1932

Abstract

The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111822-014426
2024-10-02
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-111822-014426.html?itemId=/content/journals/10.1146/annurev-cellbio-111822-014426&mimeType=html&fmt=ahah

Literature Cited

  1. Adam S, Rossi SE, Moatti N, De Marco Zompit M, Xue Y, et al. 2021.. The CIP2A-TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer. . Nat. Cancer 2::135771
    [Crossref] [Google Scholar]
  2. Almeida H, Godinho Ferreira M. 2013.. Spontaneous telomere to telomere fusions occur in unperturbed fission yeast cells. . Nucleic Acids Res. 41::305667
    [Crossref] [Google Scholar]
  3. Anand R, Buechelmaier E, Belan O, Newton M, Vancevska A, et al. 2022.. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. . Nature 601::26873
    [Crossref] [Google Scholar]
  4. Arana ME, Seki M, Wood RD, Rogozin IB, Kunkel TA. 2008.. Low-fidelity DNA synthesis by human DNA polymerase theta. . Nucleic Acids Res. 36::384756
    [Crossref] [Google Scholar]
  5. Audebert M, Salles B, Calsou P. 2004.. Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. . J. Biol. Chem. 279::5511726
    [Crossref] [Google Scholar]
  6. Belan O, Sebald M, Adamowicz M, Anand R, Vancevska A, et al. 2022.. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. . Mol. Cell 82::466480.e9
    [Crossref] [Google Scholar]
  7. Bennardo N, Cheng A, Huang N, Stark JM. 2008.. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. . PLOS Genet. 4::e1000110
    [Crossref] [Google Scholar]
  8. Bhin J, Dias MP, Gogola E, Rolfs F, Piersma SR, et al. 2023.. Multi-omics analysis reveals distinct non-reversion mechanisms of PARPi resistance in BRCA1- versus BRCA2-deficient mammary tumors. . Cell Rep. 42::112538
    [Crossref] [Google Scholar]
  9. Bhowmick R, Hickson ID, Liu Y. 2023.. Completing genome replication outside of S phase. . Mol. Cell 83::3596607
    [Crossref] [Google Scholar]
  10. Blackford AN, Stucki M. 2020.. How cells respond to DNA breaks in mitosis. . Trends Biochem. Sci. 45::32131
    [Crossref] [Google Scholar]
  11. Boeva V, Jouannet S, Daveau R, Combaret V, Pierre-Eugene C, et al. 2013.. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis. . PLOS ONE 8::e72182
    [Crossref] [Google Scholar]
  12. Boulton SJ, Jackson SP. 1996.. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. . EMBO J. 15::5093103
    [Crossref] [Google Scholar]
  13. Brambati A, Barry RM, Sfeir A. 2020.. DNA polymerase theta (Polθ)–an error-prone polymerase necessary for genome stability. . Curr. Opin. Genet. Dev. 60::11926
    [Crossref] [Google Scholar]
  14. Brambati A, Sacco O, Porcella S, Heyza J, Kareh M, et al. 2023.. RHINO directs MMEJ to repair DNA breaks in mitosis. . Science 381::65360
    [Crossref] [Google Scholar]
  15. Bubenik M, Mader P, Mochirian P, Vallee F, Clark J, et al. 2022.. Identification of RP-6685, an orally bioavailable compound that inhibits the DNA polymerase activity of Polθ. . J. Med. Chem. 65::13198215
    [Crossref] [Google Scholar]
  16. Carvajal-Garcia J, Cho JE, Carvajal-Garcia P, Feng W, Wood RD, et al. 2020.. Mechanistic basis for microhomology identification and genome scarring by polymerase theta. . PNAS 117::847685
    [Crossref] [Google Scholar]
  17. Carvajal-Garcia J, Crown KN, Ramsden DA, Sekelsky J. 2021.. DNA polymerase theta suppresses mitotic crossing over. . PLOS Genet. 17::e1009267
    [Crossref] [Google Scholar]
  18. Castillo Bosch P, Segura-Bayona S, Koole W, van Heteren JT, Dewar JM, et al. 2014.. FANCJ promotes DNA synthesis through G-quadruplex structures. . EMBO J. 33::252133
    [Crossref] [Google Scholar]
  19. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, et al. 2015.. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. . Nature 518::25862
    [Crossref] [Google Scholar]
  20. Chan SH, Yu AM, McVey M. 2010.. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. . PLOS Genet. 6::e1001005
    [Crossref] [Google Scholar]
  21. Chandramouly G, Jamsen J, Borisonnik N, Tyagi M, Calbert ML, et al. 2023.. Polλ promotes microhomology-mediated end-joining. . Nat. Struct. Mol. Biol. 30::10714
    [Crossref] [Google Scholar]
  22. Chayot R, Montagne B, Mazel D, Ricchetti M. 2010.. An end-joining repair mechanism in Escherichia coli. . PNAS 107::214146
    [Crossref] [Google Scholar]
  23. Chiruvella KK, Liang Z, Wilson TE. 2013.. Repair of double-strand breaks by end joining. . Cold Spring Harb. Perspect. Biol. 5::a012757
    [Crossref] [Google Scholar]
  24. Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, et al. 2021.. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. . Mol. Cell 81::312844.e7
    [Crossref] [Google Scholar]
  25. Crespan E, Czabany T, Maga G, Hubscher U. 2012.. Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences. . Nucleic Acids Res. 40::557790
    [Crossref] [Google Scholar]
  26. Daley JM, Niu H, Miller AS, Sung P. 2015.. Biochemical mechanism of DSB end resection and its regulation. . DNA Repair 32::6674
    [Crossref] [Google Scholar]
  27. De Marco Zompit M, Esteban MT, Mooser C, Adam S, Rossi SE, et al. 2022.. The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis. . Nat. Commun. 13::4143
    [Crossref] [Google Scholar]
  28. Decottignies A. 2007.. Microhomology-mediated end joining in fission yeast is repressed by Pku70 and relies on genes involved in homologous recombination. . Genetics 176::140315
    [Crossref] [Google Scholar]
  29. Deng L, Wu RA, Sonneville R, Kochenova OV, Labib K, et al. 2019.. Mitotic CDK promotes replisome disassembly, fork breakage, and complex DNA rearrangements. . Mol. Cell 73::91529.e6
    [Crossref] [Google Scholar]
  30. Deng W, Henriet S, Chourrout D. 2018.. Prevalence of mutation-prone microhomology-mediated end joining in a chordate lacking the c-NHEJ DNA repair pathway. . Curr. Biol. 28::333741.e4
    [Crossref] [Google Scholar]
  31. Engels WR, Johnson-Schlitz DM, Eggleston WB, Sved J. 1990.. High-frequency P element loss in Drosophila is homolog dependent. . Cell 62::51525
    [Crossref] [Google Scholar]
  32. Esashi F, Christ N, Gannon J, Liu Y, Hunt T, et al. 2005.. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. . Nature 434::598604
    [Crossref] [Google Scholar]
  33. Feng W, Simpson DA, Carvajal-Garcia J, Price BA, Kumar RJ, et al. 2019.. Genetic determinants of cellular addiction to DNA polymerase theta. . Nat. Commun. 10::4286
    [Crossref] [Google Scholar]
  34. Fernandez-Vidal A, Guitton-Sert L, Cadoret JC, Drac M, Schwob E, et al. 2014.. A role for DNA polymerase θ in the timing of DNA replication. . Nat. Commun. 5::4285
    [Crossref] [Google Scholar]
  35. Fishman-Lobell J, Rudin N, Haber JE. 1992.. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. . Mol. Cell. Biol. 12::1292303
    [Google Scholar]
  36. Fleury H, MacEachern MK, Stiefel CM, Anand R, Sempeck C, et al. 2023.. The APE2 nuclease is essential for DNA double-strand break repair by microhomology-mediated end joining. . Mol. Cell 83::142945.e8
    [Crossref] [Google Scholar]
  37. Gallagher DN, Haber JE. 2021.. Single-strand template repair: key insights to increase the efficiency of gene editing. . Curr. Genet. 67::74753
    [Crossref] [Google Scholar]
  38. Gallego ME, Bleuyard JY, Daoudal-Cotterell S, Jallut N, White CI. 2003.. Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. . Plant J. 35::55765
    [Crossref] [Google Scholar]
  39. Gelot C, Kovacs MT, Miron S, Mylne E, Haan A, et al. 2023.. Polθ is phosphorylated by PLK1 to repair double-strand breaks in mitosis. . Nature 621::41522
    [Crossref] [Google Scholar]
  40. Glover L, Jun J, Horn D. 2011.. Microhomology-mediated deletion and gene conversion in African trypanosomes. . Nucleic Acids Res. 39::137280
    [Crossref] [Google Scholar]
  41. Grajcarek J, Monlong J, Nishinaka-Arai Y, Nakamura M, Nagai M, et al. 2019.. Genome-wide microhomologies enable precise template-free editing of biologically relevant deletion mutations. . Nat. Commun. 10::4856
    [Crossref] [Google Scholar]
  42. Hanscom T, Woodward N, Batorsky R, Brown AJ, Roberts SA, McVey M. 2022.. Characterization of sequence contexts that favor alternative end joining at Cas9-induced double-strand breaks. . Nucleic Acids Res. 50::746578
    [Crossref] [Google Scholar]
  43. He MD, Zhang FH, Wang HL, Wang HP, Zhu ZY, Sun YH. 2015.. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos. . Mutat. Res. 780::8696
    [Crossref] [Google Scholar]
  44. Heijink AM, Stok C, Porubsky D, Manolika EM, de Kanter JK, et al. 2022.. Sister chromatid exchanges induced by perturbed replication can form independently of BRCA1, BRCA2 and RAD51. . Nat. Commun. 13::6722
    [Crossref] [Google Scholar]
  45. Higgins GS, Harris AL, Prevo R, Helleday T, McKenna WG, Buffa FM. 2010.. Overexpression of POLQ confers a poor prognosis in early breast cancer patients. . Oncotarget 1::17584
    [Crossref] [Google Scholar]
  46. Hinch R, Donnelly P, Hinch AG. 2023.. Meiotic DNA breaks drive multifaceted mutagenesis in the human germ line. . Science 382::eadh2531
    [Crossref] [Google Scholar]
  47. Hu C, Bugbee T, Palinski R, Akinyemi IA, McIntosh MT, et al. 2023.. Beta human papillomavirus 8E6 promotes alternative end joining. . eLife 12::e81923
    [Crossref] [Google Scholar]
  48. Hu Z, Zhu D, Wang W, Li W, Jia W, et al. 2015.. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. . Nat. Genet. 47::15863
    [Crossref] [Google Scholar]
  49. Hussmann JA, Ling J, Ravisankar P, Yan J, Cirincione A, et al. 2021.. Mapping the genetic landscape of DNA double-strand break repair. . Cell 184::565369.e25
    [Crossref] [Google Scholar]
  50. Hustedt N, Durocher D. 2016.. The control of DNA repair by the cell cycle. . Nat. Cell Biol. 19::19
    [Crossref] [Google Scholar]
  51. Jia Q, den Dulk-Ras A, Shen H, Hooykaas PJ, de Pater S. 2013.. Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana. . Plant Mol. Biol. 82::33951
    [Crossref] [Google Scholar]
  52. Kabotyanski EB, Gomelsky L, Han JO, Stamato TD, Roth DB. 1998.. Double-strand break repair in Ku86- and XRCC4-deficient cells. . Nucleic Acids Res. 26::533342
    [Crossref] [Google Scholar]
  53. Kamp JA, Lemmens B, Romeijn RJ, Changoer SC, van Schendel R, Tijsterman M. 2021.. Helicase Q promotes homology-driven DNA double-strand break repair and prevents tandem duplications. . Nat. Commun. 12::7126
    [Crossref] [Google Scholar]
  54. Kawamura K, Bahar R, Seimiya M, Chiyo M, Wada A, et al. 2004.. DNA polymerase θ is preferentially expressed in lymphoid tissues and upregulated in human cancers. . Int. J. Cancer 109::916
    [Crossref] [Google Scholar]
  55. Kent T, Mateos-Gomez PA, Sfeir A, Pomerantz RT. 2016.. Polymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining. . eLife 5::e13740
    [Crossref] [Google Scholar]
  56. Khodaverdian VY, Hanscom T, Yu AM, Yu TL, Mak V, et al. 2017.. Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks. . Nucleic Acids Res. 45::1284861
    [Crossref] [Google Scholar]
  57. Kloosterman WP, Francioli LC, Hormozdiari F, Marschall T, Hehir-Kwa JY, et al. 2015.. Characteristics of de novo structural changes in the human genome. . Genome Res. 25::792801
    [Crossref] [Google Scholar]
  58. Koole W, van Schendel R, Karambelas AE, van Heteren JT, Okihara KL, Tijsterman M. 2014.. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. . Nat. Commun. 5::3216
    [Crossref] [Google Scholar]
  59. Kralemann LEM, de Pater S, Shen H, Kloet SL, van Schendel R, et al. 2022.. Distinct mechanisms for genomic attachment of the 5′ and 3′ ends of Agrobacterium T-DNA in plants. . Nat. Plants 8::52634
    [Crossref] [Google Scholar]
  60. Kruisselbrink E, Guryev V, Brouwer K, Pontier DB, Cuppen E, Tijsterman M. 2008.. Mutagenic capacity of endogenous G4 DNA underlies genome instability in FANCJ-defective C. elegans. . Curr. Biol. 18::9005
    [Crossref] [Google Scholar]
  61. Lee DH, Acharya SS, Kwon M, Drane P, Guan Y, et al. 2014.. Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks. . Mol. Cell 54::51225
    [Crossref] [Google Scholar]
  62. Lee K, Lee SE. 2007.. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. . Genetics 176::200314
    [Crossref] [Google Scholar]
  63. Leeman JE, Li Y, Bell A, Hussain SS, Majumdar R, et al. 2019.. Human papillomavirus 16 promotes microhomology-mediated end-joining. . PNAS 116::2157379
    [Crossref] [Google Scholar]
  64. Leimbacher PA, Jones SE, Shorrocks AK, de Marco Zompit M, Day M, et al. 2019.. MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis. . Mol. Cell 74::57183.e8
    [Crossref] [Google Scholar]
  65. Lemee F, Bergoglio V, Fernandez-Vidal A, Machado-Silva A, Pillaire MJ, et al. 2010.. DNA polymerase θ up-regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability. . PNAS 107::1339095
    [Crossref] [Google Scholar]
  66. Lemmens B, van Schendel R, Tijsterman M. 2015.. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers. . Nat. Commun. 6::8909
    [Crossref] [Google Scholar]
  67. Lin TT, Letsolo BT, Jones RE, Rowson J, Pratt G, et al. 2010.. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. . Blood 116::1899907
    [Crossref] [Google Scholar]
  68. Llorens-Agost M, Ensminger M, Le HP, Gawai A, Liu J, et al. 2021.. POLθ-mediated end joining is restricted by RAD52 and BRCA2 until the onset of mitosis. . Nat. Cell Biol. 23::1095104
    [Crossref] [Google Scholar]
  69. Ma JL, Kim EM, Haber JE, Lee SE. 2003.. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. . Mol. Cell. Biol. 23::882028
    [Crossref] [Google Scholar]
  70. Mann A, Ramirez-Otero MA, De Antoni A, Hanthi YW, Sannino V, et al. 2022.. POLθ prevents MRE11-NBS1-CtIP-dependent fork breakage in the absence of BRCA2/RAD51 by filling lagging-strand gaps. . Mol. Cell 82::421831.e8
    [Crossref] [Google Scholar]
  71. Masud T, Soong C, Xu H, Biele J, Bjornson S, et al. 2021.. Ubiquitin-mediated DNA damage response is synthetic lethal with G-quadruplex stabilizer CX-5461. . Sci. Rep. 11::9812
    [Crossref] [Google Scholar]
  72. Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. 2015.. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. . Nature 518::25457
    [Crossref] [Google Scholar]
  73. Mateos-Gomez PA, Kent T, Deng SK, McDevitt S, Kashkina E, et al. 2017.. The helicase domain of Polθ counteracts RPA to promote alt-NHEJ. . Nat. Struct. Mol. Biol. 24::111623
    [Crossref] [Google Scholar]
  74. Maya-Mendoza A, Moudry P, Merchut-Maya JM, Lee M, Strauss R, Bartek J. 2018.. High speed of fork progression induces DNA replication stress and genomic instability. . Nature 559::27984
    [Crossref] [Google Scholar]
  75. McVey M, Radut D, Sekelsky JJ. 2004.. End-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent. . Genetics 168::206776
    [Crossref] [Google Scholar]
  76. Mehta A, Haber JE. 2014.. Sources of DNA double-strand breaks and models of recombinational DNA repair. . Cold Spring Harb. Perspect. Biol. 6::a016428
    [Crossref] [Google Scholar]
  77. Mengwasser KE, Adeyemi RO, Leng Y, Choi MY, Clairmont C, et al. 2019.. Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets. . Mol. Cell 73::88599.e6
    [Crossref] [Google Scholar]
  78. Meyer D, Fu BX, Heyer WD. 2015.. DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae. . PNAS 112::E690716
    [Google Scholar]
  79. Morrish TA, Garcia-Perez JL, Stamato TD, Taccioli GE, Sekiguchi J, Moran JV. 2007.. Endonuclease-independent LINE-1 retrotransposition at mammalian telomeres. . Nature 446::20812
    [Crossref] [Google Scholar]
  80. Murciano-Goroff YR, Schram AM, Rosen EY, Won H, Gong Y, et al. 2022.. Reversion mutations in germline BRCA1/2-mutant tumors reveal a BRCA-mediated phenotype in non-canonical histologies. . Nat. Commun. 13::7182
    [Crossref] [Google Scholar]
  81. Newman JA, Cooper CD, Aitkenhead H, Gileadi O. 2015.. Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology-mediated end-joining pathway. . Structure 23::231930
    [Crossref] [Google Scholar]
  82. Oh G, Wang A, Wang L, Li J, Werba G, et al. 2023.. POLQ inhibition elicits an immune response in homologous recombination-deficient pancreatic adenocarcinoma via cGAS/STING signaling. . J. Clin. Investig. 133::e165934
    [Crossref] [Google Scholar]
  83. Orthwein A, Fradet-Turcotte A, Noordermeer SM, Canny MD, Brun CM, et al. 2014.. Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. . Science 344::18993
    [Crossref] [Google Scholar]
  84. Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, et al. 2010.. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. . Science 327::9294
    [Crossref] [Google Scholar]
  85. Paul K, Wang M, Mladenov E, Bencsik-Theilen A, Bednar T, et al. 2013.. DNA ligases I and III cooperate in alternative non-homologous end-joining in vertebrates. . PLOS ONE 8::e59505
    [Crossref] [Google Scholar]
  86. Pettitt SJ, Frankum JR, Punta M, Lise S, Alexander J, et al. 2020.. Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. . Cancer Discov. 10::147588
    [Crossref] [Google Scholar]
  87. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013.. Genome engineering using the CRISPR-Cas9 system. . Nat. Protoc. 8::2281308
    [Crossref] [Google Scholar]
  88. Ranjha L, Howard SM, Cejka P. 2018.. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. . Chromosoma 127::187214
    [Crossref] [Google Scholar]
  89. Roerink SF, van Schendel R, Tijsterman M. 2014.. Polymerase theta-mediated end joining of replication-associated DNA breaks in C. elegans. . Genome Res. 24::95462
    [Crossref] [Google Scholar]
  90. Roth DB, Wilson JH. 1986.. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. . Mol. Cell. Biol. 6::4295304
    [Google Scholar]
  91. Saito S, Maeda R, Adachi N. 2017.. Dual loss of human POLQ and LIG4 abolishes random integration. . Nat. Commun. 8::16112
    [Crossref] [Google Scholar]
  92. San Filippo J, Sung P, Klein H. 2008.. Mechanism of eukaryotic homologous recombination. . Annu. Rev. Biochem. 77::22957
    [Crossref] [Google Scholar]
  93. Schaub JM, Soniat MM, Finkelstein IJ. 2022.. Polymerase theta-helicase promotes end joining by stripping single-stranded DNA-binding proteins and bridging DNA ends. . Nucleic Acids Res. 50::391121
    [Crossref] [Google Scholar]
  94. Schimmel J, Kool H, van Schendel R, Tijsterman M. 2017.. Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells. . EMBO J. 36::363449
    [Crossref] [Google Scholar]
  95. Schimmel J, Munoz-Subirana N, Kool H, van Schendel R, van der Vlies S, et al. 2023.. Modulating mutational outcomes and improving precise gene editing at CRISPR-Cas9-induced breaks by chemical inhibition of end-joining pathways. . Cell Rep. 42::112019
    [Crossref] [Google Scholar]
  96. Schimmel J, van Schendel R, den Dunnen JT, Tijsterman M. 2019.. Templated insertions: a smoking gun for polymerase theta-mediated end joining. . Trends Genet. 35::63244
    [Crossref] [Google Scholar]
  97. Schrempf A, Bernardo S, Arasa Verge EA, Ramirez Otero MA, Wilson J, et al. 2022.. POLθ processes ssDNA gaps and promotes replication fork progression in BRCA1-deficient cells. . Cell Rep. 41::111716
    [Crossref] [Google Scholar]
  98. Seki M, Masutani C, Yang LW, Schuffert A, Iwai S, et al. 2004.. High-efficiency bypass of DNA damage by human DNA polymerase Q. . EMBO J. 23::448494
    [Crossref] [Google Scholar]
  99. Seki M, Wood RD. 2008.. DNA polymerase θ (POLQ) can extend from mismatches and from bases opposite a (6–4) photoproduct. . DNA Repair 7::11927
    [Crossref] [Google Scholar]
  100. Sfeir A, de Lange T. 2012.. Removal of shelterin reveals the telomere end-protection problem. . Science 336::59397
    [Crossref] [Google Scholar]
  101. Sfeir A, Symington LS. 2015.. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway?. Trends Biochem. Sci. 40:(11):70114
    [Crossref] [Google Scholar]
  102. Shaltz S, Jinks-Robertson S. 2023.. Genetic control of the error-prone repair of a chromosomal double-strand break with 5′ overhangs in yeast. . Genetics 225::iyad122
    [Crossref] [Google Scholar]
  103. Sharma S, Javadekar SM, Pandey M, Srivastava M, Kumari R, Raghavan SC. 2015.. Homology and enzymatic requirements of microhomology-dependent alternative end joining. . Cell Death Dis. 6::e1697
    [Crossref] [Google Scholar]
  104. Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, et al. 2011.. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. . PLOS Genet. 7::e1002080
    [Crossref] [Google Scholar]
  105. Stark JM, Hu P, Pierce AJ, Moynahan ME, Ellis N, Jasin M. 2002.. ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. . J. Biol. Chem. 277::2018594
    [Crossref] [Google Scholar]
  106. Stroik S, Carvajal-Garcia J, Gupta D, Edwards A, Luthman A, et al. 2023.. Stepwise requirements for polymerases δ and θ in theta-mediated end joining. . Nature 623::83641
    [Crossref] [Google Scholar]
  107. Sugawara N, Ira G, Haber JE. 2000.. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. . Mol. Cell. Biol. 20::53009
    [Crossref] [Google Scholar]
  108. Symington LS. 2016.. Mechanism and regulation of DNA end resection in eukaryotes. . Crit. Rev. Biochem. Mol. Biol. 51::195212
    [Crossref] [Google Scholar]
  109. Thyme SB, Schier AF. 2016.. Polq-mediated end joining is essential for surviving DNA double-strand breaks during early zebrafish development. . Cell Rep. 15::70714
    [Crossref] [Google Scholar]
  110. Tobalina L, Armenia J, Irving E, O'Connor MJ, Forment JV. 2021.. A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance. . Ann. Oncol. 32::10312
    [Crossref] [Google Scholar]
  111. Truong LN, Li Y, Shi LZ, Hwang PY, He J, et al. 2013.. Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. . PNAS 110::772025
    [Crossref] [Google Scholar]
  112. Tubbs A, Nussenzweig A. 2017.. Endogenous DNA damage as a source of genomic instability in cancer. . Cell 168::64456
    [Crossref] [Google Scholar]
  113. Tzfira T, Citovsky V. 2006.. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. . Curr. Opin. Biotechnol. 17::14754
    [Crossref] [Google Scholar]
  114. van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJ. 2003.. The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. . Nucleic Acids Res. 31::424755
    [Crossref] [Google Scholar]
  115. van Kregten M, de Pater S, Romeijn R, van Schendel R, Hooykaas PJ, Tijsterman M. 2016.. T-DNA integration in plants results from polymerase-θ-mediated DNA repair. . Nat. Plants 2::16164
    [Crossref] [Google Scholar]
  116. van Schendel R, Roerink SF, Portegijs V, van den Heuvel S, Tijsterman M. 2015.. Polymerase θ is a key driver of genome evolution and of CRISPR/Cas9-mediated mutagenesis. . Nat. Commun. 6::7394
    [Crossref] [Google Scholar]
  117. van Schendel R, van Heteren J, Welten R, Tijsterman M. 2016.. Genomic scars generated by polymerase theta reveal the versatile mechanism of alternative end-joining. . PLOS Genet. 12::e1006368
    [Crossref] [Google Scholar]
  118. van Vugt M, Tijsterman M. 2023.. POLQ to the rescue for double-strand break repair during mitosis. . Nat. Struct. Mol. Biol. 30::182830
    [Crossref] [Google Scholar]
  119. Villarreal DD, Lee K, Deem A, Shim EY, Malkova A, Lee SE. 2012.. Microhomology directs diverse DNA break repair pathways and chromosomal translocations. . PLOS Genet. 8::e1003026
    [Crossref] [Google Scholar]
  120. Wang H, Rosidi B, Perrault R, Wang M, Zhang L, et al. 2005.. DNA ligase III as a candidate component of backup pathways of nonhomologous end joining. . Cancer Res. 65::402030
    [Crossref] [Google Scholar]
  121. Wang M, Wu W, Wu W, Rosidi B, Zhang L, et al. 2006.. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. . Nucleic Acids Res. 34::617082
    [Crossref] [Google Scholar]
  122. Weinstock DM, Brunet E, Jasin M. 2007.. Formation of NHEJ-derived reciprocal chromosomal translocations does not require Ku70. . Nat. Cell Biol. 9::97881
    [Crossref] [Google Scholar]
  123. Wilson TE, Lieber MR. 1999.. Efficient processing of DNA ends during yeast nonhomologous end joining: Evidence for a DNA polymerase β (Pol4)-dependent pathway. . J. Biol. Chem. 274::23599609
    [Crossref] [Google Scholar]
  124. Wimberger S, Akrap N, Firth M, Brengdahl J, Engberg S, et al. 2023.. Simultaneous inhibition of DNA-PK and Polϴ improves integration efficiency and precision of genome editing. . Nat. Commun. 14::4761
    [Crossref] [Google Scholar]
  125. Wood RD, Doublié S. 2016.. DNA polymerase θ (POLQ), double-strand break repair, and cancer. . DNA Repair 44::2232
    [Crossref] [Google Scholar]
  126. Wyatt DW, Feng W, Conlin MP, Yousefzadeh MJ, Roberts SA, et al. 2016.. Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks. . Mol. Cell 63::66273
    [Crossref] [Google Scholar]
  127. Yang F, Su W, Chung OW, Tracy L, Wang L, et al. 2023.. Retrotransposons hijack alt-EJ for DNA replication and eccDNA biogenesis. . Nature 620::21825
    [Crossref] [Google Scholar]
  128. Yeh CD, Richardson CD, Corn JE. 2019.. Advances in genome editing through control of DNA repair pathways. . Nat. Cell Biol. 21::146878
    [Crossref] [Google Scholar]
  129. Yousefzadeh MJ, Wood RD. 2013.. DNA polymerase POLQ and cellular defense against DNA damage. . DNA Repair 12::19
    [Crossref] [Google Scholar]
  130. Yousefzadeh MJ, Wyatt DW, Takata K, Mu Y, Hensley SC, et al. 2014.. Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. . PLOS Genet. 10::e1004654
    [Crossref] [Google Scholar]
  131. Yu AM, McVey M. 2010.. Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. . Nucleic Acids Res. 38::570617
    [Crossref] [Google Scholar]
  132. Zahn KE, Averill AM, Aller P, Wood RD, Doublié S. 2015.. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. . Nat. Struct. Mol. Biol. 22::30411
    [Crossref] [Google Scholar]
  133. Zatreanu D, Robinson HMR, Alkhatib O, Boursier M, Finch H, et al. 2021.. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. . Nat. Commun. 12::3636
    [Crossref] [Google Scholar]
  134. Zelensky AN, Schimmel J, Kool H, Kanaar R, Tijsterman M. 2017.. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. . Nat. Commun. 8::66
    [Crossref] [Google Scholar]
  135. Zhang C, Meng X, Wei X, Lu L. 2016.. Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. . Fungal Genet. Biol. 86::4757
    [Crossref] [Google Scholar]
  136. Zhou J, Gelot C, Pantelidou C, Li A, Yucel H, et al. 2021.. A first-in-class polymerase theta inhibitor selectively targets homologous-recombination-deficient tumors. . Nat. Cancer 2::598610
    [Crossref] [Google Scholar]
  137. Zingler N, Willhoeft U, Brose HP, Schoder V, Jahns T, et al. 2005.. Analysis of 5′ junctions of human LINE-1 and Alu retrotransposons suggests an alternative model for 5′-end attachment requiring microhomology-mediated end-joining. . Genome Res. 15::78089
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111822-014426
Loading
/content/journals/10.1146/annurev-cellbio-111822-014426
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error