1932

Abstract

Although most animals appear symmetric externally, they exhibit chirality within their body cavity, i.e., in terms of asymmetric organ position, directional organ looping, and lateralized organ function. Left-right (LR) asymmetry is determined genetically by intricate molecular interactions that occur during development. Key genes have been elucidated in several species. There are common mechanisms in vertebrates and invertebrates, but some appear to exhibit unique mechanisms. This review focuses on LR asymmetry formation in invertebrates, particularly , ascidians, and mollusks. It aims to understand the role of the genes that are key to creating LR asymmetry and how chirality information is converted/transmitted across the hierarchies from molecules to cells and from cells to tissues.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111822-010628
2024-10-02
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-111822-010628.html?itemId=/content/journals/10.1146/annurev-cellbio-111822-010628&mimeType=html&fmt=ahah

Literature Cited

  1. Abe M, Kuroda R. 2019.. The development of CRISPR for a mollusc establishes the formin Lsdia1 as the long-sought gene for snail dextral/sinistral coiling. . Development 146::dev175976
    [Crossref] [Google Scholar]
  2. Abe M, Takahashi H, Kuroda R. 2014.. Spiral cleavages determine the left-right body plan by regulating the Nodal pathway in monomorphic gastropods, Physa acuta. . Int. J. Dev. Biol. 58::51320
    [Crossref] [Google Scholar]
  3. Adams DS, Robinson KR, Fukumoto T, Yuan S, Albertson RC, et al. 2002.. Early H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. . Development 133::165771
    [Crossref] [Google Scholar]
  4. Avery OT, MacLeod CM, McCarty M. 1944.. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. . J. Exp. Med. 79::13758
    [Crossref] [Google Scholar]
  5. Bergmann DC, Lee M, Robertson B, Tsou MF, Rose LS, Wood WB. 2003.. Embryonic handedness choice in C. elegans involves the Gα protein GPA-16. . Development 130::573140
    [Crossref] [Google Scholar]
  6. Blum M, Fiested K, Thumberger T, Schweickert A. 2014.. The evolution and conservation of left-right patterning mechanisms. . Development 141::160313
    [Crossref] [Google Scholar]
  7. Boycott AE, Diver C. 1923.. On the inheritance of sinistrality in Limnaea peregra. . Proc. R. Soc. B 95::20713
    [Google Scholar]
  8. Boycott AE, Diver C, Garstang SL, Turner FM. 1930.. The inheritance of sinistrality in Lymnaea peregra. . Philos. Trans. R. Soc. B 219::51131
    [Google Scholar]
  9. Brown NA, Wolpert L. 1990.. The development of handedness in left/right asymmetry. . Development 109::19
    [Crossref] [Google Scholar]
  10. Chou SZ, Pollard TD. 2019.. Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. . PNAS 116::426574
    [Crossref] [Google Scholar]
  11. Chougule A, Lapraz F, Földi I, Cerezo D, Mihály J, Noselli S. 2020.. The Drosophila actin nucleator DAAM is essential for left-right asymmetry. . PLOS Genet. 23::e1008758
    [Crossref] [Google Scholar]
  12. Coutelis J-B, Gonzalez-Morales N, Geminard C, Noselli S. 2014.. Diversity and convergence in the mechanisms establishing L/R asymmetry in metazoan. . EMBO J. 15::92637
    [Crossref] [Google Scholar]
  13. Crampton HE Jr. 1894.. Reversal of cleavage in a sinistral gastropod. . Ann. N.Y. Acad. Sci. 8::16770
    [Crossref] [Google Scholar]
  14. Davison A, McDowell GS, Holden JM, Johnson HF, Koutsovoulos GD, et al. 2016.. Formin is associated with left-right asymmetry in the pond snail and the frog. . Curr. Biol. 26::65460
    [Crossref] [Google Scholar]
  15. Finnerty JR. 2003.. The origins of axial patterning in the metazoa: how old is bilateral symmetry?. Int. J. Dev. Biol. 47::52329
    [Google Scholar]
  16. Finnerty JR. 2005.. Did internal transport, rather than directed locomotion, favor the evolution of bilateral symmetry in animals?. BioEssays 27::117480
    [Crossref] [Google Scholar]
  17. Freeman G. 2009.. The rise of bilaterians. . Hist. Biol. 21::99114
    [Crossref] [Google Scholar]
  18. Grande C, Patel NH. 2009.. Nodal signaling is involved in left–right asymmetry in snails. . Nature 457::100711
    [Crossref] [Google Scholar]
  19. Hatori R, Ando T, Sasamua T, Nakazawa N, Nakamura M, et al. 2014.. Left–right asymmetry is formed in individual cells by intrinsic cell chirality. . Mech. Dev. 133::14662
    [Crossref] [Google Scholar]
  20. Hegan PS, Ostertag E, Geurts AM, Mooseker MS. 2015.. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells. . Cytoskeleton 72::50316
    [Crossref] [Google Scholar]
  21. Hershey AD, Chase M. 1952.. Independent functions of viral protein and nucleic acid in growth of bacteriophage. . J. Gen. Physiol. 36::3956
    [Crossref] [Google Scholar]
  22. Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, et al. 2004.. Actin polymerization-driven molecular movement of mDia1 in living cells. . Science 303::200710
    [Crossref] [Google Scholar]
  23. Hirokawa N, Tanaka T, Okada Y, Takeda S. 2006.. Nodal flow and the generation of left-right asymmetry. . Cell 125::3345
    [Crossref] [Google Scholar]
  24. Homma T, Shimizu M, Kuroda R. 2011.. The polarity protein Par6 is coupled to the microtubule network during molluscan early embryogenesis. . Biochem. Biophys. Res. Commun. 404::17378
    [Crossref] [Google Scholar]
  25. Horan BG, Zerze GH, Kim YC, Vavylonis D, Mittal J. 2018.. Computational modeling highlights the role of the disordered formin homology 1 domain in profilin-actin transfer. . FEBS Lett. 592::180416
    [Crossref] [Google Scholar]
  26. Hosoiri Y, Harada Y, Kuroda R. 2003.. Construction of a backcross progeny collection of dextral and sinistral individuals of a freshwater gastropod, Lymnaea stagnalis. . Dev. Genes Evol. 213::19398
    [Crossref] [Google Scholar]
  27. Hozumi S, Maeda R, Taniguchi K, Kanai M, Shirakabe S, et al. 2006.. An unconventional myosin in Drosophila reverses the default handedness in visceral organs. . Nature 440::798802
    [Crossref] [Google Scholar]
  28. Inaki M, Higashi T, Okuda S, Matsuno K. 2023.. Distinctive cellular and junctional dynamics independently regulate the rotation and elongation of the internal organ. . bioRxiv 2023.05.22.541825. https://doi.org/10.1101/2023.05.22.541825
  29. Jalal S, Shi S, Acharya V, Huang RYJ, Viasnoff V, et al. 2019.. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. . J. Cell. Sci. 132::jcs220780
    [Crossref] [Google Scholar]
  30. Juan T, Géminard C, Coutelis JB, Cerezo D, Polès S, et al. 2018.. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry. . Nat. Commun. 9::1942
    [Crossref] [Google Scholar]
  31. Kovar DR, Harris ES, Mahaffy R, Higgs HN, Pollard TD. 2006.. Control of the assembly of ATP- and ADP-actin by formins and profilin. . Cell 124::42335
    [Crossref] [Google Scholar]
  32. Kuroda R. 2014.. How a single gene twists a snail. . Integr. Comp. Biol. 54::67787
    [Crossref] [Google Scholar]
  33. Kuroda R. 2015.. A twisting story: How a single gene twists a snail? Mechanogenetics. . Q. Rev. Biophys. 48::44552
    [Crossref] [Google Scholar]
  34. Kuroda R. 2022.. Exploring the structural difference in homologous proteins that are crucial in organismal body handedness determination. . Sogo-Kogaku 34::3845
    [Google Scholar]
  35. Kuroda R. 2023.. Exploring the functions of the handedness-determining single gene Lsdia1 in freshwater snail Lymnaea stagnalis: influence on the normal development. . Sogo-Kogaku 35::4552
    [Google Scholar]
  36. Kuroda R, Abe M. 2020.. Response to ‘Formin, an opinion. ’. Development 147::dev.187435
    [Crossref] [Google Scholar]
  37. Kuroda R, Endo B, Abe M, Shimizu M. 2009.. Chiral blastomere arrangement dictates zygotic left-right asymmetry pathway in snails. . Nature 462::79094
    [Crossref] [Google Scholar]
  38. Kuroda R, Fujikura K, Abe M, Hosoiri Y, Asakawa S, et al. 2016.. Diaphanous gene mutation affects spiral cleavage and chirality in snails. . Sci. Rep. 6::34809
    [Crossref] [Google Scholar]
  39. Lapraz F, Boutres C, Fixary-Schuster C, De Queiroz BR, Plaçais PY, et al. 2023.. Asymmetric activity of NetrinB controls laterality of the Drosophila brain. . Nat. Commun. 14::1052
    [Crossref] [Google Scholar]
  40. Lebreton G, Géminard C, Lapraz F, Pyrpassopoulos S, Cerezo D, et al. 2018.. Molecular to organismal chirality is induced by the conserved myosin 1D. . Science 362::94952
    [Crossref] [Google Scholar]
  41. Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C. 1995.. A molecular pathway determining left-right asymmetry in chick embryogenesis. . Cell 82::80314
    [Crossref] [Google Scholar]
  42. Levin M, Palmer AR. 2007.. Left-right patterning from the inside out: widespread evidence for intracellular control. . BioEssays 29::27187
    [Crossref] [Google Scholar]
  43. Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M. 2002.. Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. . Cell 111::7789
    [Crossref] [Google Scholar]
  44. Lu J, Meng W, Poy F, Maiti S, Goode BL, Eck MJ. 2007.. Structure of the FH2 domain of Daam1: implications for formin regulation of actin assembly. . J. Mol. Biol. 369::125869
    [Crossref] [Google Scholar]
  45. Maiti S, Michelot A, Gould C, Blanchoin L, Sokolova O, Goode BL. 2012.. Structure and activity of full-length formin mDia1. . Cytoskeleton 69::393405
    [Crossref] [Google Scholar]
  46. Meshcheryakov VN. 1990.. The common pond snail Lymnaea stagnalis. . In Animal Species for Developmental Studies, ed. TA Dettlaff, SG Vassetzky , pp. 69132. New York:: Springer
    [Google Scholar]
  47. Meshcheryakov VN, Beloussov LV. 1975.. Asymmetrical rotations of blastomeres in early cleavage of gastropoda. Wilhelm Roux's Arch. . Dev. Biol. 177::193203
    [Google Scholar]
  48. Mizuno H, Higashida C, Yuan Y, Ishizaki T, Narumiya S, Watanabe N. 2011.. Rotational movement of the formin mDia1 along the double helical strand of an actin filament. . Science 331::8083
    [Crossref] [Google Scholar]
  49. Moseley JB, Sagot I, Manning AL, Xu Y, Eck M, et al. 2004.. A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. . Mol. Biol. Cell 15::896907
    [Crossref] [Google Scholar]
  50. Nezami AG, Poy F, Eck MJ. 2006.. Structure of the autoinhibitory switch in formin mDia1. . Structure 14::25763
    [Crossref] [Google Scholar]
  51. Nishide K, Mugitani M, Kumano G, Nishida H. 2012.. Neurula rotation determines left-right asymmetry in ascidian tadpole larvae. . Development 139::146775
    [Crossref] [Google Scholar]
  52. Noda T, Satoh N, Gittenberger E, Asami T. 2023.. Left-right reversal recurrently evolved regardless of diaphanous-related formin gene duplication or loss in snails. . J. Mol. Evol. 91::72129
    [Crossref] [Google Scholar]
  53. Nonaka S, Shiratori H, Saijoh Y, Hamada H. 2002.. Determination of left-right patterning of the mouse embryo by artificial nodal flow. . Nature 418::9699
    [Crossref] [Google Scholar]
  54. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, et al. 1998.. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. . Cell 95::82937
    [Crossref] [Google Scholar]
  55. Okada Y, Takeda S, Tanaka Y, Belmonte JCI, Hirokawa N. 2005.. Mechanism of nodal flow: a conserved symmetry. . Cell 121::63344
    [Crossref] [Google Scholar]
  56. Otomo T, Otomo C, Tomchick DR, Machius M, Rosen MK. 2005a.. Structural basis of Rho GTPase-mediated activation of the formin mDia1. . Mol. Cell 18::27381
    [Crossref] [Google Scholar]
  57. Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK. 2005b.. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. . Nature 433::48894
    [Crossref] [Google Scholar]
  58. Pollard TD. 2011.. Formin tip tracking: A simple protein machine tracks the tip of a growing actin filament. . Science 331::3941
    [Crossref] [Google Scholar]
  59. Pring M, Evangelista M, Boone C, Yang C, Zigmond SH. 2003.. Mechanism of formin-induced nucleation of actin filaments. . Biochemistry 42::48696
    [Crossref] [Google Scholar]
  60. Rivi V, Benatti C, Rigillo G, Blom MC. 2023.. Invertebrates as models of learning and memory: investigating neural and molecular mechanisms. . J. Exp. Biol. 226::jeb244844
    [Crossref] [Google Scholar]
  61. Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghoferl A. 2005.. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. . Nature 435::51318
    [Crossref] [Google Scholar]
  62. Sakamura S, Hsu FY, Tsujita A, Abubaker MB, Chiang AS, Matsuno K. 2023.. Ecdysone signaling determines lateral polarity and remodels neurites to form Drosophila's left-right brain asymmetry. . Cell Rep. 42::112337
    [Crossref] [Google Scholar]
  63. Shibazaki Y, Shimizu M, Kuroda R. 2004.. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. . Curr. Biol. 14::146267
    [Crossref] [Google Scholar]
  64. Shimada A, Nyitrai M, Vetter IR, Kühlmann D, Bugyi B, et al. 2004.. The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization. . Mol. Cell 13::51122
    [Crossref] [Google Scholar]
  65. Shiratori S, Hamada H. 2006.. The left-right axis in the mouse: from origin to morphology. . Development 133::2095104
    [Crossref] [Google Scholar]
  66. Spéder P, Adám G, Noselli S. 2006.. Type ID unconventional myosin controls left-right asymmetry in Drosophila. . Nature 440::8037
    [Crossref] [Google Scholar]
  67. Sturtevant AH. 1923.. Inheritance of direction of coiling in Lymnaea. . Science 58::26970
    [Crossref] [Google Scholar]
  68. Tanaka Y, Yamada S, Connop S, Hashii N, Sawada H, et al. 2019.. Vitelline membrane proteins promote left-sided nodal expression after neurula rotation in the ascidian, Halocynthia roretzi. . Dev. Biol. 449::5261
    [Crossref] [Google Scholar]
  69. Taniguchi K, Maeda R, Ando T, Okumura T, Nakazawa N, et al. 2011.. Chirality in planar cell shape contributes to left-right asymmetric epithelial morphogenesis. . Science 333::33941
    [Crossref] [Google Scholar]
  70. Tee YH, Goh WJ, Yong X, Ong HT, Hu J, et al. 2023.. Actin polymerisation and crosslinking drive left-right asymmetry in single cell and cell collectives. . Nat. Commun. 14::776
    [Crossref] [Google Scholar]
  71. Tee YH, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL, et al. 2015.. Cellular chirality arising from the self-organization of the actin cytoskeleton. . Nat. Cell Biol. 17::44557
    [Crossref] [Google Scholar]
  72. Tingler M, Kurz S, Maerker M, Ott T, Fuhl F, et al. 2018.. A conserved role of the unconventional myosin 1d in laterality determination. . Curr. Biol. 28::81016.e3
    [Crossref] [Google Scholar]
  73. Vandenberg LN, Levin M. 2009.. Perspectives and open problems in the early phases of left-right patterning. . Semin. Cell Dev. Biol. 20::45663
    [Crossref] [Google Scholar]
  74. Vandenberg LN, Levin M. 2013.. A unified model for left–right asymmetry? Comparison and synthesis of molecular models of embryonic laterality. . Dev. Biol. 379::115
    [Crossref] [Google Scholar]
  75. Wan LQ, Ronaldson K, Park M, Vunjak-Novakovic G. 2010.. Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry. . PNAS 108::12295300
    [Crossref] [Google Scholar]
  76. Watson JD, Crick FHC. 1953.. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. . Nature 171::72738
    [Google Scholar]
  77. Wood WB. 1991.. Evidence from reversal of handedness in C. elegans embryos for early cell interactions determining cell fates. . Nature 349::53638
    [Crossref] [Google Scholar]
  78. Yamada S, Tanaka Y, Imai KS, Saigou M, Onuma TA, Nishida H. 2019.. Wavy movements of epidermis monocilia drive the neurula rotation that determines left-right asymmetry in ascidian embryos. . Dev. Biol. 448::17382
    [Crossref] [Google Scholar]
  79. Yamamoto T, Ishibashi T, Kiyosue-Mimori Y, Hiver S, Tokushige N, et al. 2023.. Epithelial cell chirality emerges through the dynamic concentric pattern of actomyosin. . bioRxiv 2023.08.16.553476. https://doi.org/10.1101/2023.08.16.553476
/content/journals/10.1146/annurev-cellbio-111822-010628
Loading
/content/journals/10.1146/annurev-cellbio-111822-010628
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error