1932

Abstract

Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111822-120242
2024-10-02
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-111822-120242.html?itemId=/content/journals/10.1146/annurev-cellbio-111822-120242&mimeType=html&fmt=ahah

Literature Cited

  1. Abdul-Halim MF, Schulze S, DiLucido A, Pfeiffer F, Bisson Filho AW, Pohlschroder M. 2020.. Lipid anchoring of archaeosortase substrates and midcell growth in haloarchaea. . mBio 11:(2):e00349-20
    [Crossref] [Google Scholar]
  2. Adell MAY, Migliano SM, Teis D. 2016.. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission. . FEBS J. 283:(18):3288302
    [Crossref] [Google Scholar]
  3. Albers S-V, Meyer BH. 2011.. The archaeal cell envelope. . Nat. Rev. Microbiol. 9:(6):41426
    [Crossref] [Google Scholar]
  4. Arias-Palomo E, O'Shea VL, Hood IV, Berger JM. 2013.. The bacterial DnaC helicase loader is a DnaB ring breaker. . Cell 153:(2):43848
    [Crossref] [Google Scholar]
  5. Badel C, Bell SD. 2024.. Chromosome architecture in an archaeal species naturally lacking structural maintenance of chromosomes proteins. . Nat. Microbiol. 9:(1):26373
    [Crossref] [Google Scholar]
  6. Bailey MW, Bisicchia P, Warren BT, Sherratt DJ, Männik J. 2014.. Evidence for divisome localization mechanisms independent of the Min system and SlmA in Escherichia coli. . PLOS Genet. 10:(8):e1004504
    [Crossref] [Google Scholar]
  7. Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. 2020.. Diversity, ecology and evolution of Archaea. . Nat. Microbiol. 5:(7):887900
    [Crossref] [Google Scholar]
  8. Barns SM, Fundyga RE, Jeffries MW, Pace NR. 1994.. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. . PNAS 91:(5):160913
    [Crossref] [Google Scholar]
  9. Basu S, Greenwood J, Jones AW, Nurse P. 2022.. Core control principles of the eukaryotic cell cycle. . Nature 607:(7918):38186
    [Crossref] [Google Scholar]
  10. Baum B, Baum DA. 2014.. An inside-out origin for the eukaryotic cell. . BMC Biol. 12::76
    [Crossref] [Google Scholar]
  11. Baum B, Nishitani H, Yanow S, Nurse P. 1998.. Cdc18 transcription and proteolysis couple S phase to passage through mitosis. . EMBO J. 17:(19):568998
    [Crossref] [Google Scholar]
  12. Baum B, Spang A. 2023.. On the origin of the nucleus: a hypothesis. . Microbiol. Mol. Biol. Rev. 87:(4):e00186-21
    [Crossref] [Google Scholar]
  13. Baumann A, Lange C, Soppa J. 2007.. Transcriptome changes and cAMP oscillations in an archaeal cell cycle. . BMC Cell Biol. 8::21
    [Crossref] [Google Scholar]
  14. Baumann P, Jackson SP. 1996.. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ. . PNAS 93:(13):672630
    [Crossref] [Google Scholar]
  15. Bell SD, Jackson SP. 1998.. Transcription in Archaea. . Cold Spring Harb. Symp. Quant. Biol. 63::4151
    [Crossref] [Google Scholar]
  16. Bernander R, Poplawski A. 1997.. Cell cycle characteristics of thermophilic archaea. . J. Bacteriol. 179:(16):496369
    [Crossref] [Google Scholar]
  17. Bernander R, Poplawski A, Grogan DW. 2000.. Altered patterns of cellular growth, morphology, replication and division in conditional-lethal mutants of the thermophilic archaeon Sulfolobus acidocaldarius. . Microbiology 146:(3):74957
    [Crossref] [Google Scholar]
  18. Bharat TAM, von Kügelgen A, Alva V. 2021.. Molecular logic of prokaryotic surface layer structures. . Trends Microbiol. 29:(5):40515
    [Crossref] [Google Scholar]
  19. Bhattarai B, Bhattacharjee AS, Coutinho FH, Goel RK. 2021.. Viruses and their interactions with bacteria and archaea of hypersaline Great Salt Lake. . Front. Microbiol. 12::701414
    [Crossref] [Google Scholar]
  20. Blanch Jover A, De Franceschi N, Fenel D, Weissenhorn W, Dekker C. 2022.. The archaeal division protein CdvB1 assembles into polymers that are depolymerized by CdvC. . FEBS Lett. 596:(7):95869
    [Crossref] [Google Scholar]
  21. Blanch Jover A, Dekker C. 2023.. The archaeal Cdv cell division system. . Trends Microbiol. 31:(6):60115
    [Crossref] [Google Scholar]
  22. Blombach F, Matelska D, Fouqueau T, Cackett G, Werner F. 2019.. Key concepts and challenges in archaeal transcription. . J. Mol. Biol. 431:(20):4184201
    [Crossref] [Google Scholar]
  23. Boucher Y, Kamekura M, Doolittle WF. 2004.. Origins and evolution of isoprenoid lipid biosynthesis in archaea. . Mol. Microbiol. 52:(2):51527
    [Crossref] [Google Scholar]
  24. Boyd E, Hamilton T, Wang J, He L, Zhang C. 2013.. The role of tetraether lipid composition in the adaptation of thermophilic archaea to acidity. . Front. Microbiol. 4::62
    [Google Scholar]
  25. Breuert S, Allers T, Spohn G, Soppa J. 2006.. Regulated polyploidy in halophilic archaea. . PLOS ONE 1:(1):e92
    [Crossref] [Google Scholar]
  26. Burghardt T, Junglas B, Siedler F, Wirth R, Huber H, Rachel R. 2009.. The interaction of Nanoarchaeum equitans with Ignicoccus hospitalis: proteins in the contact site between two cells. . Biochem. Soc. Trans. 37:(Part 1):12732
    [Crossref] [Google Scholar]
  27. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML. 2004.. Cultivation of Walsby's square haloarchaeon. . FEMS Microbiol. Lett. 238:(2):46973
    [Google Scholar]
  28. Cameron TA, Margolin W. 2024.. Insights into the assembly and regulation of the bacterial divisome. . Nat. Rev. Microbiol. 22::3345
    [Crossref] [Google Scholar]
  29. Carlton JG, Baum B. 2023.. Roles of ESCRT-III polymers in cell division across the tree of life. . Curr. Opin. Cell Biol. 85::102274
    [Crossref] [Google Scholar]
  30. Cezanne A, Hoogenberg B, Baum B. 2023.. Probing archaeal cell biology: exploring the use of dyes in the imaging of Sulfolobus cells. . Front. Microbiol. 14::1233032
    [Crossref] [Google Scholar]
  31. Charles-Orszag A, Lord SJ, Mullins RD. 2021.. High-temperature live-cell imaging of cytokinesis, cell motility, and cell-cell interactions in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. . Front. Microbiol. 12::707124
    [Crossref] [Google Scholar]
  32. Chemes LB, Noval MG, Sánchez IE, de Prat-Gay G. 2013.. Folding of a cyclin box: linking multitarget binding to marginal stability, oligomerization, and aggregation of the retinoblastoma tumor suppressor AB pocket domain. . J. Biol. Chem. 288:(26):1892338
    [Crossref] [Google Scholar]
  33. Chen JC, Beckwith J. 2001.. FtsQ, FtsL and FtsI require FtsK, but not FtsN, for co-localization with FtsZ during Escherichia coli cell division. . Mol. Microbiol. 42:(2):395413
    [Crossref] [Google Scholar]
  34. Chen S, Sun S, Korfanty GA, Liu J, Xiang H. 2019.. A halocin promotes DNA uptake in Haloferax mediterranei. . Front. Microbiol. 10::1960
    [Crossref] [Google Scholar]
  35. Cui H-L, Dyall-Smith ML. 2021.. Cultivation of halophilic archaea (class Halobacteria) from thalassohaline and athalassohaline environments. . Mar. Life Sci. Technol. 3:(2):24351
    [Crossref] [Google Scholar]
  36. Darnell CL, Zheng J, Wilson S, Bertoli RM, Bisson Filho AW, et al. 2020.. The ribbon-helix-helix domain protein CdrS regulates the tubulin homolog ftsZ2 to control cell division in archaea. . mBio 11:(4):e01007-20
    [Crossref] [Google Scholar]
  37. De Rosa M, Gambacorta A. 1988.. The lipids of archaebacteria. . Prog. Lipid Res. 27:(3):15375
    [Crossref] [Google Scholar]
  38. DeLong EF. 1992.. Archaea in coastal marine environments. . PNAS 89:(12):568589
    [Crossref] [Google Scholar]
  39. Duggin IG, Aylett CHS, Walsh JC, Michie KA, Wang Q, et al. 2015.. CetZ tubulin-like proteins control archaeal cell shape. . Nature 519:(7543):36265
    [Crossref] [Google Scholar]
  40. Edgell DR, Doolittle WF. 1997.. Archaea and the origin(s) of DNA replication proteins. . Cell 89:(7):99598
    [Crossref] [Google Scholar]
  41. Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. 2017.. Archaea and the origin of eukaryotes. . Nat. Rev. Microbiol. 15:(12):71123
    [Crossref] [Google Scholar]
  42. Eme L, Tamarit D, Caceres EF, Stairs CW, De Anda V, et al. 2023.. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. . Nature 618:(7967):99299
    [Crossref] [Google Scholar]
  43. Ettema TJG, Lindås A-C, Bernander R. 2011.. An actin-based cytoskeleton in archaea. . Mol. Microbiol. 80:(4):105261
    [Crossref] [Google Scholar]
  44. Feng X, Noguchi Y, Barbon M, Stillman B, Speck C, Li H. 2021.. The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. . Nat. Commun. 12::3883
    [Crossref] [Google Scholar]
  45. Forterre P, Elie C, Kohiyama M. 1984.. Aphidicolin inhibits growth and DNA synthesis in halophilic arachaebacteria. . J. Bacteriol. 159:(2):8002
    [Crossref] [Google Scholar]
  46. Fröls S, Gordon PMK, Panlilio MA, Duggin IG, Bell SD, et al. 2007.. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage. . J. Bacteriol. 189:(23):870818
    [Crossref] [Google Scholar]
  47. Gambelli L, McLaren M, Conners R, Sanders K, Gaines MC, et al. 2024.. Structure of the two-component S-layer of the archaeon Sulfolobus acidocaldarius. . eLife 13::e84617
    [Crossref] [Google Scholar]
  48. Gambelli L, Meyer BH, McLaren M, Sanders K, Quax TEF, et al. 2019.. Architecture and modular assembly of Sulfolobus S-layers revealed by electron cryotomography. . PNAS 116:(50):2527886
    [Crossref] [Google Scholar]
  49. Geesink P, Ettema TJG. 2022.. The human archaeome in focus. . Nat. Microbiol. 7:(1):1011
    [Crossref] [Google Scholar]
  50. Gehring AM, Astling DP, Matsumi R, Burkhart BW, Kelman Z, et al. 2017.. Genome replication in Thermococcus kodakarensis independent of Cdc6 and an origin of replication. . Front. Microbiol. 8::2084
    [Crossref] [Google Scholar]
  51. Grabowski B, Kelman Z. 2001.. Autophosphorylation of archaeal Cdc6 homologues is regulated by DNA. . J. Bacteriol. 183:(18):545964
    [Crossref] [Google Scholar]
  52. Greci MD, Bell SD. 2020.. Archaeal DNA replication. . Annu. Rev. Microbiol. 74::6580
    [Crossref] [Google Scholar]
  53. Hale CA, de Boer PAJ. 1997.. Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli. . Cell 88:(2):17585
    [Crossref] [Google Scholar]
  54. Hale CA, de Boer PAJ. 2002.. ZipA is required for recruitment of FtsK, FtsQ, FtsL, and FtsN to the septal ring in Escherichia coli. . J. Bacteriol. 184:(9):255256
    [Crossref] [Google Scholar]
  55. Hatano T, Palani S, Papatziamou D, Salzer R, Souza DP, et al. 2022.. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. . Nat. Commun. 13::3398
    [Crossref] [Google Scholar]
  56. Hawkins M, Malla S, Blythe MJ, Nieduszynski CA, Allers T. 2013.. Accelerated growth in the absence of DNA replication origins. . Nature 503:(7477):54447
    [Crossref] [Google Scholar]
  57. Herrmann U, Soppa J. 2002.. Cell cycle-dependent expression of an essential SMC-like protein and dynamic chromosome localization in the archaeon Halobacterium salinarum. . Mol. Microbiol. 46:(2):395409
    [Crossref] [Google Scholar]
  58. Hildenbrand C, Stock T, Lange C, Rother M, Soppa J. 2011.. Genome copy numbers and gene conversion in methanogenic archaea. . J. Bacteriol. 193:(3):73443
    [Crossref] [Google Scholar]
  59. Hjort K, Bernander R. 2001.. Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. . Mol. Microbiol. 40:(1):22534
    [Crossref] [Google Scholar]
  60. Horn C, Paulmann B, Kerlen G, Junker N, Huber H. 1999.. In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope. . J. Bacteriol. 181:(16):511418
    [Crossref] [Google Scholar]
  61. Huet J, Schnabel R, Sentenac A, Zillig W. 1983.. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. . EMBO J. 2:(8):129194
    [Crossref] [Google Scholar]
  62. Hurtig F, Burgers TCQ, Cezanne A, Jiang X, Mol FN, et al. 2023.. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. . Sci. Adv. 9:(11):eade5224
    [Crossref] [Google Scholar]
  63. Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, et al. 2020.. Isolation of an archaeon at the prokaryote-eukaryote interface. . Nature 577:(7791):51925
    [Crossref] [Google Scholar]
  64. Ithurbide S, Gribaldo S, Albers S-V, Pende N. 2022.. Spotlight on FtsZ-based cell division in Archaea. . Trends Microbiol. 30:(7):66578
    [Crossref] [Google Scholar]
  65. Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T. 1989.. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. . PNAS 86:(23):935559
    [Crossref] [Google Scholar]
  66. Izoré T, Kureisaite-Ciziene D, McLaughlin SH, Löwe J. 2016.. Crenactin forms actin-like double helical filaments regulated by arcadin-2. . eLife 5::e21600
    [Crossref] [Google Scholar]
  67. Jain S, Caforio A, Driessen AJM. 2014a.. Biosynthesis of archaeal membrane ether lipids. . Front. Microbiol. 5::641
    [Crossref] [Google Scholar]
  68. Jain S, Caforio A, Fodran P, Lolkema JS, Minnaard AJ, Driessen AJM. 2014b.. Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea. . Chem. Biol. 21:(10):1392401
    [Crossref] [Google Scholar]
  69. Jensen SM, Neesgaard VL, Skjoldbjerg SLN, Brandl M, Ejsing CS, Treusch AH. 2015.. The effects of temperature and growth phase on the lipidomes of Sulfolobus islandicus and Sulfolobus tokodaii. . Life 5:(3):153966
    [Crossref] [Google Scholar]
  70. Jiang X, Harker-Kirschneck L, Vanhille-Campos C, Pfitzner A-K, Lominadze E, et al. 2022.. Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. . PLOS Comput. Biol. 18:(10):e1010586
    [Crossref] [Google Scholar]
  71. Kalliomaa-Sanford AK, Rodriguez-Castañeda FA, McLeod BN, Latorre-Roselló V, Smith JH, et al. 2012.. Chromosome segregation in Archaea mediated by a hybrid DNA partition machine. . PNAS 109:(10):375459
    [Crossref] [Google Scholar]
  72. Kelman LM, Kelman Z. 2014.. Archaeal DNA replication. . Annu. Rev. Genet. 48::7197
    [Crossref] [Google Scholar]
  73. Kelman LM, O'Dell WB, Kelman Z. 2020.. Unwinding 20 years of the archaeal minichromosome maintenance helicase. . J. Bacteriol. 202:(6):e00729-19
    [Crossref] [Google Scholar]
  74. Kelman Z, White MF. 2005.. Archaeal DNA replication and repair. . Curr. Opin. Microbiol. 8:(6):66976
    [Crossref] [Google Scholar]
  75. Klein T, Poghosyan L, Barclay JE, Murrell JC, Hutchings MI, Lehtovirta-Morley LE. 2022.. Cultivation of ammonia-oxidising archaea on solid medium. . FEMS Microbiol. Lett. 369:(1):fnac029
    [Crossref] [Google Scholar]
  76. Koga Y, Kyuragi T, Nishihara M, Sone N. 1998.. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. . J. Mol. Evol. 46::5463
    [Crossref] [Google Scholar]
  77. Koga Y, Morii H. 2007.. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. . Microbiol. Mol. Biol. Rev. 71:(1):97120
    [Crossref] [Google Scholar]
  78. Koga Y, Nishihara M, Morii H, Akagawa-Matsushita M. 1993.. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. . Microbiol. Rev. 57:(1):16482
    [Crossref] [Google Scholar]
  79. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. 2005.. Isolation of an autotrophic ammonia-oxidizing marine archaeon. . Nature 437:(7058):54346
    [Crossref] [Google Scholar]
  80. Koonin EV, Martin W. 2005.. On the origin of genomes and cells within inorganic compartments. . Trends Genet. 21:(12):64754
    [Crossref] [Google Scholar]
  81. Koonin EV, Mushegian AR, Galperin MY, Walker DR. 1997.. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. . Mol. Microbiol. 25:(4):61937
    [Crossref] [Google Scholar]
  82. Lai D, Springstead JR, Monbouquette HG. 2008.. Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus. . Extremophiles 12:(2):27178
    [Crossref] [Google Scholar]
  83. Lake JA. 1988.. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. . Nature 331:(6152):18486
    [Crossref] [Google Scholar]
  84. Lake JA, Henderson E, Oakes M, Clark MW. 1984.. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. . PNAS 81:(12):378690
    [Crossref] [Google Scholar]
  85. Langer D, Hain J, Thuriaux P, Zillig W. 1995.. Transcription in archaea: similarity to that in eucarya. . PNAS 92:(13):576872
    [Crossref] [Google Scholar]
  86. Li X, Lozano-Madueño C, Martínez-Alvarez L, Peng X. 2023.. A clade of RHH proteins ubiquitous in Sulfolobales and their viruses regulates cell cycle progression. . Nucleic Acids Res. 51:(4):172439
    [Crossref] [Google Scholar]
  87. Liao Y, Ithurbide S, Evenhuis C, Löwe J, Duggin IG. 2021a.. Cell division in the archaeon Haloferax volcanii relies on two FtsZ proteins with distinct functions in division ring assembly and constriction. . Nat. Microbiol. 6:(5):594605
    [Crossref] [Google Scholar]
  88. Liao Y, Vogel V, Hauber S, Bartel J, Alkhnbashi OS, et al. 2021b.. CdrS is a global transcriptional regulator influencing cell division in Haloferax volcanii. . mBio 12:(4):e0141621
    [Crossref] [Google Scholar]
  89. Lindås A-C, Karlsson EA, Lindgren MT, Ettema TJG, Bernander R. 2008.. A unique cell division machinery in the Archaea. . PNAS 105:(48):1894246
    [Crossref] [Google Scholar]
  90. Liu J, Gao R, Li C, Ni J, Yang Z, et al. 2017.. Functional assignment of multiple ESCRT-III homologs in cell division and budding in Sulfolobus islandicus. . Mol. Microbiol. 105:(4):54053
    [Crossref] [Google Scholar]
  91. Liu J, Smith CL, DeRyckere D, DeAngelis K, Martin GS, Berger JM. 2000.. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. . Mol. Cell 6:(3):63748
    [Crossref] [Google Scholar]
  92. Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, et al. 2021.. Expanded diversity of Asgard archaea and their relationships with eukaryotes. . Nature 593:(7860):55357
    [Crossref] [Google Scholar]
  93. Liu Z, Mukherjee A, Lutkenhaus J. 1999.. Recruitment of ZipA to the division site by interaction with FtsZ. . Mol. Microbiol. 31:(6):185361
    [Crossref] [Google Scholar]
  94. Lloyd CT, Iwig DF, Wang B, Cossu M, Metcalf WW, et al. 2022.. Discovery, structure and mechanism of a tetraether lipid synthase. . Nature 609:(7925):197203
    [Crossref] [Google Scholar]
  95. Lombard J, López-García P, Moreira D. 2012.. The early evolution of lipid membranes and the three domains of life. . Nat. Rev. Microbiol. 10:(7):50715
    [Crossref] [Google Scholar]
  96. López-Avilés S, Kapuy O, Novák B, Uhlmann F. 2009.. Irreversibility of mitotic exit is the consequence of systems-level feedback. . Nature 459:(7246):59295
    [Crossref] [Google Scholar]
  97. Lundgren M, Andersson A, Chen L, Nilsson P, Bernander R. 2004.. Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. . PNAS 101:(18):704651
    [Crossref] [Google Scholar]
  98. Lundgren M, Bernander R. 2007.. Genome-wide transcription map of an archaeal cell cycle. . PNAS 104:(8):293944
    [Crossref] [Google Scholar]
  99. Lundgren M, Malandrin L, Eriksson S, Huber H, Bernander R. 2008.. Cell cycle characteristics of Crenarchaeota: unity among diversity. . J. Bacteriol. 190:(15):536267
    [Crossref] [Google Scholar]
  100. MacLeod F, Kindler GS, Wong HL, Chen R, Burns BP. 2019.. Asgard archaea: diversity, function, and evolutionary implications in a range of microbiomes. . AIMS Microbiol. 5:(1):4861
    [Crossref] [Google Scholar]
  101. Mahone CR, Goley ED. 2020.. Bacterial cell division at a glance. . J. Cell Sci. 133:(7):jcs237057
    [Crossref] [Google Scholar]
  102. Majerník AI, Lundgren M, McDermott P, Bernander R, Chong JPJ. 2005.. DNA content and nucleoid distribution in Methanothermobacter thermautotrophicus. . J. Bacteriol. 187:(5):185658
    [Crossref] [Google Scholar]
  103. Makarova KS, Koonin EV, Kelman Z. 2012.. The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes. . Biol. Direct 7::7
    [Crossref] [Google Scholar]
  104. Makarova KS, Yutin N, Bell SD, Koonin EV. 2010.. Evolution of diverse cell division and vesicle formation systems in Archaea. . Nat. Rev. Microbiol. 8:(10):73141
    [Crossref] [Google Scholar]
  105. Malandrin L, Huber H, Bernander R. 1999.. Nucleoid structure and partition in Methanococcus jannaschii: an archaeon with multiple copies of the chromosome. . Genetics 152:(4):131523
    [Crossref] [Google Scholar]
  106. Margolin W. 2005.. FtsZ and the division of prokaryotic cells and organelles. . Nat. Rev. Mol. Cell Biol. 6:(11):86271
    [Crossref] [Google Scholar]
  107. Margolin W, Wang R, Kumar M. 1996.. Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. . J. Bacteriol. 178:(5):132027
    [Crossref] [Google Scholar]
  108. Marie D, Vaulot D, Partensky F. 1996.. Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. . Appl. Environ. Microbiol. 62:(5):164955
    [Crossref] [Google Scholar]
  109. Matsunaga F, Forterre P, Ishino Y, Myllykallio H. 2001.. In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. . PNAS 98:(20):1115257
    [Crossref] [Google Scholar]
  110. Matsunaga F, Glatigny A, Mucchielli-Giorgi M-H, Agier N, Delacroix H, et al. 2007.. Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp. . Nucleic Acids Res. 35:(10):321422
    [Crossref] [Google Scholar]
  111. Matsuno Y, Sugai A, Higashibata H, Fukuda W, Ueda K, et al. 2009.. Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis. . Biosci. Biotechnol. Biochem. 73:(1):1048
    [Crossref] [Google Scholar]
  112. McQuillen R, Xiao J. 2020.. Insights into the structure, function, and dynamics of the bacterial cytokinetic FtsZ-ring. . Annu. Rev. Biophys. 49::30941
    [Crossref] [Google Scholar]
  113. Meadowcroft B, Palaia I, Pfitzner A-K, Roux A, Baum B, Šarić A. 2022.. Mechanochemical rules for shape-shifting filaments that remodel membranes. . Phys. Rev. Lett. 129::268101
    [Crossref] [Google Scholar]
  114. Myllykallio H, Lopez P, López-García P, Heilig R, Saurin W, et al. 2000.. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. . Science 288:(5474):221215
    [Crossref] [Google Scholar]
  115. Noble ME, Endicott JA, Brown NR, Johnson LN. 1997.. The cyclin box fold: protein recognition in cell-cycle and transcription control. . Trends Biochem. Sci. 22:(12):48287
    [Crossref] [Google Scholar]
  116. Norais C, Hawkins M, Hartman AL, Eisen JA, Myllykallio H, Allers T. 2007.. Genetic and physical mapping of DNA replication origins in Haloferax volcanii. . PLOS Genet. 3:(5):e77
    [Crossref] [Google Scholar]
  117. Nurse P, Masui Y, Hartwell L. 1998.. Understanding the cell cycle. . Nat. Med. 4:(10):11036
    [Crossref] [Google Scholar]
  118. Nußbaum P, Gerstner M, Dingethal M, Erb C, Albers S-V. 2021.. The archaeal protein SepF is essential for cell division in Haloferax volcanii. . Nat. Commun. 12::3469
    [Crossref] [Google Scholar]
  119. Nußbaum P, Ithurbide S, Walsh JC, Patro M, Delpech F, et al. 2020.. An oscillating MinD protein determines the cellular positioning of the motility machinery in archaea. . Curr. Biol. 30:(24):495672.e4
    [Crossref] [Google Scholar]
  120. Osteryoung KW, Nunnari J. 2003.. The division of endosymbiotic organelles. . Science 302:(5651):1698704
    [Crossref] [Google Scholar]
  121. Palmieri G, Balestrieri M, Peter-Katalinić J, Pohlentz G, Rossi M, et al. 2013.. Surface-exposed glycoproteins of hyperthermophilic Sulfolobus solfataricus P2 show a common N-glycosylation profile. . J. Proteome Res. 12:(6):277990
    [Crossref] [Google Scholar]
  122. Pelve EA, Lindås A-C, Knöppel A, Mira A, Bernander R. 2012.. Four chromosome replication origins in the archaeon Pyrobaculum calidifontis. . Mol. Microbiol. 85:(5):98695
    [Crossref] [Google Scholar]
  123. Pelve EA, Lindås A-C, Martens-Habbena W, de la Torre JR, Stahl DA, Bernander R. 2011.. Cdv-based cell division and cell cycle organization in the thaumarchaeon Nitrosopumilus maritimus. . Mol. Microbiol. 82:(3):55566
    [Crossref] [Google Scholar]
  124. Pende N, Sogues A, Megrian D, Sartori-Rupp A, England P, et al. 2021.. SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system. . Nat. Commun. 12::3214
    [Crossref] [Google Scholar]
  125. Peretó J, López-García P, Moreira D. 2004.. Ancestral lipid biosynthesis and early membrane evolution. . Trends Biochem. Sci. 29:(9):46977
    [Crossref] [Google Scholar]
  126. Peyfoon E, Meyer B, Hitchen PG, Panico M, Morris HR, et al. 2010.. The S-layer glycoprotein of the crenarchaeote Sulfolobus acidocaldarius is glycosylated at multiple sites with chitobiose-linked N-glycans. . Archaea 2010::754101
    [Crossref] [Google Scholar]
  127. Pfitzner A-K, Mercier V, Jiang X, Moser von Filseck J, Baum B, et al. 2020.. An ESCRT-III polymerization sequence drives membrane deformation and fission. . Cell 182:(5):114055.e18
    [Crossref] [Google Scholar]
  128. Pollard TD, O'Shaughnessy B. 2019.. Molecular mechanism of cytokinesis. . Annu. Rev. Biochem. 88::66189
    [Crossref] [Google Scholar]
  129. Popławski A, Bernander R. 1997.. Nucleoid structure and distribution in thermophilic Archaea. . J. Bacteriol. 179:(24):762530
    [Crossref] [Google Scholar]
  130. Poplawski A, Gullbrand B, Bernander R. 2000.. The ftsZ gene of Haloferax mediterranei: sequence, conserved gene order, and visualization of the FtsZ ring. . Gene 242:(1/2):35767
    [Crossref] [Google Scholar]
  131. Pulschen AA, Mutavchiev DR, Culley S, Sebastian KN, Roubinet J, et al. 2020.. Live imaging of a hyperthermophilic archaeon reveals distinct roles for two ESCRT-III homologs in ensuring a robust and symmetric division. . Curr. Biol. 30:(14):285259.e4
    [Crossref] [Google Scholar]
  132. Pum D, Messner P, Sleytr UB. 1991.. Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense. . J. Bacteriol. 173:(21):686573
    [Crossref] [Google Scholar]
  133. Reyes-Lamothe R, Sherratt DJ. 2019.. The bacterial cell cycle, chromosome inheritance and cell growth. . Nat. Rev. Microbiol. 17:(8):46778
    [Crossref] [Google Scholar]
  134. Rhind N, Russell P. 1998.. The Schizosaccharomyces pombe S-phase checkpoint differentiates between different types of DNA damage. . Genetics 149:(4):172937
    [Crossref] [Google Scholar]
  135. Robinson NP, Bell SD. 2007.. Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. . PNAS 104:(14):580611
    [Crossref] [Google Scholar]
  136. Robinson NP, Blood KA, McCallum SA, Edwards PAW, Bell SD. 2007.. Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus. . EMBO J. 26:(3):81624
    [Crossref] [Google Scholar]
  137. Rodrigues CDA, Harry EJ. 2012.. The Min system and nucleoid occlusion are not required for identifying the division site in Bacillus subtilis but ensure its efficient utilization. . PLOS Genet. 8:(3):e1002561
    [Crossref] [Google Scholar]
  138. Rodrigues-Oliveira T, Wollweber F, Ponce-Toledo RI, Xu J, Rittmann SK-MR, et al. 2023.. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. . Nature 613:(7943):33239
    [Crossref] [Google Scholar]
  139. Rowlett VW, Margolin W. 2015.. The Min system and other nucleoid-independent regulators of Z ring positioning. . Front. Microbiol. 6::478
    [Crossref] [Google Scholar]
  140. Royo-Llonch M, Sánchez P, Ruiz-González C, Salazar G, Pedrós-Alió C, et al. 2021.. Compendium of 530 metagenome-assembled bacterial and archaeal genomes from the polar Arctic Ocean. . Nat. Microbiol. 6:(12):156174
    [Crossref] [Google Scholar]
  141. Ruaud A, Esquivel-Elizondo S, de la Cuesta-Zuluaga J, Waters JL, Angenent LT, et al. 2020.. Syntrophy via interspecies H2 transfer between Christensenella and Methanobrevibacter underlies their global cooccurrence in the human gut. . mBio 11:(1):e03235-19
    [Crossref] [Google Scholar]
  142. Samson RY, Obita T, Freund SM, Williams RL, Bell SD. 2008.. A role for the ESCRT system in cell division in archaea. . Science 322:(5908):171013
    [Crossref] [Google Scholar]
  143. Samson RY, Obita T, Hodgson B, Shaw MK, Chong PL-G, et al. 2011.. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division. . Mol. Cell 41:(2):18696
    [Crossref] [Google Scholar]
  144. Samson RY, Xu Y, Gadelha C, Stone TA, Faqiri JN, et al. 2013.. Specificity and function of archaeal DNA replication initiator proteins. . Cell Rep. 3:(2):48596
    [Crossref] [Google Scholar]
  145. Schinzel R, Burger KJ. 1984.. Sensitivity of halobacteria to aphidicolin, an inhibitor of eukaryotic α-type DNA polymerases. . FEMS Microbiol. Lett. 25:(2–3):18790
    [Google Scholar]
  146. Schult F, Le TN, Albersmeier A, Rauch B, Blumenkamp P, et al. 2018.. Effect of UV irradiation on Sulfolobus acidocaldarius and involvement of the general transcription factor TFB3 in the early UV response. . Nucleic Acids Res. 46:(14):717992
    [Crossref] [Google Scholar]
  147. Sleytr UB, Schuster B, Egelseer E-M, Pum D. 2014.. S-layers: principles and applications. . FEMS Microbiol. Rev. 38:(5):82364
    [Crossref] [Google Scholar]
  148. Söderström B, Skoog K, Blom H, Weiss DS, von Heijne G, Daley DO. 2014.. Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalisation. . Mol. Microbiol. 92:(1):19
    [Crossref] [Google Scholar]
  149. Sojo V, Pomiankowski A, Lane N. 2014.. A bioenergetic basis for membrane divergence in archaea and bacteria. . PLOS Biol. 12:(8):e1001926
    [Crossref] [Google Scholar]
  150. Spaans SK, van der Oost J, Kengen SWM. 2015.. The chromosome copy number of the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. . Extremophiles 19:(4):74150
    [Crossref] [Google Scholar]
  151. Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, et al. 2015.. Complex archaea that bridge the gap between prokaryotes and eukaryotes. . Nature 521:(7551):17379
    [Crossref] [Google Scholar]
  152. Sprott GD, Meloche M, Richards JC. 1991.. Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. . J. Bacteriol. 173:(12):390710
    [Crossref] [Google Scholar]
  153. Starke R, Siles JA, Fernandes MLP, Schallert K, Benndorf D, et al. 2021.. The structure and function of soil archaea across biomes. . J. Proteom. 237::104147
    [Crossref] [Google Scholar]
  154. Steenbakkers PJM, Geerts WJ, Ayman-Oz NA, Keltjens JT. 2006.. Identification of pseudomurein cell wall binding domains. . Mol. Microbiol. 62:(6):161830
    [Crossref] [Google Scholar]
  155. Stuchell-Brereton MD, Skalicky JJ, Kieffer C, Karren MA, Ghaffarian S, Sundquist WI. 2007.. ESCRT-III recognition by VPS4 ATPases. . Nature 449:(7163):74044
    [Crossref] [Google Scholar]
  156. Subedi BP, Martin WF, Carbone V, Duin EC, Cronin B, et al. 2021.. Archaeal pseudomurein and bacterial murein cell wall biosynthesis share a common evolutionary ancestry. . FEMS Microbes 2::xtab012
    [Crossref] [Google Scholar]
  157. Takai K, Nakamura K. 2011.. Archaeal diversity and community development in deep-sea hydrothermal vents. . Curr. Opin. Microbiol. 14:(3):28291
    [Crossref] [Google Scholar]
  158. Takashina T, Hamamoto T, Otozai K, Grant WD, Horikoshi K. 1990.. Haloarcula japonica sp. nov., a new triangular halophilic archaebacterium. . Syst. Appl. Microbiol. 13:(2):17781
    [Crossref] [Google Scholar]
  159. Takemata N, Samson RY, Bell SD. 2019.. Physical and functional compartmentalization of archaeal chromosomes. . Cell 179:(1):16579.e18
    [Crossref] [Google Scholar]
  160. Tarrason Risa G, Hurtig F, Bray S, Hafner AE, Harker-Kirschneck L, et al. 2020.. The proteasome controls ESCRT-III-mediated cell division in an archaeon. . Science 369:(6504):eaaz2532
    [Crossref] [Google Scholar]
  161. Thomas CM, Desmond-Le Quéméner E, Gribaldo S, Borrel G. 2022.. Factors shaping the abundance and diversity of the gut archaeome across the animal kingdom. . Nat. Commun. 13::3358
    [Crossref] [Google Scholar]
  162. Tourte M, Schaeffer P, Grossi V, Oger PM. 2020.. Functionalized membrane domains: an ancestral feature of archaea?. Front. Microbiol. 11::526
    [Crossref] [Google Scholar]
  163. van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers S-V. 2022.. The cell biology of archaea. . Nat. Microbiol. 7:(11):174455
    [Crossref] [Google Scholar]
  164. Vaughan S, Wickstead B, Gull K, Addinall SG. 2004.. Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. . J. Mol. Evol. 58:(1):1929
    [Crossref] [Google Scholar]
  165. Villanueva L, von Meijenfeldt FAB, Westbye AB, Yadav S, Hopmans EC, et al. 2021.. Bridging the membrane lipid divide: Bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. . ISME J. 15:(1):16882
    [Crossref] [Google Scholar]
  166. Visweswaran GRR, Dijkstra BW, Kok J. 2011.. Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view. . Appl. Microbiol. Biotechnol. 92:(5):92128
    [Crossref] [Google Scholar]
  167. von Kügelgen A, Alva V, Bharat TAM. 2021.. Complete atomic structure of a native archaeal cell surface. . Cell Rep. 37:(8):110052
    [Crossref] [Google Scholar]
  168. Wagner M, van Wolferen M, Wagner A, Lassak K, Meyer BH, et al. 2012.. Versatile genetic tool box for the crenarchaeote Sulfolobus acidocaldarius. . Front. Microbiol. 3::214
    [Crossref] [Google Scholar]
  169. Walsby AE. 1980.. A square bacterium. . Nature 283:(5742):6971
    [Crossref] [Google Scholar]
  170. Walsh JC, Angstmann CN, Bisson Filho AW, Garner EC, Duggin IG, Curmi PMG. 2019.. Division plane placement in pleomorphic archaea is dynamically coupled to cell shape. . Mol. Microbiol. 112:(3):78599
    [Crossref] [Google Scholar]
  171. Wang JD, Levin PA. 2009.. Metabolism, cell growth and the bacterial cell cycle. . Nat. Rev. Microbiol. 7:(11):82227
    [Crossref] [Google Scholar]
  172. Wang X, Lutkenhaus J. 1996.. FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. . Mol. Microbiol. 21:(2):31319
    [Crossref] [Google Scholar]
  173. Wenck BR, Santangelo TJ. 2020.. Archaeal transcription. . Transcription 11:(5):199210
    [Crossref] [Google Scholar]
  174. Werner F. 2007.. Structure and function of archaeal RNA polymerases. . Mol. Microbiol. 65:(6):1395404
    [Crossref] [Google Scholar]
  175. Werner F, Grohmann D. 2011.. Evolution of multisubunit RNA polymerases in the three domains of life. . Nat. Rev. Microbiol. 9:(2):8598
    [Crossref] [Google Scholar]
  176. Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. 2020.. Phylogenomics provides robust support for a two-domains tree of life. . Nat. Ecol. Evol. 4:(1):13847
    [Crossref] [Google Scholar]
  177. Wittenberg C, Reed SI. 2005.. Cell cycle-dependent transcription in yeast: promoters, transcription factors, and transcriptomes. . Oncogene 24:(17):274655
    [Crossref] [Google Scholar]
  178. Woese CR, Fox GE. 1977.. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. . PNAS 74:(11):508890
    [Crossref] [Google Scholar]
  179. Woese CR, Kandler O, Wheelis ML. 1990.. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. . PNAS 87:(12):457679
    [Crossref] [Google Scholar]
  180. Yang Y, Liu J, Fu X, Zhou F, Zhang S, et al. 2023.. A novel RHH family transcription factor aCcr1 and its viral homologs dictate cell cycle progression in archaea. . Nucleic Acids Res. 51:(4):170723
    [Crossref] [Google Scholar]
  181. Yen C-Y, Lin M-G, Chen B-W, Ng IW, Read N, et al. 2021.. Chromosome segregation in Archaea: SegA- and SegB-DNA complex structures provide insights into segrosome assembly. . Nucleic Acids Res. 49:(22):1315064
    [Crossref] [Google Scholar]
  182. Youngblut ND, Reischer GH, Dauser S, Maisch S, Walzer C, et al. 2021.. Vertebrate host phylogeny influences gut archaeal diversity. . Nat. Microbiol. 6:(11):144354
    [Crossref] [Google Scholar]
  183. Yu XC, Margolin W. 1999.. FtsZ ring clusters in min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. . Mol. Microbiol. 32:(2):31526
    [Crossref] [Google Scholar]
  184. Yutin N, Koonin EV. 2012.. Archaeal origin of tubulin. . Biol. Direct 7::10
    [Crossref] [Google Scholar]
  185. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, et al. 2017.. Asgard archaea illuminate the origin of eukaryotic cellular complexity. . Nature 541:(7637):35358
    [Crossref] [Google Scholar]
  186. Zeng Z, Chen H, Yang H, Chen Y, Yang W, et al. 2022.. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids. . Nat. Commun. 13::1545
    [Crossref] [Google Scholar]
  187. Zerulla K, Soppa J. 2014.. Polyploidy in haloarchaea: advantages for growth and survival. . Front. Microbiol. 5::274
    [Crossref] [Google Scholar]
  188. Zhang C, Phillips APR, Wipfler RL, Olsen GJ, Whitaker RJ. 2018.. The essential genome of the crenarchaeal model Sulfolobus islandicus. . Nat. Commun. 9::4908
    [Crossref] [Google Scholar]
  189. Zhang C, Wipfler RL, Li Y, Wang Z, Hallett EN, Whitaker RJ. 2019.. Cell structure changes in the hyperthermophilic crenarchaeon Sulfolobus islandicus lacking the S-layer. . mBio 10:(4):e01589-19
    [Google Scholar]
  190. Zillig W, Klenk HP, Palm P, Pühler G, Gropp F, et al. 1989.. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes, and eubacteria. . Can. J. Microbiol. 35:(1):7380
    [Crossref] [Google Scholar]
  191. Zink IA, Pfeifer K, Wimmer E, Sleytr UB, Schuster B, Schleper C. 2019.. CRISPR-mediated gene silencing reveals involvement of the archaeal S-layer in cell division and virus infection. . Nat. Commun. 10::4797
    [Crossref] [Google Scholar]
  192. Zink IA, Wimmer E, Schleper C. 2020.. Heavily armed ancestors: CRISPR immunity and applications in archaea with a comparative analysis of CRISPR types in Sulfolobales. . Biomolecules 10:(11):1523
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111822-120242
Loading
/content/journals/10.1146/annurev-cellbio-111822-120242
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error