1932

Abstract

Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111822-114733
2024-10-02
2025-02-12
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-111822-114733.html?itemId=/content/journals/10.1146/annurev-cellbio-111822-114733&mimeType=html&fmt=ahah

Literature Cited

  1. Abrisch RG, Gumbin SC, Wisniewski BT, Lackner LL, Voeltz GK. 2020.. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. . J. Cell Biol. 219:(4):e201911122
    [Crossref] [Google Scholar]
  2. Albring M, Griffith J, Attardi G. 1977.. Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. . PNAS 74:(4):134852
    [Crossref] [Google Scholar]
  3. Allen GFG, Toth R, James J, Ganley IG. 2013.. Loss of iron triggers PINK1/Parkin-independent mitophagy. . EMBO Rep. 14:(12):112735
    [Crossref] [Google Scholar]
  4. Alvelid J, Damenti M, Sgattoni C, Testa I. 2022.. Event-triggered STED imaging. . Nat. Methods 19:(10):126875
    [Crossref] [Google Scholar]
  5. Anjum F, Rao C, Yadav A, Kaushik K, Mishra PM, Nandi CK. 2022.. Directly visualizing mitochondrial shrinkage and lysosomal expansion during mitophagy using super-resolution microscopy. . New J. Chem. 46:(42):2006973
    [Crossref] [Google Scholar]
  6. Antonicka H, Sasarman F, Nishimura T, Paupe V, Shoubridge EA. 2013.. The mitochondrial RNA-binding protein GRSF1 localizes to RNA granules and is required for posttranscriptional mitochondrial gene expression. . Cell Metab. 17:(3):38698
    [Crossref] [Google Scholar]
  7. Appelhans T, Richter CP, Wilkens V, Hess ST, Piehler J, Busch KB. 2012.. Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. . Nano Lett. 12:(2):61016
    [Crossref] [Google Scholar]
  8. Arai S, Suzuki M, Park S-J, Yoo JS, Wang L, et al. 2015.. Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. . Chem. Commun. 51:(38):804447
    [Crossref] [Google Scholar]
  9. Benke A, Manley S. 2012.. Live-cell dSTORM of cellular DNA based on direct DNA labeling. . ChemBioChem 13:(2):298301
    [Crossref] [Google Scholar]
  10. Bereiter-Hahn J, Vöth M. 1996.. Distribution and dynamics of mitochondrial nucleoids in animal cells in culture. . Exp. Biol. Online 1::117
    [Crossref] [Google Scholar]
  11. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, et al. 2006.. Imaging intracellular fluorescent proteins at nanometer resolution. . Science 313:(5793):164245
    [Crossref] [Google Scholar]
  12. Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, et al. 2014.. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. . Nature 510:(7505):37075
    [Crossref] [Google Scholar]
  13. Bodén A, Pennacchietti F, Coceano G, Damenti M, Ratz M, Testa I. 2021.. Volumetric live cell imaging with three-dimensional parallelized RESOLFT microscopy. . Nat. Biotechnol. 39:(5):60918
    [Crossref] [Google Scholar]
  14. Booth DM, Joseph SK, Hajnóczky G. 2016.. Subcellular ROS imaging methods: relevance for the study of calcium signaling. . Cell Calcium 60:(2):6573
    [Crossref] [Google Scholar]
  15. Breckwoldt MO, Wittmann C, Misgeld T, Kerschensteiner M, Grabher C. 2015.. Redox imaging using genetically encoded redox indicators in zebrafish and mice. . Biol. Chem. 396:(5):51122
    [Crossref] [Google Scholar]
  16. Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, et al. 2011.. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. . Mol. Cell. Biol. 31:(24):49945010
    [Crossref] [Google Scholar]
  17. Bulthuis EP, Dieteren CEJ, Bergmans J, Berkhout J, Wagenaars JA, et al. 2023.. Stress-dependent macromolecular crowding in the mitochondrial matrix. . EMBO J. 42:(7):e108533
    [Crossref] [Google Scholar]
  18. Burman JL, Pickles S, Wang C, Sekine S, Vargas JNS, et al. 2017.. Mitochondrial fission facilitates the selective mitophagy of protein aggregates. . J. Cell Biol. 216:(10):323147
    [Crossref] [Google Scholar]
  19. Cabantous S, Terwilliger TC, Waldo GS. 2005.. Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. . Nat. Biotechnol. 23:(1):1027
    [Crossref] [Google Scholar]
  20. Cai Q, Zakaria HM, Simone A, Sheng Z-H. 2012.. Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. . Curr. Biol. 22:(6):54552
    [Crossref] [Google Scholar]
  21. Caino MC, Seo JH, Wang Y, Rivadeneira DB, Gabrilovich DI, et al. 2017.. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. . J. Clin. Investig. 127:(10):375569
    [Crossref] [Google Scholar]
  22. Cartes-Saavedra B, Lagos D, Macuada J, Arancibia D, Burté F, et al. 2023.. OPA1 disease-causing mutants have domain-specific effects on mitochondrial ultrastructure and fusion. . PNAS 120:(12):e2207471120
    [Crossref] [Google Scholar]
  23. Chen F, Tillberg PW, Boyden ES. 2015.. Expansion microscopy. . Science 347:(6221):54348
    [Crossref] [Google Scholar]
  24. Chen J, Jiang X, Zhang C, MacKenzie KR, Stossi F, et al. 2017.. Reversible reaction-based fluorescent probe for real-time imaging of glutathione dynamics in mitochondria. . ACS Sens. 2:(9):125761
    [Crossref] [Google Scholar]
  25. Chen J, Sasaki H, Lai H, Su Y, Liu J, et al. 2021.. Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes. . Nat. Methods 18:(6):67887
    [Crossref] [Google Scholar]
  26. Chen Q, Liu L-Y, Tian Z, Fang Z, Wang K-N, et al. 2023.. Mitochondrial nucleoid condensates drive peripheral fission through high membrane curvature. . Cell Rep. 42:(12):113472
    [Crossref] [Google Scholar]
  27. Chen Q, Shao X, Hao M, Fang H, Guan R, et al. 2020.. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy. . Biomaterials 250::120059
    [Crossref] [Google Scholar]
  28. Chen Q, Zhang X-F, Wang T, Cao X-Q, Shen S-L. 2022.. A sensitive NIR mitochondria-targeting fluorescence probe for visualizing viscosity in living cells and mice. . Anal. Chim. Acta 1231::340443
    [Crossref] [Google Scholar]
  29. Chiron L, Le Bec M, Cordier C, Pouzet S, Milunov D, et al. 2022.. CyberSco.Py an open-source software for event-based, conditional microscopy. . Sci. Rep. 12:(1):11579
    [Crossref] [Google Scholar]
  30. Chrétien D, Bénit P, Ha HH, Keipert S, El-Khoury R, et al. 2018.. Mitochondria are physiologically maintained at close to 50°C. . PLOS Biol. 16:(1):e2003992
    [Crossref] [Google Scholar]
  31. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. 2004.. OPA1 requires mitofusin 1 to promote mitochondrial fusion. . PNAS 101:(45):1592732
    [Crossref] [Google Scholar]
  32. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, et al. 2013.. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. . Cell 155:(1):16071
    [Crossref] [Google Scholar]
  33. Colom A, Derivery E, Soleimanpour S, Tomba C, Molin MD, et al. 2018.. A fluorescent membrane tension probe. . Nat. Chem. 10:(11):111825
    [Crossref] [Google Scholar]
  34. Davies BM, Katayama JK, Monsivais JE, Adams JR, Dilts ME, et al. 2023.. Real-time analysis of dynamic compartmentalized GSH redox shifts and H2O2 availability in undifferentiated and differentiated cells. . Biochim. Biophys. Acta Gen. Subj. 1867:(5):130321
    [Crossref] [Google Scholar]
  35. Dieteren CEJ, Gielen SCAM, Nijtmans LGJ, Smeitink JAM, Swarts HG, et al. 2011.. Solute diffusion is hindered in the mitochondrial matrix. . PNAS 108:(21):865762
    [Crossref] [Google Scholar]
  36. Donnert G, Keller J, Wurm CA, Rizzoli SO, Westphal V, et al. 2007.. Two-color far-field fluorescence nanoscopy. . Biophys. J. 92:(8):L6769
    [Crossref] [Google Scholar]
  37. Egner A, Jakobs S, Hell SW. 2002.. Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. . PNAS 99:(6):337075
    [Crossref] [Google Scholar]
  38. Fang H, Geng S, Hao M, Chen Q, Liu M, et al. 2021.. Simultaneous Zn2+ tracking in multiple organelles using super-resolution morphology-correlated organelle identification in living cells. . Nat. Commun. 12:(1):109
    [Crossref] [Google Scholar]
  39. Ferree AW, Trudeau K, Zik E, Benador IY, Twig G, et al. 2013.. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. . Autophagy 9:(11):188796
    [Crossref] [Google Scholar]
  40. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, et al. 2006.. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. . Cell 126:(1):17789
    [Crossref] [Google Scholar]
  41. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. 2011.. ER tubules mark sites of mitochondrial division. . Science 334:(6054):35862
    [Crossref] [Google Scholar]
  42. Fry MY, Navarro PP, Hakim P, Ananda VY, Qin X, et al. 2024.. In situ architecture of Opa1-dependent mitochondrial cristae remodeling. . EMBO J. 43::391413
    [Crossref] [Google Scholar]
  43. Fung TS, Ji W-K, Higgs HN, Chakrabarti R. 2019.. Two distinct actin filament populations have effects on mitochondria, with differences in stimuli and assembly factors. . J. Cell Sci. 132:(18):jcs234435
    [Crossref] [Google Scholar]
  44. Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D, et al. 2019.. Imaging cellular ultrastructures using expansion microscopy (U-ExM). . Nat. Methods 16:(1):7174
    [Crossref] [Google Scholar]
  45. Giacomello M, Pyakurel A, Glytsou C, Scorrano L. 2020.. The cell biology of mitochondrial membrane dynamics. . Nat. Rev. Mol. Cell Biol. 21:(4):20424
    [Crossref] [Google Scholar]
  46. Gilkerson RW, Selker JML, Capaldi RA. 2003.. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. . FEBS Lett. 546:(2):35558
    [Crossref] [Google Scholar]
  47. Godtliebsen G, Larsen KB, Bhujabal Z, Opstad IS, Nager M, et al. 2023.. High-resolution visualization and assessment of basal and OXPHOS-induced mitophagy in H9c2 cardiomyoblasts. . Autophagy 19:(10):276988
    [Crossref] [Google Scholar]
  48. Gökerküçük EB, Tramier M, Bertolin G. 2020.. Imaging mitochondrial functions: from fluorescent dyes to genetically-encoded sensors. . Genes 11:(2):125
    [Crossref] [Google Scholar]
  49. Golombek M, Tsigaras T, Schaumkessel Y, Hänsch S, Weidtkamp-Peters S, et al. 2024.. Cristae dynamics is modulated in bioenergetically compromised mitochondria. . Life Sci. Alliance 7:(2):e202302386
    [Crossref] [Google Scholar]
  50. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, et al. 2016.. Mitochondrial diseases. . Nat. Rev. Dis. Primers 2:(1):16080
    [Crossref] [Google Scholar]
  51. Goujon A, Colom A, Straková K, Mercier V, Mahecic D, et al. 2019.. Mechanosensitive fluorescent probes to image membrane tension in mitochondria, endoplasmic reticulum, and lysosomes. . J. Am. Chem. Soc. 141:(8):338084
    [Crossref] [Google Scholar]
  52. Große L, Wurm CA, Brüser C, Neumann D, Jans DC, Jakobs S. 2016.. Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. . EMBO J. 35:(4):40213
    [Crossref] [Google Scholar]
  53. Gutscher M, Pauleau A-L, Marty L, Brach T, Wabnitz GH, et al. 2008.. Real-time imaging of the intracellular glutathione redox potential. . Nat. Methods 5:(6):55359
    [Crossref] [Google Scholar]
  54. Hanna DA, Harvey RM, Martinez-Guzman O, Yuan X, Chandrasekharan B, et al. 2016.. Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. . PNAS 113:(27):753944
    [Crossref] [Google Scholar]
  55. Harner M, Körner C, Walther D, Mokranjac D, Kaesmacher J, et al. 2011.. The mitochondrial contact site complex, a determinant of mitochondrial architecture. . EMBO J. 30:(21):435670
    [Crossref] [Google Scholar]
  56. Hell SW, Wichmann J. 1994.. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. . Opt. Lett. 19:(11):78082
    [Crossref] [Google Scholar]
  57. Hernandez G, Thornton C, Stotland A, Lui D, Sin J, et al. 2013.. MitoTimer. . Autophagy 9:(11):185261
    [Crossref] [Google Scholar]
  58. Hirvonen LM, Wicker K, Mandula O, Heintzmann R. 2009.. Structured illumination microscopy of a living cell. . Eur. Biophys. J. 38:(6):80712
    [Crossref] [Google Scholar]
  59. Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, DeVay RM, et al. 2011.. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. . J. Cell Biol. 195:(2):32340
    [Crossref] [Google Scholar]
  60. Hu J, Dong L, Outten CE. 2008.. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. . J. Biol. Chem. 283:(43):2912634
    [Crossref] [Google Scholar]
  61. Hu M, Wang B, Zhang H, Wang H, Li H, et al. 2022.. A dual-labeling probe for super-resolution imaging to detect mitochondrial reactive sulfur species in live cells. . Front. Pharmacol. 13::871059
    [Crossref] [Google Scholar]
  62. Huang X, Fan J, Li L, Liu H, Wu R, et al. 2018.. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. . Nat. Biotechnol. 36:(5):45159
    [Crossref] [Google Scholar]
  63. Hung YP, Albeck JG, Tantama M, Yellen G. 2011.. Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor. . Cell Metab. 14:(4):54554
    [Crossref] [Google Scholar]
  64. Indira D, Varadarajan SN, Subhasingh Lupitha S, Lekshmi A, Mathew KA, et al. 2018.. Strategies for imaging mitophagy in high-resolution and high-throughput. . Eur. J. Cell Biol. 97:(1):114
    [Crossref] [Google Scholar]
  65. Jajoo R, Jung Y, Huh D, Viana MP, Rafelski SM, et al. 2016.. Accurate concentration control of mitochondria and nucleoids. . Science 351:(6269):16972
    [Crossref] [Google Scholar]
  66. Jakubke C, Roussou R, Maiser A, Schug C, Thoma F, et al. 2021.. Cristae-dependent quality control of the mitochondrial genome. . Sci. Adv. 7:(36):eabi8886
    [Crossref] [Google Scholar]
  67. Jans DC, Wurm CA, Riedel D, Wenzel D, Stagge F, et al. 2013.. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. . PNAS 110:(22):893641
    [Crossref] [Google Scholar]
  68. Ji W, Hatch AL, Merrill RA, Strack S, Higgs HN. 2015.. Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. . eLife 4::e11553
    [Crossref] [Google Scholar]
  69. Johnson LV, Walsh ML, Bockus BJ, Chen LB. 1981.. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. . J. Cell Biol. 88:(3):52635
    [Crossref] [Google Scholar]
  70. Johnson LV, Walsh ML, Chen LB. 1980.. Localization of mitochondria in living cells with rhodamine 123. . PNAS 77:(2):99094
    [Crossref] [Google Scholar]
  71. Jourdain AA, Koppen M, Wydro M, Rodley CD, Lightowlers RN, et al. 2013.. GRSF1 regulates RNA processing in mitochondrial RNA granules. . Cell Metab. 17:(3):399410
    [Crossref] [Google Scholar]
  72. Kakimoto Y, Tashiro S, Kojima R, Morozumi Y, Endo T, Tamura Y. 2018.. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system. . Sci. Rep. 8:(1):6175
    [Crossref] [Google Scholar]
  73. Kanemaru K, Suzuki J, Taiko I, Iino M. 2020.. Red fluorescent CEPIA indicators for visualization of Ca2+ dynamics in mitochondria. . Sci. Rep. 10:(1):2835
    [Crossref] [Google Scholar]
  74. Katajisto P, Döhla J, Chaffer CL, Pentinmikko N, Marjanovic N, et al. 2015.. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. . Science 348:(6232):34043
    [Crossref] [Google Scholar]
  75. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A. 2011.. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. . Chem. Biol. 18:(8):104252
    [Crossref] [Google Scholar]
  76. Kim J, Gupta R, Blanco LP, Yang S, Shteinfer-Kuzmine A, et al. 2019.. VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. . Science 366:(6472):153136
    [Crossref] [Google Scholar]
  77. Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, et al. 2021.. Distinct fission signatures predict mitochondrial degradation or biogenesis. . Nature 593:(7859):43539
    [Crossref] [Google Scholar]
  78. Klotzsch E, Smorodchenko A, Löfler L, Moldzio R, Parkinson E, et al. 2015.. Superresolution microscopy reveals spatial separation of UCP4 and F0F1-ATP synthase in neuronal mitochondria. . PNAS 112:(1):13035
    [Crossref] [Google Scholar]
  79. Kondadi AK, Anand R, Hänsch S, Urbach J, Zobel T, et al. 2020.. Cristae undergo continuous cycles of membrane remodelling in a MICOS-dependent manner. . EMBO Rep. 21:(3):e49776
    [Crossref] [Google Scholar]
  80. König T, Nolte H, Aaltonen MJ, Tatsuta T, Krols M, et al. 2021.. MIROs and DRP1 drive mitochondrial-derived vesicle biogenesis and promote quality control. . Nat. Cell Biol. 23:(12):127186
    [Crossref] [Google Scholar]
  81. Korobova F, Ramabhadran V, Higgs HN. 2013.. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. . Science 339:(6118):46467
    [Crossref] [Google Scholar]
  82. Kukat C, Wurm CA, Spåhr H, Falkenberg M, Larsson NG, Jakobs S. 2011.. Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. . PNAS 108:(33):1353439
    [Crossref] [Google Scholar]
  83. Kwon S-K, Sando R, Lewis TL, Hirabayashi Y, Maximov A, Polleux F. 2016.. LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons. . PLOS Biol. 14:(7):e1002516
    [Crossref] [Google Scholar]
  84. Labbé K, Mookerjee S, Vasseur ML, Gibbs E, Lerner C, Nunnari J. 2021.. The modified mitochondrial outer membrane carrier MTCH2 links mitochondrial fusion to lipogenesis. . J. Cell Biol. 220:(11):e202103122
    [Crossref] [Google Scholar]
  85. Laporte MH, Klena N, Hamel V, Guichard P. 2022.. Visualizing the native cellular organization by coupling cryofixation with expansion microscopy (Cryo-ExM). . Nat. Methods 19:(2):21622
    [Crossref] [Google Scholar]
  86. Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, et al. 2021.. Single-molecule localization microscopy. . Nat. Rev. Methods Primers 1:(1):39
    [Crossref] [Google Scholar]
  87. Lewis MR, Lewis WH. 1915.. Mitochondria (and other cytoplasmic structures) in tissue cultures. . Am. J. Anat. 17:(3):339401
    [Crossref] [Google Scholar]
  88. Lewis SC, Uchiyama LF, Nunnari J. 2016.. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. . Science 353:(6296):aaf5549
    [Crossref] [Google Scholar]
  89. Li Y, Wu Y, Xu R, Guo J, Quan F, et al. 2023.. In vivo imaging of mitochondrial DNA mutations using an integrated nano Cas12a sensor. . Nat. Commun. 14:(1):7722
    [Crossref] [Google Scholar]
  90. Liu T, Stephan T, Chen P, Keller-Findeisen J, Chen J, et al. 2022.. Multi-color live-cell STED nanoscopy of mitochondria with a gentle inner membrane stain. . PNAS 119:(52):e2215799119
    [Crossref] [Google Scholar]
  91. Loew LM, Tuft RA, Carrington W, Fay FS. 1993.. Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. . Biophys. J. 65:(6):2396407
    [Crossref] [Google Scholar]
  92. Mahecic D, Carlini L, Kleele T, Colom A, Goujon A, et al. 2021.. Mitochondrial membrane tension governs fission. . Cell Rep. 35:(2):108947
    [Crossref] [Google Scholar]
  93. Mahecic D, Stepp WL, Zhang C, Griffié J, Weigert M, Manley S. 2022.. Event-driven acquisition for content-enriched microscopy. . Nat. Methods 19:(10):126267
    [Crossref] [Google Scholar]
  94. Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M, et al. 2015.. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. . eLife 4::e08828
    [Crossref] [Google Scholar]
  95. McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, et al. 2018.. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. . Science 359:(6378):eaao6047
    [Crossref] [Google Scholar]
  96. Mieskes F, Wehnekamp F, Plucińska G, Thong R, Misgeld T, Lamb DC. 2020.. Trajectory data of antero- and retrograde movement of mitochondria in living zebrafish larvae. . Data Brief 29::105280
    [Crossref] [Google Scholar]
  97. Minta A, Kao JPY, Tsien RY. 1989.. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. . J. Biol. Chem. 264:(14):817178
    [Crossref] [Google Scholar]
  98. Misgeld T, Schwarz TL. 2017.. Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. . Neuron 96:(3):65166
    [Crossref] [Google Scholar]
  99. Modi S, López-Doménech G, Halff EF, Covill-Cooke C, Ivankovic D, et al. 2019.. Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. . Nat. Commun. 10:(1):4399
    [Crossref] [Google Scholar]
  100. Moore AS, Wong YC, Simpson CL, Holzbaur ELF. 2016.. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. . Nat. Commun. 7:(1):12886
    [Crossref] [Google Scholar]
  101. M'Saad O, Bewersdorf J. 2020.. Light microscopy of proteins in their ultrastructural context. . Nat. Commun. 11:(1):3850
    [Crossref] [Google Scholar]
  102. Murley A, Lackner LL, Osman C, West M, Voeltz GK, et al. 2013.. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. . eLife 2::e00422
    [Crossref] [Google Scholar]
  103. Muster B, Kohl W, Wittig I, Strecker V, Joos F, et al. 2010.. Respiratory chain complexes in dynamic mitochondria display a patchy distribution in life cells. . PLOS ONE 5:(7):e11910
    [Crossref] [Google Scholar]
  104. Nagashima S, Tábara L-C, Tilokani L, Paupe V, Anand H, et al. 2020.. Golgi-derived PI(4)P-containing vesicles drive late steps of mitochondrial division. . Science 367:(6484):136671
    [Crossref] [Google Scholar]
  105. Nakano M, Arai Y, Kotera I, Okabe K, Kamei Y, Nagai T. 2017.. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response. . PLOS ONE 12:(2):e0172344
    [Crossref] [Google Scholar]
  106. Naón D, Hernández-Alvarez MI, Shinjo S, Wieczor M, Ivanova S, et al. 2023.. Splice variants of mitofusin 2 shape the endoplasmic reticulum and tether it to mitochondria. . Science 380:(6651):eadh9351
    [Crossref] [Google Scholar]
  107. Nass MMK, Nass S. 1963.. Intramitochondrial fibers with DNA characteristics. . J. Cell Biol. 19:(3):593611
    [Crossref] [Google Scholar]
  108. Neumann D, Bückers J, Kastrup L, Hell SW, Jakobs S. 2010.. Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms. . PMC Biophys. 3:(1):4
    [Crossref] [Google Scholar]
  109. Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, et al. 2008.. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. . Curr. Biol. 18:(2):1028
    [Crossref] [Google Scholar]
  110. Nguyen TT, Voeltz GK. 2022.. An ER phospholipid hydrolase drives ER-associated mitochondrial constriction for fission and fusion. . eLife 11::e84279
    [Crossref] [Google Scholar]
  111. Opstad IS, Wolfson DL, Øie CI, Ahluwalia BS. 2018.. Multi-color imaging of sub-mitochondrial structures in living cells using structured illumination microscopy. . Nanophotonics 7:(5):93547
    [Crossref] [Google Scholar]
  112. Osman C, Noriega TR, Okreglak V, Fung JC, Walter P. 2015.. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. . PNAS 112:(9):E94756
    [Crossref] [Google Scholar]
  113. Palade GE. 1952.. The fine structure of mitochondria. . Anat. Rec. 114:(3):42751
    [Crossref] [Google Scholar]
  114. Palmer CS, Lou J, Kouskousis B, Pandzic E, Anderson AJ, et al. 2021.. Super-resolution microscopy reveals the arrangement of inner membrane protein complexes in mammalian mitochondria. . J. Cell Sci. 134:(13):jcs252197
    [Crossref] [Google Scholar]
  115. Pape JK, Stephan T, Balzarotti F, Büchner R, Lange F, et al. 2020.. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. . PNAS 117:(34):2060714
    [Crossref] [Google Scholar]
  116. Papereux S, Leconte L, Valades-Cruz CA, Liu T, Dumont J, et al. 2023.. DeepCristae, a CNN for the restoration of mitochondria cristae in live microscopy images. . bioRxiv 2023.07.05.547594. https://doi.org/10.1101/2023.07.05.547594
  117. Pernas L, Scorrano L. 2016.. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. . Annu. Rev. Physiol. 78::50531
    [Crossref] [Google Scholar]
  118. Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, et al. 2014.. Uniform nomenclature for the mitochondrial contact site and cristae organizing system. . J. Cell Biol. 204:(7):108386
    [Crossref] [Google Scholar]
  119. Pham AH, McCaffery JM, Chan DC. 2012.. Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics. . Genesis 50:(11):83343
    [Crossref] [Google Scholar]
  120. Picard M, Shirihai OS. 2022.. Mitochondrial signal transduction. . Cell Metab. 34:(11):162053
    [Crossref] [Google Scholar]
  121. Pickles S, Vigié P, Youle RJ. 2018.. Mitophagy and quality control mechanisms in mitochondrial maintenance. . Curr. Biol. 28:(4):R17085
    [Crossref] [Google Scholar]
  122. Poburko D, Santo-Domingo J, Demaurex N. 2011.. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. . J. Biol. Chem. 286:(13):1167284
    [Crossref] [Google Scholar]
  123. Prole DL, Chinnery PF, Jones NS. 2020.. Visualizing, quantifying, and manipulating mitochondrial DNA in vivo. . J. Biol. Chem. 295:(51):17588601
    [Crossref] [Google Scholar]
  124. Qin J, Guo Y, Xue B, Shi P, Chen Y, et al. 2020.. ER-mitochondria contacts promote mtDNA nucleoids active transportation via mitochondrial dynamic tubulation. . Nat. Commun. 11:(1):4471
    [Crossref] [Google Scholar]
  125. Quintana A, Schwindling C, Wenning AS, Becherer U, Rettig J, et al. 2007.. T cell activation requires mitochondrial translocation to the immunological synapse. . PNAS 104:(36):1441823
    [Crossref] [Google Scholar]
  126. Rajala N, Gerhold JM, Martinsson P, Klymov A, Spelbrink JN. 2014.. Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. . Nucleic Acids Res. 42:(2):95267
    [Crossref] [Google Scholar]
  127. Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB. 1995.. Mitochondrial membrane potential monitored by JC-1 dye. . Methods Enzymol. 260::40617
    [Crossref] [Google Scholar]
  128. Ren W, Ge X, Li M, Li S, Shan C, et al. 2022.. Visualization of mitochondrial cristae and mtDNA evolvement and interactions with super-resolution microscopy. . bioRxiv 2022.12.26.521907. https://doi.org/10.1101/2022.12.26.521907
  129. Rey T, Zaganelli S, Cuillery E, Vartholomaiou E, Croisier M, et al. 2020.. Mitochondrial RNA granules are fluid condensates positioned by membrane dynamics. . Nat. Cell Biol. 22:(10):118086
    [Crossref] [Google Scholar]
  130. Riley JS, Quarato G, Cloix C, Lopez J, O'Prey J, et al. 2018.. Mitochondrial inner membrane permeabilisation enables mtDNA release during apoptosis. . EMBO J. 37:(17):e99238
    [Crossref] [Google Scholar]
  131. Rivadeneira DB, Caino MC, Seo JH, Angelin A, Wallace DC, et al. 2015.. Survivin promotes oxidative phosphorylation, subcellular mitochondrial repositioning, and tumor cell invasion. . Sci. Signal. 8:(389):ra80
    [Crossref] [Google Scholar]
  132. Sagan L. 1967.. On the origin of mitosing cells. . J. Theor. Biol. 14:(3):25574
    [Crossref] [Google Scholar]
  133. Saguy A, Alalouf O, Opatovski N, Jang S, Heilemann M, Shechtman Y. 2023.. DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning. . Nat. Methods 20:(12):193948
    [Crossref] [Google Scholar]
  134. Salvador-Gallego R, Mund M, Cosentino K, Schneider J, Unsay J, et al. 2016.. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. . EMBO J. 35:(4):389401
    [Crossref] [Google Scholar]
  135. Santo-Domingo J, Giacomello M, Poburko D, Scorrano L, Demaurex N. 2013.. OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. . EMBO J. 32:(13):192740
    [Crossref] [Google Scholar]
  136. Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW. 2008.. Spherical nanosized focal spot unravels the interior of cells. . Nat. Methods 5:(6):53944
    [Crossref] [Google Scholar]
  137. Schmidt R, Wurm CA, Punge A, Egner A, Jakobs S, Hell SW. 2009.. Mitochondrial cristae revealed with focused light. . Nano Lett. 9:(6):250810
    [Crossref] [Google Scholar]
  138. Schueder F, Lara-Gutiérrez J, Beliveau BJ, Saka SK, Sasaki HM, et al. 2017.. Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. . Nat. Commun. 8:(1):2090
    [Crossref] [Google Scholar]
  139. Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, et al. 2002.. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. . Dev. Cell 2:(1):5567
    [Crossref] [Google Scholar]
  140. Scorrano L, De Matteis MA, Emr S, Giordano F, Hajnóczky G, et al. 2019.. Coming together to define membrane contact sites. . Nat. Commun. 10:(1):1287
    [Crossref] [Google Scholar]
  141. Sen A, Kallabis S, Gaedke F, Jüngst C, Boix J, et al. 2022.. Mitochondrial membrane proteins and VPS35 orchestrate selective removal of mtDNA. . Nat. Commun. 13:(1):6704
    [Crossref] [Google Scholar]
  142. Shao L, Kner P, Rego EH, Gustafsson MGL. 2011.. Super-resolution 3D microscopy of live whole cells using structured illumination. . Nat. Methods 8:(12):104446
    [Crossref] [Google Scholar]
  143. Shim S-H, Xia C, Zhong G, Babcock HP, Vaughan JC, et al. 2012.. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. . PNAS 109:(35):1397883
    [Crossref] [Google Scholar]
  144. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. 2009.. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. . Mol. Biol. Cell 20:(15):352532
    [Crossref] [Google Scholar]
  145. Soubannier V, McLelland GL, Zunino R, Braschi E, Rippstein P, et al. 2012.. A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. . Curr. Biol. 22:(2):13541
    [Crossref] [Google Scholar]
  146. Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, et al. 2020.. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. . EMBO J. 39:(14):e104105
    [Crossref] [Google Scholar]
  147. Stephan T, Roesch A, Riedel D, Jakobs S. 2019.. Live-cell STED nanoscopy of mitochondrial cristae. . Sci. Rep. 9:(1):12419
    [Crossref] [Google Scholar]
  148. Stewart JB, Chinnery PF. 2021.. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. . Nat. Rev. Genet. 22:(2):10618
    [Crossref] [Google Scholar]
  149. Stoldt S, Stephan T, Jans DC, Brüser C, Lange F, et al. 2019.. Mic60 exhibits a coordinated clustered distribution along and across yeast and mammalian mitochondria. . PNAS 116:(20):985358
    [Crossref] [Google Scholar]
  150. Stoldt S, Wenzel D, Kehrein K, Riedel D, Ott M, Jakobs S. 2018.. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. . Nat. Cell Biol. 20:(5):52834
    [Crossref] [Google Scholar]
  151. Sun N, Yun J, Liu J, Malide D, Liu C, et al. 2015.. Measuring in vivo mitophagy. . Mol. Cell 60:(4):68596
    [Crossref] [Google Scholar]
  152. Tauber J, Dlasková A, Šantorová J, Smolková K, Alán L, et al. 2013.. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells. . Int. J. Biochem. Cell Biol. 45:(3):593603
    [Crossref] [Google Scholar]
  153. Twig G, Elorza A, Molina AJA, Mohamed H, Wikstrom JD, et al. 2008.. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. . EMBO J. 27:(2):43346
    [Crossref] [Google Scholar]
  154. Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, et al. 2017.. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. . Nature 546:(7656):16267
    [Crossref] [Google Scholar]
  155. von der Malsburg K, Müller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, et al. 2011.. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. . Dev. Cell 21:(4):694707
    [Crossref] [Google Scholar]
  156. Wai T, Langer T. 2016.. Mitochondrial dynamics and metabolic regulation. . Trends Endocrinol. Metab. 27:(2):10517
    [Crossref] [Google Scholar]
  157. Wang C, Taki M, Sato Y, Tamura Y, Yaginuma H, et al. 2019.. A photostable fluorescent marker for the superresolution live imaging of the dynamic structure of the mitochondrial cristae. . PNAS 116:(32):1581722
    [Crossref] [Google Scholar]
  158. Wehnekamp F, Plucińska G, Thong R, Misgeld T, Lamb DC. 2019.. Nanoresolution real-time 3D orbital tracking for studying mitochondrial trafficking in vertebrate axons in vivo. . eLife 8::e46059
    [Crossref] [Google Scholar]
  159. Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, et al. 2018.. Content-aware image restoration: pushing the limits of fluorescence microscopy. . Nat. Methods 15:(12):109097
    [Crossref] [Google Scholar]
  160. Wilkens V, Kohl W, Busch K. 2013.. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. . J. Cell Sci. 126:(1):10316
    [Crossref] [Google Scholar]
  161. Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST, et al. 2019.. Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. . EMBO J. 38:(22):e101056
    [Crossref] [Google Scholar]
  162. Wong YC, Kim S, Cisneros J, Molakal CG, Song P, et al. 2022.. Mid51/Fis1 mitochondrial oligomerization complex drives lysosomal untethering and network dynamics. . J. Cell Biol. 221:(10):e202206140
    [Crossref] [Google Scholar]
  163. Wong YC, Ysselstein D, Krainc D. 2018.. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. . Nature 554:(7692):38286
    [Crossref] [Google Scholar]
  164. Wu J, Liu L, Matsuda T, Zhao Y, Rebane A, et al. 2013.. Improved orange and red Ca2+ indicators and photophysical considerations for optogenetic applications. . ACS Chem. Neurosci. 4:(6):96372
    [Crossref] [Google Scholar]
  165. Wurm CA, Neumann D, Lauterbach MA, Harke B, Egner A, et al. 2011.. Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. . PNAS 108:(33):1354651
    [Crossref] [Google Scholar]
  166. Yang X, Yang Z, Wu Z, He Y, Shan C, et al. 2020.. Mitochondrial dynamics quantitatively revealed by STED nanoscopy with an enhanced squaraine variant probe. . Nat. Commun. 11:(1):3699
    [Crossref] [Google Scholar]
  167. Yuan L, Wang D, Shan S, Chen J, Huang W, et al. 2021.. Real-time imaging of viscosity in the mitochondrial matrix by a red-emissive molecular rotor. . Anal. Methods 13:(28):318186
    [Crossref] [Google Scholar]
  168. Zecchini V, Paupe V, Herranz-Montoya I, Janssen J, Wortel IMN, et al. 2023.. Fumarate induces vesicular release of mtDNA to drive innate immunity. . Nature 615:(7952):499506
    [Crossref] [Google Scholar]
  169. Zhao Y, Jin J, Hu Q, Zhou H-M, Yi J, et al. 2011.. Genetically encoded fluorescent sensors for intracellular NADH detection. . Cell Metab. 14:(4):55566
    [Crossref] [Google Scholar]
  170. Zheng S, Dadina N, Mozumdar D, Lesiak L, Martinez KN, et al. 2024.. Long-term super-resolution inner mitochondrial membrane imaging with a lipid probe. . Nat. Chem. Biol. 20::8392
    [Crossref] [Google Scholar]
  171. Zielonka J, Kalyanaraman B. 2010.. Hydroethidine- and MitoSOX-derived red fluorescence is not a reliable indicator of intracellular superoxide formation: another inconvenient truth. . Free Radic. Biol. Med. 48:(8):9831001
    [Crossref] [Google Scholar]
  172. Zorkau M, Albus CA, Berlinguer-Palmini R, Chrzanowska-Lightowlers ZMA, Lightowlers RN. 2021.. High-resolution imaging reveals compartmentalization of mitochondrial protein synthesis in cultured human cells. . PNAS 118:(6):e2008778118
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111822-114733
Loading
/content/journals/10.1146/annurev-cellbio-111822-114733
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error