1932

Abstract

In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111822-124041
2024-10-02
2025-04-27
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-111822-124041.html?itemId=/content/journals/10.1146/annurev-cellbio-111822-124041&mimeType=html&fmt=ahah

Literature Cited

  1. Abrams TW, Sossin W. 2019.. Invertebrate genomics provide insights into the origin of synaptic transmission. . In The Oxford Handbook of Invertebrate Neurobiology, ed. JH Byrne , pp. 12350. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  2. Aguilar-Camacho JM, Foreman K, Jaimes-Becerra A, Aharoni R, Gründer S, Moran Y. 2023.. Functional analysis in a model sea anemone reveals phylogenetic complexity and a role in cnidocyte discharge of DEG/ENaC ion channels. . Commun. Biol. 6::17
    [Crossref] [Google Scholar]
  3. Alié A, Manuel M. 2010.. The backbone of the post-synaptic density originated in a unicellular ancestor of choanoflagellates and metazoans. . BMC Evol. Biol. 10::34
    [Crossref] [Google Scholar]
  4. Arendt D. 2008.. The evolution of cell types in animals: emerging principles from molecular studies. . Nat. Rev. Genet. 9::86882
    [Crossref] [Google Scholar]
  5. Artigas GQ, Lapébie P, Leclère L, Takeda N, Deguchi R, et al. 2018.. A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia. . eLife 7::e29555
    [Crossref] [Google Scholar]
  6. Assmann M, Kuhn A, Dürrnagel S, Holstein TW, Gründer S. 2014.. The comprehensive analysis of DEG/ENaC subunits in Hydra reveals a large variety of peptide-gated channels, potentially involved in neuromuscular transmission. . BMC Biol. 12::84
    [Crossref] [Google Scholar]
  7. Attenborough RMF, Hayward DC, Kitahara MV, Miller DJ, Ball EE. 2012.. A “neural” enzyme in nonbilaterian animals and algae: preneural origins for peptidylglycine α-amidating monooxygenase. . Mol. Biol. Evol. 29::3095109
    [Crossref] [Google Scholar]
  8. Babonis LS, DeBiasse MB, Francis WR, Christianson LM, Moss AG, et al. 2018.. Integrating embryonic development and evolutionary history to characterize tentacle-specific cell types in a ctenophore. . Mol. Biol. Evol. 35::294056
    [Google Scholar]
  9. Bertuzzi M, Chang W, Ampatzis K. 2018.. Adult spinal motoneurons change their neurotransmitter phenotype to control locomotion. . PNAS 115::E992633
    [Crossref] [Google Scholar]
  10. Bezares-Calderón LA, Berger J, Jékely G. 2020.. Diversity of cilia-based mechanosensory systems and their functions in marine animal behaviour. . Philos. Trans. R. Soc. B 375::20190376
    [Crossref] [Google Scholar]
  11. Bobrovskiy I, Hope JM, Ivantsov A, Nettersheim BJ, Hallmann C, Brocks JJ. 2018.. Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. . Science 361::124649
    [Crossref] [Google Scholar]
  12. Brette R. 2021.. Integrative neuroscience of Paramecium, a “swimming neuron.”. eNeuro 8::ENEURO.0018-21.2021
    [Crossref] [Google Scholar]
  13. Briscoe SD, Ragsdale CW. 2018.. Homology, neocortex, and the evolution of developmental mechanisms. . Science 362::19093
    [Crossref] [Google Scholar]
  14. Brunet T, Albert M, Roman W, Coyle MC, Spitzer DC, King N. 2021.. A flagellate-to-amoeboid switch in the closest living relatives of animals. . eLife 10::e61037
    [Crossref] [Google Scholar]
  15. Brunet T, Larson BT, Linden TA, Vermeij MJA, McDonald K, King N. 2019.. Light-regulated collective contractility in a multicellular choanoflagellate. . Science 366::32634
    [Crossref] [Google Scholar]
  16. Burkhardt P. 2015.. The origin and evolution of synaptic proteins – choanoflagellates lead the way. . J. Exp. Biol. 218::50614
    [Crossref] [Google Scholar]
  17. Burkhardt P, Jékely G. 2021.. Evolution of synapses and neurotransmitter systems: the divide-and-conquer model for early neural cell-type evolution. . Curr. Opin. Neurobiol. 71::12738
    [Crossref] [Google Scholar]
  18. Burkhardt P, Sprecher SG. 2017.. Evolutionary origin of synapses and neurons – bridging the gap. . BioEssays 39::1700024
    [Crossref] [Google Scholar]
  19. Chung JS. 2014.. An insulin-like growth factor found in hepatopancreas implicates carbohydrate metabolism of the blue crab Callinectes sapidus. . Gen. Comp. Endocrinol. 199::5664
    [Crossref] [Google Scholar]
  20. Closser M, Guo Y, Wang P, Patel T, Jang S, et al. 2022.. An expansion of the non-coding genome and its regulatory potential underlies vertebrate neuronal diversity. . Neuron 110::7085.e6
    [Crossref] [Google Scholar]
  21. Cole AG, Jahnel SM, Kaul S, Steger J, Hagauer J, et al. 2023.. Muscle cell-type diversification is driven by bHLH transcription factor expansion and extensive effector gene duplications. . Nat. Commun. 14::1747
    [Crossref] [Google Scholar]
  22. Colgren J, Nichols SA. 2022.. MRTF specifies a muscle-like contractile module in Porifera. . Nat. Commun. 13::4134
    [Crossref] [Google Scholar]
  23. David CN, Özbek S, Adamczyk P, Meier S, Pauly B, et al. 2008.. Evolution of complex structures: minicollagens shape the cnidarian nematocyst. . Trends Genet. 24::43138
    [Crossref] [Google Scholar]
  24. Dohrmann M, Wörheide G. 2017.. Dating early animal evolution using phylogenomic data. . Sci. Rep. 7::3599
    [Crossref] [Google Scholar]
  25. Elphick MR, Mirabeau O, Larhammar D. 2018.. Evolution of neuropeptide signalling systems. . J. Exp. Biol. 221::jeb151092
    [Crossref] [Google Scholar]
  26. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. 2011.. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. . Science 334::109197
    [Crossref] [Google Scholar]
  27. Fadda M, Hasakiogullari I, Temmerman L, Beets I, Zels S, Schoofs L. 2019.. Regulation of feeding and metabolism by neuropeptide F and short neuropeptide F in invertebrates. . Front. Endocrinol. 10::64
    [Crossref] [Google Scholar]
  28. Fairclough SR, Dayel MJ, King N. 2010.. Multicellular development in a choanoflagellate. . Curr. Biol. 20::R87576
    [Crossref] [Google Scholar]
  29. Fernández R, Gabaldón T. 2020.. Gene gain and loss across the metazoan tree of life. . Nat. Ecol. Evol. 4::52433
    [Crossref] [Google Scholar]
  30. Franc J-M. 1978.. Organization and function of ctenophore colloblasts: an ultrastructural study. . Biol. Bull. 155::52741
    [Crossref] [Google Scholar]
  31. Gauberg J, Abdallah S, Elkhatib W, Harracksingh AN, Piekut T, et al. 2020.. Conserved biophysical features of the CaV2 presynaptic Ca2+ channel homologue from the early-diverging animal Trichoplax adhaerens. . J. Biol. Chem. 295::1855378
    [Crossref] [Google Scholar]
  32. Geusz RJ, Wang A, Lam DK, Vinckier NK, Alysandratos K-D, et al. 2021.. Sequence logic at enhancers governs a dual mechanism of endodermal organ fate induction by FOXA pioneer factors. . Nat. Commun. 12::6636
    [Crossref] [Google Scholar]
  33. Gierl MS. 2006.. The Zinc-finger factor Insm1 (IA-1) is essential for the development of pancreatic β cells and intestinal endocrine cells. . Genes Dev. 20::246578
    [Crossref] [Google Scholar]
  34. Göhde R, Naumann B, Laundon D, Imig C, McDonald K, et al. 2021.. Choanoflagellates and the ancestry of neurosecretory vesicles. . Philos. Trans. R. Soc. B 376::20190759
    [Crossref] [Google Scholar]
  35. Goulty M, Botton-Amiot G, Rosato E, Sprecher SG, Feuda R. 2023.. The monoaminergic system is a bilaterian innovation. . Nat. Commun. 14::3284
    [Crossref] [Google Scholar]
  36. Green G. 1977.. Ecology of toxicity in marine sponges. . Mar. Biol. 40::20715
    [Crossref] [Google Scholar]
  37. Gründer S, Assmann M. 2015.. Peptide-gated ion channels and the simple nervous system of Hydra. . J. Exp. Biol. 218::55161
    [Crossref] [Google Scholar]
  38. Gur Barzilai M, Reitzel AM, Kraus JEM, Gordon D, Technau U, et al. 2012.. Convergent evolution of sodium ion selectivity in metazoan neuronal signaling. . Cell Rep. 2::24248
    [Crossref] [Google Scholar]
  39. Hartenstein V. 2006.. The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. . J. Endocrinol. 190::55570
    [Crossref] [Google Scholar]
  40. Hayakawa E, Guzman C, Horiguchi O, Kawano C, Shiraishi A, et al. 2022.. Mass spectrometry of short peptides reveals common features of metazoan peptidergic neurons. . Nat. Ecol. Evol. 6::143848
    [Crossref] [Google Scholar]
  41. Hejnol A, Dunn CW. 2016.. Animal evolution: Are phyla real?. Curr. Biol. 26::R42426
    [Crossref] [Google Scholar]
  42. Helm C, Beckers P, Bartolomaeus T, Drukewitz SH, Kourtesis I, et al. 2018.. Convergent evolution of the ladder-like ventral nerve cord in Annelida. . Front. Zool. 15::36
    [Crossref] [Google Scholar]
  43. Hernandez-Nicaise M-L. 1973.. The nervous system of ctenophores III. Ultrastructure of synapses. . J. Neurocytol. 2::24963
    [Crossref] [Google Scholar]
  44. Jackson AM, Buss LW. 2009.. Shiny spheres of placozoans (Trichoplax) function in anti-predator defense. . Invert. Biol. 128::20512
    [Crossref] [Google Scholar]
  45. Jegla T, Marlow HQ, Chen B, Simmons DK, Jacobo SM, Martindale MQ. 2012.. Expanded functional diversity of Shaker K+ channels in cnidarians is driven by gene expansion. . PLOS ONE 7::e51366
    [Crossref] [Google Scholar]
  46. Jékely G. 2013.. Global view of the evolution and diversity of metazoan neuropeptide signaling. . PNAS 110::87027
    [Crossref] [Google Scholar]
  47. Jékely G. 2021.. The chemical brain hypothesis for the origin of nervous systems. . Philos. Trans. R. Soc. B 376::20190761
    [Crossref] [Google Scholar]
  48. Kass-Simon G, Pierobon P. 2007.. Cnidarian chemical neurotransmission, an updated overview. . Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146::925
    [Crossref] [Google Scholar]
  49. King N. 2004.. The unicellular ancestry of animal development. . Dev. Cell 7::31325
    [Crossref] [Google Scholar]
  50. King N, Westbrook MJ, Young SL, Kuo A, Abedin M, et al. 2008.. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. . Nature 451::78388
    [Crossref] [Google Scholar]
  51. Knoll AH. 2011.. The multiple origins of complex multicellularity. . Annu. Rev. Earth Planet. Sci. 39::21739
    [Crossref] [Google Scholar]
  52. Lan MS, Breslin MB. 2009.. Structure, expression, and biological function of INSM1 transcription factor in neuroendocrine differentiation. . FASEB J. 23::202433
    [Crossref] [Google Scholar]
  53. Langeloh H, Wasser H, Richter N, Bicker G, Stern M. 2018.. Neuromuscular transmitter candidates of a centipede (Lithobius forficatus, Chilopoda). . Front. Zool. 15::28
    [Crossref] [Google Scholar]
  54. Leonardi ND, Thuesen EV, Haddock SH. 2020.. A sticky thicket of glue cells: a comparative morphometric analysis of colloblasts in 20 species of comb jelly (phylum Ctenophora). . Ciencias Mar. 46::21125
    [Google Scholar]
  55. Li X, Liu H, Chu Luo J, Rhodes SA, Trigg LM, et al. 2015.. Major diversification of voltage-gated K+ channels occurred in ancestral parahoxozoans. . PNAS 112::E101019
    [Google Scholar]
  56. Liebeskind BJ, Hillis DM, Zakon HH. 2015.. Convergence of ion channel genome content in early animal evolution. . PNAS 112::E84651
    [Crossref] [Google Scholar]
  57. Lowe CJ, Wu M, Salic A, Evans L, Lander E, et al. 2003.. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. . Cell 113::85365
    [Crossref] [Google Scholar]
  58. Ludeman DA, Farrar N, Riesgo A, Paps J, Leys SP. 2014.. Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges. . BMC Evol. Biol. 14::3
    [Crossref] [Google Scholar]
  59. Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ. 2009.. Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. . Dev. Neurobiol. 69::23554
    [Crossref] [Google Scholar]
  60. Martín-Durán JM, Pang K, Børve A, HS, Furu A, et al. 2018.. Convergent evolution of bilaterian nerve cords. . Nature 553::4550
    [Crossref] [Google Scholar]
  61. Miguel-Aliaga I, Thor S, Gould AP. 2008.. Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons. . PLOS Biol. 6::e58
    [Crossref] [Google Scholar]
  62. Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, et al. 2014.. The ctenophore genome and the evolutionary origins of neural systems. . Nature 510::10914
    [Crossref] [Google Scholar]
  63. Muneoka Y, Twarog BM. 1983.. Neuromuscular transmission and excitation–contraction coupling in molluscan muscle. . In The Molusca, Vol. 4: Physiology, Part 1, ed. ASM Saleuddin, KM Wilbur , pp. 3576. Amsterdam:: Elsevier
    [Google Scholar]
  64. Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, et al. 2023.. Stepwise emergence of the neuronal gene expression program in early animal evolution. . Cell 186::467693.e29
    [Crossref] [Google Scholar]
  65. Nickel M, Scheer C, Hammel JU, Herzen J, Beckmann F. 2011.. The contractile sponge epithelium sensu lato–body contraction of the demosponge Tethya wilhelma is mediated by the pinacoderm. . J. Exp. Biol. 214::169298
    [Crossref] [Google Scholar]
  66. Nishimura K, Kitamura Y, Taniguchi T, Agata K. 2010.. Analysis of motor function modulated by cholinergic neurons in planarian dugesia japonica. . Neuroscience 168::1830
    [Crossref] [Google Scholar]
  67. Nomaksteinsky M, Kassabov S, Chettouh Z, Stoeklé H-C, Bonnaud L, et al. 2013.. Ancient origin of somatic and visceral neurons. . BMC Biol. 11::53
    [Crossref] [Google Scholar]
  68. Nomaksteinsky M, Röttinger E, Dufour HD, Chettouh Z, Lowe CJ, et al. 2009.. Centralization of the deuterostome nervous system predates chordates. . Curr. Biol. 19::126469
    [Crossref] [Google Scholar]
  69. Ohno S. 1999.. Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. . Semin. Cell Dev. Biol. 10::51722
    [Crossref] [Google Scholar]
  70. Pantin CFA. 1942.. Excitation of nematocysts. . Nature 149::109
    [Crossref] [Google Scholar]
  71. Parker GH. 1919.. The Elementary Nervous System. Philadelphia:: J.B. Lippincott
    [Google Scholar]
  72. Peng G, Shi X, Kadowaki T. 2015.. Evolution of TRP channels inferred by their classification in diverse animal species. . Mol. Phylogenet. Evol. 84::14557
    [Crossref] [Google Scholar]
  73. Picciani N, Kerlin JR, Jindrich K, Hensley NM, Gold DA, Oakley TH. 2021.. Light modulated cnidocyte discharge predates the origins of eyes in Cnidaria. . Ecol. Evol. 11::393340
    [Crossref] [Google Scholar]
  74. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, et al. 2007.. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. . Science 317::8694
    [Crossref] [Google Scholar]
  75. Raikova OI, Reuter M, Jondelius U, Gustafsson MKS. 2000.. An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). . Zoomorphology 120::10718
    [Crossref] [Google Scholar]
  76. Rand J. 2007.. Acetylcholine. . WormBook. https://doi.org/10.1895/wormbook.1.131.1
    [Google Scholar]
  77. Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE. 2001.. A prokaryotic voltage-gated sodium channel. . Science 294::237275
    [Crossref] [Google Scholar]
  78. Ripoll-Sánchez L, Watteyne J, Sun H, Fernandez R, Taylor SR, et al. 2023.. The neuropeptidergic connectome of C. elegans. . Neuron 111::357089.e5
    [Crossref] [Google Scholar]
  79. Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, et al. 2024.. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. . Curr. Biol. 34::36175.e9
    [Crossref] [Google Scholar]
  80. Sachkova MY, Nordmann E-L, Soto-Àngel JJ, Meeda Y, Górski B, et al. 2021.. Neuropeptide repertoire and 3D anatomy of the ctenophore nervous system. . Curr. Biol. 31::527485.e6
    [Crossref] [Google Scholar]
  81. Sahu A, Kalra SP. 1993.. Neuropeptidergic regulation of feeding behavior: neuropeptide Y. . Trends Endocrinol. Metab. 4::21724
    [Crossref] [Google Scholar]
  82. Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang I-F, et al. 2007.. A post-synaptic scaffold at the origin of the animal kingdom. . PLOS ONE 2::e506
    [Crossref] [Google Scholar]
  83. Schoofs L, Beets I. 2013.. Neuropeptides control life-phase transitions. . PNAS 110::797374
    [Crossref] [Google Scholar]
  84. Sebé-Pedrós A, Ballaré C, Parra-Acero H, Chiva C, Tena JJ, et al. 2016.. The dynamic regulatory genome of Capsaspora and the origin of animal multicellularity. . Cell 165::122437
    [Crossref] [Google Scholar]
  85. Sebé-Pedrós A, Chomsky E, Pang K, Lara-Astiaso D, Gaiti F, et al. 2018a.. Early metazoan cell type diversity and the evolution of multicellular gene regulation. . Nat. Ecol. Evol. 2::117688
    [Crossref] [Google Scholar]
  86. Sebé-Pedrós A, Saudemont B, Chomsky E, Plessier F, Mailhé M-P, et al. 2018b.. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. . Cell 173::152034.e20
    [Crossref] [Google Scholar]
  87. Senatore A, Reese TS, Smith CL. 2017.. Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. . J. Exp. Biol. 220::338190
    [Crossref] [Google Scholar]
  88. Sperling EA, Frieder CA, Raman AV, Girguis PR, Levin LA, Knoll AH. 2013.. Oxygen, ecology, and the Cambrian radiation of animals. . PNAS 110::1344651
    [Crossref] [Google Scholar]
  89. Sperling EA, Vinther J. 2010.. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. . Evol. Dev. 12::2019
    [Crossref] [Google Scholar]
  90. Spitz F. 2016.. Gene regulation at a distance: from remote enhancers to 3D regulatory ensembles. . Semin. Cell Dev. Biol. 57::5767
    [Crossref] [Google Scholar]
  91. Steinmetz PRH. 2019.. A non-bilaterian perspective on the development and evolution of animal digestive systems. . Cell Tissue Res. 377::32139
    [Crossref] [Google Scholar]
  92. Steinmetz PRH, Aman A, Kraus JEM, Technau U. 2017.. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. . Nat. Ecol. Evol. 1::153542
    [Crossref] [Google Scholar]
  93. Stern M, Bicker G. 2008.. Mixed cholinergic/glutamatergic neuromuscular innervation of Onychophora: a combined histochemical/electrophysiological study. . Cell Tissue Res. 333::33338
    [Crossref] [Google Scholar]
  94. Stone MC, Kothe GO, Rolls MM, Jegla T. 2020.. Cytoskeletal and synaptic polarity of LWamide-like+ ganglion neurons in the sea anemone Nematostella vectensis. . J. Exp. Biol. jeb.233197
    [Crossref] [Google Scholar]
  95. Suga H, Chen Z, de Mendoza A, Sebé-Pedrós A, Brown MW, et al. 2013.. The Capsaspora genome reveals a complex unicellular prehistory of animals. . Nat. Commun. 4::2325
    [Crossref] [Google Scholar]
  96. Suga H, Schmid V, Gehring WJ. 2008.. Evolution and functional diversity of jellyfish opsins. . Curr. Biol. 18::5155
    [Crossref] [Google Scholar]
  97. Takahashi T. 2020.. Comparative aspects of structure and function of cnidarian neuropeptides. . Front. Endocrinol. 11::339
    [Crossref] [Google Scholar]
  98. Taylor AR. 2009.. A fast Na+/Ca2+-based action potential in a marine diatom. . PLOS ONE 4::e4966
    [Crossref] [Google Scholar]
  99. Thiel D, Yañez-Guerra LA, Kieswetter A, Cole AG, Temmerman L, et al. 2023.. Large-scale deorphanization of Nematostella vectensis neuropeptide GPCRs supports the independent expansion of bilaterian and cnidarian peptidergic systems. . bioRxiv 2023.07.03.547448. https://doi.org/10.1101/2023.07.03.547448
  100. Tosches MA, Yamawaki TM, Naumann RK, Jacobi AA, Tushev G, Laurent G. 2018.. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. . Science 360::88188
    [Crossref] [Google Scholar]
  101. Tournière O, Gahan JM, Busengdal H, Bartsch N, Rentzsch F. 2022.. Insm1-expressing neurons and secretory cells develop from a common pool of progenitors in the sea anemone Nematostella vectensis. . Sci. Adv. 8::eabi7109
    [Crossref] [Google Scholar]
  102. Varoqueaux F, Williams EA, Grandemange S, Truscello L, Kamm K, et al. 2018.. High cell diversity and complex peptidergic signaling underlie placozoan behavior. . Curr. Biol. 28::3495501.e2
    [Crossref] [Google Scholar]
  103. Vidal B, Gulez B, Cao WX, Leyva-Díaz E, Reilly MB, et al. 2022.. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene ceh-34. . eLife 11::e76003
    [Crossref] [Google Scholar]
  104. Walker RJ, Holden-Dye L, Franks CJ. 1993.. Physiological and pharmacological studies on annelid and nematode body wall muscle. . Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 106::4958
    [Crossref] [Google Scholar]
  105. Weir K, Dupre C, van Giesen L, Lee AS, Bellono NW. 2020.. A molecular filter for the cnidarian stinging response. . eLife 9::e57578
    [Crossref] [Google Scholar]
  106. Westfall JA. 1996.. Ultrastructure of synapses in the first-evolved nervous systems. . J. Neurocytol. 25::73546
    [Crossref] [Google Scholar]
  107. Westfall JA. 2004.. Neural pathways and innervation of cnidocytes in tentacles of sea anemones. . Hydrobiologia 530::11721
    [Google Scholar]
  108. Westfall JA, Elliott CF, Carlin RW. 2002.. Ultrastructural evidence for two-cell and three-cell neural pathways in the tentacle epidermis of the sea anemone Aiptasia pallida. . J. Morphol. 251::8392
    [Crossref] [Google Scholar]
  109. Wray GA. 2015.. Molecular clocks and the early evolution of metazoan nervous systems. . Philos. Trans. R. Soc. B Biol. Sci. 370::20150046
    [Crossref] [Google Scholar]
  110. Xu F, Marlétaz F, Gavriouchkina D, Liu X, Sauka-Spengler T, et al. 2021.. Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. . Nat. Commun. 12::3117
    [Crossref] [Google Scholar]
  111. Yañez-Guerra LA, Thiel D, Jékely G. 2022.. Premetazoan origin of neuropeptide signaling. . Mol. Biol. Evol. 39::msac051
    [Crossref] [Google Scholar]
  112. Yao Z, van Velthoven CT, Kunst M, Zhang M, McMillen D, et al. 2023.. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. . Nature 624::31732
    [Crossref] [Google Scholar]
  113. Zaret KS, Wandzioch E, Watts J, Xu J, Smale ST, Sekiya T. 2008.. Pioneer factors, genetic competence, and inductive signaling: programming liver and pancreas progenitors from the endoderm. . Cold Spring Harb. Symp. Quant. Biol. 73::11926
    [Crossref] [Google Scholar]
  114. Zhang Y, Shikina S, Ho Y-Y, Chiu Y-L, Jack I, Yao C, et al. 2021.. Involvement of RFamide neuropeptides in polyp contraction of the adult scleractinian corals Euphyllia ancora and Stylophora pistillata. . Gen. Comp. Endocrinol. 314::113905
    [Crossref] [Google Scholar]
  115. Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EEM. 2009.. Combinatorial binding predicts spatio-temporal cis-regulatory activity. . Nature 462::6570
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111822-124041
Loading
/content/journals/10.1146/annurev-cellbio-111822-124041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error