C. et al. 2012. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150:1136–50 [Google Scholar]
  98. Lucas T, Waisman A, Ranjan R, Roes J, Krieg T. et al. 2010. Differential roles of macrophages in diverse phases of skin repair. J. Immunol. 184:73964–77 [Google Scholar]
  99. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. 2007. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56:116–23 [Google Scholar]
  100. Marangoni RG, Korman B, Wei J. 2014. Myofibroblasts in cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol. 67:41062–73 [Google Scholar]
  101. Mariman ECM, Wang P. 2010. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell. Mol. Life Sci. 67:81277–92 [Google Scholar]
  102. Martins V, Gonzalez De Los Santos F, Wu Z, Capelozzi V, Phan SH, Liu T. 2015. FIZZ1-induced myofibroblast transdifferentiation from adipocytes and its potential role in dermal fibrosis and lipoatrophy. Am. J. Pathol. 185:102768–76 [Google Scholar]
  103. Matsumura H, Engrav LH, Gibran NS, Yang TM, Grant JH. et al. 2001. Cones of skin occur where hypertrophic scar occurs. Wound Repair Regen. 9:4269–77 [Google Scholar]
  104. Mauer J, Chaurasia B, Plum L, Quast T, Hampel B. et al. 2010. Myeloid cell–restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance. PLOS Genet 6:5e1000938 [Google Scholar]
  105. Mirza R, Koh TJ. 2011. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine 56:2256–64 [Google Scholar]
  106. Mirza RE, Koh TJ. 2014. Contributions of cell subsets to cytokine production during normal and impaired wound healing. Cytokine 71:2409–12 [Google Scholar]
  107. Mitterberger MC, Lechner S, Mattesich M, Zwerschke W. 2014. Adipogenic differentiation is impaired in replicative senescent human subcutaneous adipose–derived stromal/progenitor cells. J. Gerontol. A 69:113–24 [Google Scholar]
  108. Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M. et al. 2014. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 29:3340–49 [Google Scholar]
  109. Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O. et al. 1998. Life without white fat: a transgenic mouse. Genes Dev. 12:203168–81 [Google Scholar]
  110. Montagna W, Carlisle K, Brenner RM. 1988. Wound healing in the sex skin of pig-tailed macaques. Arch. Dermatol. Res. 280:Suppl.68–84 [Google Scholar]
  111. Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K. et al. 2009. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp. Med. 206:112483–96 [Google Scholar]
  112. Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R. et al. 2004. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. PNAS 101:4816801–6 [Google Scholar]
  113. Nauta A, Seidel C, Deveza L, Montoro D, Grova M. et al. 2012. Adipose-derived stromal cells overexpressing vascular endothelial growth factor accelerate mouse excisional wound healing. Mol. Ther. 21:2445–55 [Google Scholar]
  114. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ. 2009. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:7252259–63 [Google Scholar]
  115. Nguyen M-H, Cheng M, Koh TJ. 2011. Impaired muscle regeneration in ob/ob and db/db mice. Sci. World J. 11:1525–35 [Google Scholar]
  116. Nguyen MTA, Favelyukis S, Nguyen A-K, Reichart D, Scott PA. et al. 2007. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282:4835279–92 [Google Scholar]
  117. Nicholls DG, Locke RM. 1984. Thermogenic mechanisms in brown fat. Physiol. Rev. 64:11–64 [Google Scholar]
  118. O'Brien J, Lyons T, Monks J, Lucia MS, Wilson RS. et al. 2010. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. AJPA 176:31241–55 [Google Scholar]
  119. Ohgo S, Hasegawa S, Hasebe Y, Mizutani H, Nakata S, Akamatsu H. 2013. Bleomycin inhibits adipogenesis and accelerates fibrosis in the subcutaneous adipose layer through TGF-β1. Exp. Dermatol. 22:11769–71 [Google Scholar]
  120. Olsen K, Danielsen K, Wilsgaard T, Sangvik M, Sollid JUE. et al. 2013. Obesity and Staphylococcus aureus nasal colonization among women and men in a general population. PLOS ONE 8:5e63716 [Google Scholar]
  121. Ommen P, Stjernholm T, Kragstrup T, Raaby L, Johansen C. et al. 2015. The role of leptin in psoriasis comprises a proinflammatory response by the dermal fibroblast. Br. J. Dermatol. 174:1187–90 [Google Scholar]
  122. Osborn O, Olefsky JM. 2012. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18:3363–74 [Google Scholar]
  123. Ouchi N, Parker JL, Lugus JJ, Walsh K. 2011. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11:285–97 [Google Scholar]
  124. Pajvani UB, Trujillo ME, Combs TP, Iyengar P, Jelicks L. et al. 2005. Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat. Med. 11:7797–803 [Google Scholar]
  125. Pang C, Gao Z, Yin J, Zhang J, Jia W, Ye J. 2008. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am. J. Physiol. Endocrinol. Metab. 295:2E313–22 [Google Scholar]
  126. Pasarica M, Gowronska-Kozak B, Burk D, Remedios I, Hymel D. et al. 2009. Adipose tissue collagen VI in obesity. J. Clin. Endocrinol. Metab. 94:125155–62 [Google Scholar]
  127. Patsouris D, Li P-P, Thapar D, Chapman J, Olefsky JM, Neels JG. 2008. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8:4301–9 [Google Scholar]
  128. Picon-Ruiz M, Pan C, Drews-Elger K, Jang K, Besser AH. et al. 2016. Interactions between adipocytes and breast cancer cells stimulate cytokine production and drive Src/Sox2/miR-302b-mediated malignant progression. Cancer Res. 76:2491–504 [Google Scholar]
  129. Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I. et al. 2013. PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J. Exp. Med. 210:71351–67 [Google Scholar]
  130. Piraccini BM, Voudouris S, Pazzaglia M, Rech G, Vicenzi C, Tosti A. 2006. Lipedematous alopecia of the scalp. Dermatol. Online J. 12:26 [Google Scholar]
  131. Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK. et al. 2008. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451:7176340–44 [Google Scholar]
  132. Pujol E, Proenza AM, Roca P, Lladó I. 2006. Changes in mammary fat pad composition and lipolytic capacity throughout pregnancy. Cell Tissue Res. 323:3505–11 [Google Scholar]
  133. Ring BD, Scully S, Davis CR, Baker MB, Cullen MJ. et al. 2000. Systemically and topically administered leptin both accelerate wound healing in diabetic ob/ob mice. Endocrinology 141:1446–49 [Google Scholar]
  134. Rodeheffer MS, Birsoy K, Friedman JM. 2008. Identification of white adipocyte progenitor cells in vivo. Cell 135:2240–49 [Google Scholar]
  135. Romanovsky AA. 2014. Skin temperature: its role in thermoregulation. Acta Physiol. 210:3498–507 [Google Scholar]
  136. Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I. et al. 2012. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487:496–99 [Google Scholar]
  137. Rosen ED, Spiegelman BM. 2006. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:7121847–53 [Google Scholar]
  138. Sakakura T, Sakagami Y, Nishizuka Y. 1982. Dual origin of mesenchymal tissues participating in mouse mammary gland embryogenesis. Dev. Biol. 91:1202–7 [Google Scholar]
  139. Salathia NS, Shi J, Zhang J, Glynne RJ. 2012. An in vivo screen of secreted proteins identifies adiponectin as a regulator of murine cutaneous wound healing. J. Investig. Dermatol. 133:3812–21 [Google Scholar]
  140. Sanchez-Gurmaches J, Guertin DA. 2014. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 5:1–13 [Google Scholar]
  141. Sassmann A, Offermanns S, Wettschureck N. 2010. Tamoxifen-inducible Cre-mediated recombination in adipocytes. Genesis 48:10618–25 [Google Scholar]
  142. Schipper HS, Prakken B, Kalkhoven E, Boes M. 2012. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol. Metab. 23:8407–15 [Google Scholar]
  143. Schmidt BA, Horsley V. 2013. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 140:71517–27 [Google Scholar]
  144. Schneider MR, Schmidt-Ullrich R, Paus R. 2009. The hair follicle as a dynamic miniorgan. Curr. Biol. 19:3R132–42 [Google Scholar]
  145. Sciorati C, Rigamonti E, Manfredi AA, Rovere-Querini P. 2016. Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ 23927–37
  146. Sennett R, Rendl M. 2012. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23:8917–27 [Google Scholar]
  147. Shibata S, Tada Y, Asano Y, Hau CS, Kato T. et al. 2012. Adiponectin regulates cutaneous wound healing by promoting keratinocyte proliferation and migration via the ERK signaling pathway. J. Immunol. 189:63231–41 [Google Scholar]
  148. Shipman AR, Millington GWM. 2011. Obesity and the skin. Br. J. Dermatol. 165:4743–50 [Google Scholar]
  149. Shi-wen X, Eastwood M, Stratton RJ, Denton CP, Leask A, Abraham DJ. 2009. Rosiglitazone alleviates the persistent fibrotic phenotype of lesional skin scleroderma fibroblasts. Rheumatology 49:2259–63 [Google Scholar]
  150. Sierra-Honigmann MR, Nath AK, Murakami C, García-Cardeña G, Papapetropoulos A. et al. 1998. Biological action of leptin as an angiogenic factor. Science 281:53831683–86 [Google Scholar]
  151. Sleeman JP, Christofori G, Fodde R, Collard JG, Berx G. et al. 2012. Concepts of metastasis in flux: the stromal progression model. Semin. Cancer Biol. 22:3174–86 [Google Scholar]
  152. Smith GP, Chan ESL. 2010. Molecular pathogenesis of skin fibrosis: insight from animal models. Curr. Rheumatol. Rep. 12:126–33 [Google Scholar]
  153. Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo J-L. et al. 2007. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 6:5386–97 [Google Scholar]
  154. Sommariva E, Brambilla S, Carbucicchio C, Gambini E, Meraviglia V. et al. 2016. Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy. Eur. Heart J. In press
  155. Song S-H, Lee M-O, Lee J-S, Jeong H-C, Kim H-G. et al. 2012. Genetic modification of human adipose-derived stem cells for promoting wound healing. J. Dermatol. Sci. 66:298–107 [Google Scholar]
  156. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA. et al. 2008. Dynamics of fat cell turnover in humans. Nature 453:7196783–87 [Google Scholar]
  157. Stenn KS, Paus R. 2001. Controls of hair follicle cycling. Physiol. Rev. 81:1449–94 [Google Scholar]
  158. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F. et al. 2006. Purification and unique properties of mammary epithelial stem cells. Nature 439:7079993–97 [Google Scholar]
  159. Strumia R. 2009. Skin signs in anorexia nervosa. Dermato-Endocrinology 1:5268–70 [Google Scholar]
  160. Sumikawa Y, Inui S, Nakajima T, Itami S. 2014. Hair cycle control by leptin as a new anagen inducer. Exp. Dermatol. 23:127–32 [Google Scholar]
  161. Sun K, Tordjman J, Clément K, Scherer PE. 2013. Fibrosis and adipose tissue dysfunction. Cell Metab. 18:4470–77 [Google Scholar]
  162. Tavassoli M, Houchin DN, Jacobs P. 1977. Fatty acid composition of adipose cells in red and yellow marrow: a possible determinant of haematopoietic potential. Scand. J. Haematol. 18:147–53 [Google Scholar]
  163. Taylor KR, Costanzo AE, Jameson JM. 2011. Dysfunctional γδ T cells contribute to impaired keratinocyte homeostasis in mouse models of obesity. J. Investig. Dermatol. 131:122409–18 [Google Scholar]
  164. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J. et al. 2010. Fat tissue, aging, and cellular senescence. Aging Cell 9:5667–84 [Google Scholar]
  165. Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C. et al. 2013. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 17:5644–56 [Google Scholar]
  166. Tchoukalova YD, Votruba SB, Tchkonia T, Giorgadze N, Kirkland JL, Jensen MD. 2010. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. PNAS 107:4218226–31 [Google Scholar]
  167. Treiber N, Maity P, Singh K, Kohn M, Keist AF. et al. 2011. Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue. Aging Cell 10:2239–54 [Google Scholar]
  168. Uezumi A, Fukada S, Yamamoto N, Ikemoto-Uezumi M, Nakatani M. et al. 2014. Identification and characterization of PDGFRα+ mesenchymal progenitors in human skeletal muscle. Cell Death Dis. 5:e1186 [Google Scholar]
  169. Uezumi A, Fukada S-I, Yamamoto N, Takeda S, Tsuchida K. 2010. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat. Cell Biol. 12:2143–52 [Google Scholar]
  170. Uezumi A, Ito T, Morikawa D, Shimizu N. 2011. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J. Cell Sci. 124:Pt. 213654–64 [Google Scholar]
  171. Uzum AK, Yucel B, Omer B, Issever H, Ozbey NC. 2009. Leptin concentration indexed to fat mass is increased in untreated anorexia nervosa (AN) patients. Clin. Endocrinol. 71:133–39 [Google Scholar]
  172. van den Bogaerdt AJ, van der Veen VC, van Zuijlen PPM, Reijnen L, Verkerk M. et al. 2009. Collagen cross-linking by adipose-derived mesenchymal stromal cells and scar-derived mesenchymal cells: Are mesenchymal stromal cells involved in scar formation?. Wound Repair Regen. 17:4548–58 [Google Scholar]
  173. Vasanthakumar A, Moro K, Xin A, Liao Y, Gloury R. et al. 2015. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue–resident regulatory T cells. Nat. Immunol. 16:3276–85 [Google Scholar]
  174. Wallace GQ, McNally EM. 2009. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu. Rev. Physiol. 71:37–57 [Google Scholar]
  175. Wang QA, Tao C, Gupta RK, Scherer PE. 2013. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19:101338–44 [Google Scholar]
  176. Watabe R, Yamaguchi T, Kabashima-Kubo R, Yoshioka M, Nishio D, Nakamura M. 2014. Leptin controls hair follicle cycling. Exp. Dermatol. 23:4228–29 [Google Scholar]
  177. Watson CJ. 2006. Involution: apoptosis and tissue remodelling that convert the mammary gland from milk factory to a quiescent organ. Breast Cancer Res. 8:2203 [Google Scholar]
  178. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S. et al. 2006. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Investig. 116:1115–24 [Google Scholar]
  179. Werner S, Breeden M, Hübner G, Greenhalgh DG, Longaker MT. 1994. Induction of keratinocyte growth factor expression is reduced and delayed during wound healing in the genetically diabetic mouse. J. Investig. Dermatol. 103:4469–73 [Google Scholar]
  180. Wertheimer E, Trebicz M, Eldar T, Gartsbein M, Nofeh-Moses S, Tennenbaum T. 2000. Differential roles of insulin receptor and insulin-like growth factor-1 receptor in differentiation of murine skin keratinocytes. J. Investig. Dermatol. 115:124–29 [Google Scholar]
  181. Wetzler C, Kämpfer H, Stallmeyer B, Pfeilschifter J, Frank S. 2000. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J. Investig. Dermatol. 115:2245–53 [Google Scholar]
  182. Wojciechowicz K, Gledhill K, Ambler CA, Manning CB, Jahoda CAB. 2013. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4. PLOS ONE 8:3e59811 [Google Scholar]
  183. Wojciechowicz K, Markiewicz E, Jahoda CAB. 2008. C/EBPα identifies differentiating preadipocytes around hair follicles in foetal and neonatal rat and mouse skin. Exp. Dermatol. 17:8675–80 [Google Scholar]
  184. Wynn TA. 2008. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214:2199–210 [Google Scholar]
  185. Xu H, Barnes GT, Yang Q, Tan G, Yang D. et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 112:121821–30 [Google Scholar]
  186. Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T. et al. 2015. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 4:e12997 [Google Scholar]
  187. Yang C-C, Sheu H-M, Chung P-L, Chang C-H, Tsai Y-S. et al. 2015. Leptin of dermal adipose tissue is differentially expressed during the hair cycle and contributes to adipocyte-mediated growth inhibition of anagen-phase vibrissa hair. Exp. Dermatol. 24:157–60 [Google Scholar]
  188. Yim J-E, Heshka S, Albu J, Heymsfield S, Kuznia P. et al. 2007. Intermuscular adipose tissue rivals visceral adipose tissue in independent associations with cardiovascular risk. Int. J. Obes. Relat. Metab. Disord. 31:91400–5 [Google Scholar]
  189. Yosipovitch G, DeVore A, Dawn A. 2007. Obesity and the skin: skin physiology and skin manifestations of obesity. J. Am. Acad. Dermatol. 56:6901–16 [Google Scholar]
  190. Zangani D, Darcy KM, Shoemaker S, Ip MM. 1999. Adipocyte-epithelial interactions regulate the in vitro development of normal mammary epithelial cells. Exp. Cell Res. 247:2399–409 [Google Scholar]
  191. Zhang J, Niu C, Ye L, Huang H, He X. et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:6960836–41 [Google Scholar]
  192. Zhang L-J, Guerrero-Juarez CF, Hata T, Bapat SP, Ramos R. et al. 2015. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347:621767–71 [Google Scholar]
  193. Zhang YV, Cheong J, Ciapurin N, McDermitt DJ, Tumbar T. 2009. Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5:3267–78 [Google Scholar]
  194. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. 2014. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15:2154–68 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error