1932

Abstract

Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-112122-022528
2024-10-02
2025-02-09
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-112122-022528.html?itemId=/content/journals/10.1146/annurev-cellbio-112122-022528&mimeType=html&fmt=ahah

Literature Cited

  1. Ajioka I. 2014.. Coordination of proliferation and neuronal differentiation by the retinoblastoma protein family. . Dev. Growth Differ. 56:(5):32434
    [Crossref] [Google Scholar]
  2. Aktas H, Cai H, Cooper GM. 1997.. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. . Mol. Cell. Biol. 17:(7):385057
    [Crossref] [Google Scholar]
  3. Andreu Z, Khan MA, González-Gómez P, Negueruela S, Hortigüela R, et al. 2015.. The cyclin-dependent kinase inhibitor p27kip1 regulates radial stem cell quiescence and neurogenesis in the adult hippocampus. . Stem Cells 33:(1):21929
    [Crossref] [Google Scholar]
  4. Arena R, Bisogno S, Gąsior Ł, Rudnicka J, Bernhardt L, et al. 2021.. Lipid droplets in mammalian eggs are utilized during embryonic diapause. . PNAS 118:(10):e2018362118
    [Crossref] [Google Scholar]
  5. Audesse AJ, Webb AE. 2020.. Mechanisms of enhanced quiescence in neural stem cell aging. . Mech. Ageing Dev. 191::111323
    [Crossref] [Google Scholar]
  6. Barr AR, Cooper S, Heldt FS, Butera F, Stoy H, et al. 2017.. DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. . Nat. Commun. 8:(1):14728
    [Crossref] [Google Scholar]
  7. Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. 2014.. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. . Cell Stem Cell 15:(1):3750
    [Crossref] [Google Scholar]
  8. Bigarella CL, Liang R, Ghaffari S. 2014.. Stem cells and the impact of ROS signaling. . Development 141:(22):420618
    [Crossref] [Google Scholar]
  9. Bjornson CRR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA. 2011.. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. . Stem Cells 30:(2):23242
    [Crossref] [Google Scholar]
  10. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, et al. 2011.. In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. . Cell 145:(7):114255
    [Crossref] [Google Scholar]
  11. Boroviak T, Loos R, Lombard P, Okahara J, Behr R, et al. 2015.. Lineage-specific profiling delineates the emergence and progression of naive pluripotency in mammalian embryogenesis. . Dev. Cell 35:(3):36682
    [Crossref] [Google Scholar]
  12. Bracha AL, Ramanathan A, Huang S, Ingber DE, Schreiber SL. 2010.. Carbon metabolism-mediated myogenic differentiation. . Nat. Chem. Biol. 6:(3):2024
    [Crossref] [Google Scholar]
  13. Broccoli V, Colasante G, Sessa A, Rubio A. 2015.. Histone modifications controlling native and induced neural stem cell identity. . Curr. Opin. Genet. Dev. 34::95101
    [Crossref] [Google Scholar]
  14. Buitenhuis M. 2011.. The role of PI3K/protein kinase B (PKB/c-akt) in migration and homing of hematopoietic stem and progenitor cells. . Curr. Opin. Hematol. 18:(4):22630
    [Crossref] [Google Scholar]
  15. Bulut-Karslioglu A, Biechele S, Jin H, Macrae TA, Hejna M, et al. 2016.. Inhibition of mTOR induces a paused pluripotent state. . Nature 540:(7631):11923
    [Crossref] [Google Scholar]
  16. Cairns J. 1975.. Mutation selection and the natural history of cancer. . Nature 255::197200
    [Crossref] [Google Scholar]
  17. Cao Y, Zhao Z, Gruszczynska-Biegala J, Zolkiewska A. 2003.. Role of metalloprotease disintegrin ADAM12 in determination of quiescent reserve cells during myogenic differentiation in vitro. . Mol. Cell. Biol. 23:(19):672538
    [Crossref] [Google Scholar]
  18. Carnac G, Fajas L, L'honoré A, Sardet C, Lamb NJC, Fernandez A. 2000.. The retinoblastoma-like protein p130 is involved in the determination of reserve cells in differentiating myoblasts. . Curr. Biol. 10:(9):54346
    [Crossref] [Google Scholar]
  19. Chakkalakal JV, Christensen J, Xiang W, Tierney MT, Boscolo FS, et al. 2014.. Early forming label-retaining muscle stem cells require p27kip1 for maintenance of the primitive state. . Development 141:(8):164959
    [Crossref] [Google Scholar]
  20. Charville GW, Rando TA. 2011.. Stem cell ageing and non-random chromosome segregation. . Philos. Trans. R. Soc. B 366:(1561):8593
    [Crossref] [Google Scholar]
  21. Chen C, Liu Y, Liu R, Ikenoue T, Guan K-L, et al. 2008.. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. . J. Exp. Med. 205:(10):2397408
    [Crossref] [Google Scholar]
  22. Chen C, Liu Y, Liu Y, Zheng P. 2009a. The axis of mTOR-mitochondria-ROS and stemness of the hematopoietic stem cells. . Cell Cycle 8:(8):115860
    [Crossref] [Google Scholar]
  23. Chen C, Liu Y, Liu Y, Zheng P. 2009b.. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. . Sci. Signal. 2:(98):ra75
    [Crossref] [Google Scholar]
  24. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, et al. 2000.. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. . Science 287:(5459):18048
    [Crossref] [Google Scholar]
  25. Cheng Y, Luo H, Izzo F, Pickering BF, Nguyen D, et al. 2019.. m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. . Cell Rep. 28:(7):170316.e6
    [Crossref] [Google Scholar]
  26. Cheung TH, Quach NL, Charville GW, Liu L, Park L, et al. 2012.. Maintenance of muscle stem-cell quiescence by microRNA-489. . Nature 482:(7386):52428
    [Crossref] [Google Scholar]
  27. Chinzei N, Hayashi S, Ueha T, Fujishiro T, Kanzaki N, et al. 2015.. P21 deficiency delays regeneration of skeletal muscular tissue. . PLOS ONE 10:(5):e0125765
    [Crossref] [Google Scholar]
  28. Collignon E, Cho B, Furlan G, Fothergill-Robinson J, Martin S-B, et al. 2023.. m6A RNA methylation orchestrates transcriptional dormancy during paused pluripotency. . Nat. Cell Biol. 25:(9):127989
    [Crossref] [Google Scholar]
  29. Conboy MJ, Karasov AO, Rando TA. 2007.. High incidence of non-random template strand segregation and asymmetric fate determination in dividing stem cells and their progeny. . PLOS Biol. 5:(5):e102
    [Crossref] [Google Scholar]
  30. Crist CG, Montarras D, Buckingham M. 2012.. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules. . Cell Stem Cell 11:(1):11826
    [Crossref] [Google Scholar]
  31. de Morrée A, van Velthoven CTJ, Gan Q, Salvi JS, Klein JDD, et al. 2017.. Staufen1 inhibits MyoD translation to actively maintain muscle stem cell quiescence. . PNAS 114:(43):E89969005
    [Crossref] [Google Scholar]
  32. Dias IB, Bouma HR, Henning RH. 2021.. Unraveling the big sleep: molecular aspects of stem cell dormancy and hibernation. . Front. Physiol. 12::624950
    [Crossref] [Google Scholar]
  33. Ehm O, Göritz C, Covic M, Schäffner I, Schwarz TJ, et al. 2010.. RBPJκ-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. . J. Neurosci. 30:(41):13794807
    [Crossref] [Google Scholar]
  34. Evans MJ, Kaufman MH. 1981.. Establishment in culture of pluripotential cells from mouse embryos. . Nature 292:(5819):15456
    [Crossref] [Google Scholar]
  35. Ezhkova E, Lien W-H, Stokes N, Pasolli HA, Silva JM, Fuchs E. 2011.. EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. . Genes Dev. 25:(5):48598
    [Crossref] [Google Scholar]
  36. Fan R, Kim YS, Wu J, Chen R, Zeuschner D, et al. 2020.. Wnt/Beta-catenin/Esrrb signalling controls the tissue-scale reorganization and maintenance of the pluripotent lineage during murine embryonic diapause. . Nat. Commun. 11:(1):5499
    [Crossref] [Google Scholar]
  37. Fenelon JC, Shaw G, Frankenberg SR, Murphy BD, Renfree MB. 2017.. Embryo arrest and reactivation: potential candidates controlling embryonic diapause in the tammar wallaby and mink. . Biol. Reprod. 96:(4):87794
    [Crossref] [Google Scholar]
  38. Ferber EC, Peck B, Delpuech O, Bell GP, East P, Schulze A. 2012.. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. . Cell Death Differ. 19:(6):96879
    [Crossref] [Google Scholar]
  39. Fiacco E, Castagnetti F, Bianconi V, Madaro L, Bardi MD, et al. 2016.. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. . Cell Death Differ. 23:(11):183949
    [Crossref] [Google Scholar]
  40. Filippi M-D, Ghaffari S. 2019.. Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities. . Blood 133:(18):194352
    [Crossref] [Google Scholar]
  41. Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, et al. 2014.. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. . Nature 512:(7513):198202
    [Crossref] [Google Scholar]
  42. Flores A, Schell J, Krall AS, Jelinek D, Miranda M, et al. 2017.. Lactate dehydrogenase activity drives hair follicle stem cell activation. . Nat. Cell Biol. 19:(9):101726
    [Crossref] [Google Scholar]
  43. Fu Z, Wang B, Wang S, Wu W, Wang Q, et al. 2014.. integral proteomic analysis of blastocysts reveals key molecular machinery governing embryonic diapause and reactivation for implantation in mice. . Biol. Reprod. 90:(3):52
    [Crossref] [Google Scholar]
  44. Fujimaki K, Li R, Chen H, Croce KD, Zhang HH, et al. 2019.. Graded regulation of cellular quiescence depth between proliferation and senescence by a lysosomal dimmer switch. . PNAS 116:(45):2262434
    [Crossref] [Google Scholar]
  45. Fukawa T, Yan-Jiang BC, Min-Wen JC, Jun-Hao ET, Huang D, et al. 2016.. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. . Nat. Med. 22:(6):66671
    [Crossref] [Google Scholar]
  46. Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y. 2013.. p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. . EMBO J. 32:(7):97081
    [Crossref] [Google Scholar]
  47. Gan B, Hu J, Jiang S, Liu Y, Sahin E, et al. 2010.. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. . Nature 468:(7324):7014
    [Crossref] [Google Scholar]
  48. Gan B, Sahin E, Jiang S, Sanchez-Aguilera A, Scott KL, et al. 2008.. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. . PNAS 105:(49):1938489
    [Crossref] [Google Scholar]
  49. García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, et al. 2016.. Autophagy maintains stemness by preventing senescence. . Nature 529:(7584):3742
    [Crossref] [Google Scholar]
  50. Goel AJ, Rieder M-K, Arnold H-H, Radice GL, Krauss RS. 2017.. Niche cadherins control the quiescence-to-activation transition in muscle stem cells. . Cell Rep. 21:(8):223650
    [Crossref] [Google Scholar]
  51. Gopinath SD, Webb AE, Brunet A, Rando TA. 2014.. FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. . Stem Cell Rep. 2:(4):41426
    [Crossref] [Google Scholar]
  52. Greer EL, Brunet A. 2005.. FOXO transcription factors at the interface between longevity and tumor suppression. . Oncogene 24:(50):741025
    [Crossref] [Google Scholar]
  53. Gregorian C, Nakashima J, Belle JL, Ohab J, Kim R, et al. 2009.. Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. . J. Neurosci. 29:(6):187486
    [Crossref] [Google Scholar]
  54. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, et al. 2001.. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. . Science 294:(5549):218689
    [Crossref] [Google Scholar]
  55. Gurumurthy S, Xie SZ, Alagesan B, Kim J, Yusuf RZ, et al. 2010.. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. . Nature 468:(7324):65963
    [Crossref] [Google Scholar]
  56. Hamatani T, Daikoku T, Wang H, Matsumoto H, Carter MG, et al. 2004.. Global gene expression analysis identifies molecular pathways distinguishing blastocyst dormancy and activation. . PNAS 101:(28):1032631
    [Crossref] [Google Scholar]
  57. Haneline LS, White H, Yang F-C, Chen S, Orschell C, et al. 2005.. Genetic reduction of class IA PI-3 kinase activity alters fetal hematopoiesis and competitive repopulating ability of hematopoietic stem cells in vivo. . Blood 107:(4):137582
    [Crossref] [Google Scholar]
  58. Hartman NW, Lin TV, Zhang L, Paquelet GE, Feliciano DM, Bordey A. 2013.. mTORC1 targets the translational repressor 4E-BP2, but not S6 kinase 1/2, to regulate neural stem cell self-renewal in vivo. . Cell Rep. 5:(2):43344
    [Crossref] [Google Scholar]
  59. Hawke TJ, Meeson AP, Jiang N, Graham S, Hutcheson K, et al. 2003.. p21 is essential for normal myogenic progenitor cell function in regenerating skeletal muscle. . Am. J. Physiol. Cell Physiol. 285:(5):C101927
    [Crossref] [Google Scholar]
  60. Hayashi K, Shimamoto S, Nagamatsu G. 2020.. Environmental factors for establishment of the dormant state in oocytes. . Dev. Growth Differ. 62:(3):15057
    [Crossref] [Google Scholar]
  61. Hidalgo I, Herrera-Merchan A, Ligos JM, Carramolino L, Nuñez J, et al. 2012.. Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. . Cell Stem Cell 11:(5):64962
    [Crossref] [Google Scholar]
  62. Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, et al. 2017.. Autophagy maintains the metabolism and function of young and old (hematopoietic) stem cells. . Nature 543:(7644):20510
    [Crossref] [Google Scholar]
  63. Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, et al. 2004.. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. . Nature 431:(7011):10027
    [Crossref] [Google Scholar]
  64. Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, et al. 2003.. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. . Nature 421:(6919):18287
    [Crossref] [Google Scholar]
  65. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, et al. 2016.. A new view of the tree of life. . Nat. Microbiol. 1:(5):16048
    [Crossref] [Google Scholar]
  66. Hunter SM, Evans M. 1999.. Non-surgical method for the induction of delayed implantation and recovery of viable blastocysts in rats and mice by the use of tamoxifen and Depo-Provera. . Mol. Reprod. Dev. 52:(1):2932
    [Crossref] [Google Scholar]
  67. Hussein AM, Wang Y, Mathieu J, Margaretha L, Song C, et al. 2020.. Metabolic control over mTOR-dependent diapause-like state. . Dev. Cell 52:(2):23650.e7
    [Crossref] [Google Scholar]
  68. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. 2010.. Essential roles of notch signaling in maintenance of neural stem cells in developing and adult brains. . J. Neurosci. 30:(9):348998
    [Crossref] [Google Scholar]
  69. Ito K, Carracedo A, Weiss D, Arai F, Ala U, et al. 2012.. A PML-PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. . Nat. Med. 18:(9):135058
    [Crossref] [Google Scholar]
  70. Iyer DP, Moyon L, Wittler L, Cheng C-Y, Ringeling FR, et al. 2024.. Combinatorial microRNA activity is essential for the transition of pluripotent cells from proliferation into dormancy. . Genome Res. 34::57289
    [Google Scholar]
  71. Jacques TS, Swales A, Brzozowski MJ, Henriquez NV, Linehan JM, et al. 2009.. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. . EMBO J. 29:(1):22235
    [Crossref] [Google Scholar]
  72. Juan AH, Derfoul A, Feng X, Ryall JG, Dell'Orso S, et al. 2011.. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells. . Genes Dev. 25:(8):78994
    [Crossref] [Google Scholar]
  73. Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA. 2010.. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. . Blood 115:(20):403038
    [Crossref] [Google Scholar]
  74. Kamemizu C, Fujimori T. 2019.. Distinct dormancy progression depending on embryonic regions during mouse embryonic diapause. . Biol. Reprod. 100:(5):120414
    [Crossref] [Google Scholar]
  75. Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, et al. 2006.. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. . Blood 107:(5):217079
    [Crossref] [Google Scholar]
  76. Karpowicz P, Morshead C, Kam A, Jervis E, Ramunas J, et al. 2005.. Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. . J. Cell Biol. 170:(5):72132
    [Crossref] [Google Scholar]
  77. Kenyon CJ. 2010.. The genetics of ageing. . Nature 464:(7288):50412
    [Crossref] [Google Scholar]
  78. Kharas MG, Okabe R, Ganis JJ, Gozo M, Khandan T, et al. 2010.. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. . Blood 115:(7):140615
    [Crossref] [Google Scholar]
  79. Khoa LTP, Tsan Y-C, Mao F, Kremer DM, Sajjakulnukit P, et al. 2020.. Histone acetyltransferase MOF blocks acquisition of quiescence in ground-state ESCs through activating fatty acid oxidation. . Cell Stem Cell 27:(3):44158.e10
    [Crossref] [Google Scholar]
  80. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, et al. 2007.. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. . Nature 449:(7159):23842
    [Crossref] [Google Scholar]
  81. Kinder M, Wei C, Shelat SG, Kundu M, Zhao L, et al. 2010.. Hematopoietic stem cell function requires 12/15-lipoxygenase-dependent fatty acid metabolism. . Blood 115:(24):501222
    [Crossref] [Google Scholar]
  82. Kippin TE, Martens DJ, van der Kooy D. 2005.. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. . Genes Dev. 19:(6):75667
    [Crossref] [Google Scholar]
  83. Knobloch M, Braun SMG, Zurkirchen L, von Schoultz C, Zamboni N, et al. 2013.. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. . Nature 493:(7431):22630
    [Crossref] [Google Scholar]
  84. Knobloch M, Pilz G-A, Ghesquière B, Kovacs WJ, Wegleiter T, et al. 2017.. A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. . Cell Rep. 20:(9):214455
    [Crossref] [Google Scholar]
  85. Kobayashi T, Piao W, Takamura T, Kori H, Miyachi H, et al. 2019.. Enhanced lysosomal degradation maintains the quiescent state of neural stem cells. . Nat. Commun. 10:(1):5446
    [Crossref] [Google Scholar]
  86. Kops GJPL, Medema RH, Glassford J, Essers MAG, Dijkers PF, et al. 2002.. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. . Mol. Cell. Biol. 22:(7):202536
    [Crossref] [Google Scholar]
  87. Kuroki T, Murakami Y. 1989.. Random segregation of DNA strands in epidermal basal cells. . Jpn. J. Cancer Res. 80:(7):63742
    [Crossref] [Google Scholar]
  88. Kwon JS, Everetts NJ, Wang X, Wang W, Croce KD, et al. 2017.. Controlling depth of cellular quiescence by an Rb-E2F network switch. . Cell Rep. 20:(13):322335
    [Crossref] [Google Scholar]
  89. Lechman ER, Gentner B, van Galen P, Giustacchini A, Saini M, et al. 2012.. Attenuation of miR-126 activity expands HSC in vivo without exhaustion. . Cell Stem Cell 11:(6):799811
    [Crossref] [Google Scholar]
  90. Leeman DS, Hebestreit K, Ruetz T, Webb AE, McKay A, et al. 2018.. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. . Science 359:(6381):127783
    [Crossref] [Google Scholar]
  91. L'honoré A, Commère P-H, Ouimette J-F, Montarras D, Drouin J, Buckingham M. 2014.. Redox regulation by Pitx2 and Pitx3 is critical for fetal myogenesis. . Dev. Cell 29:(4):392405
    [Crossref] [Google Scholar]
  92. Li B, Sun C, Sun J, Yang M, Zuo R, et al. 2019.. Autophagy mediates serum starvation-induced quiescence in nucleus pulposus stem cells by the regulation of P27. . Stem Cell Res. Ther. 10:(1):118
    [Crossref] [Google Scholar]
  93. Li L, Zang L, Zhang F, Chen J, Shen H, et al. 2017.. Fat mass and obesity-associated (FTO) protein regulates adult neurogenesis. . Hum. Mol. Genet. 26:(13):2398411
    [Crossref] [Google Scholar]
  94. Li M, Zhao X, Wang W, Shi H, Pan Q, et al. 2018.. Ythdf2-mediated m6A mRNA clearance modulates neural development in mice. . Genome Biol. 19:(1):69
    [Crossref] [Google Scholar]
  95. Li W-Z, Wang Z-W, Chen L-L, Xue H-N, Chen X, et al. 2015.. Hesx1 enhances pluripotency by working downstream of multiple pluripotency-associated signaling pathways. . Biochem. Biophys. Res. Commun. 464:(3):93642
    [Crossref] [Google Scholar]
  96. Li Z, Qian P, Shao W, Shi H, He XC, et al. 2018.. Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. . Cell Res. 28:(9):90417
    [Crossref] [Google Scholar]
  97. Liang R, Arif T, Kalmykova S, Kasianov A, Lin M, et al. 2020.. Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. . Cell Stem Cell 26:(3):35976.e7
    [Crossref] [Google Scholar]
  98. Liu J, Zuo H, Wang Z, Wang W, Qian X, et al. 2023.. The m6A reader YTHDC1 regulates muscle stem cell proliferation via PI4K-Akt-mTOR signalling. . Cell Prolif. 56:(8):e13410
    [Crossref] [Google Scholar]
  99. Liu WM, Cheng RR, Niu ZR, Chen AC, Ma MY, et al. 2020.. Let-7 derived from endometrial extracellular vesicles is an important inducer of embryonic diapause in mice. . Sci. Adv. 6:(37):eaaz7070
    [Crossref] [Google Scholar]
  100. Liu W-M, Pang RTK, Cheong AWY, Ng EHY, Lao K, et al. 2012.. Involvement of microRNA lethal-7a in the regulation of embryo implantation in mice. . PLOS ONE 7:(5):e37039
    [Crossref] [Google Scholar]
  101. Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, et al. 2009.. p53 regulates hematopoietic stem cell quiescence. . Cell Stem Cell 4:(1):3748
    [Crossref] [Google Scholar]
  102. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. 2015.. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. . Cell Stem Cell 17:(3):32940
    [Crossref] [Google Scholar]
  103. Lopes FL, Desmarais JA, Murphy BD. 2004.. Embryonic diapause and its regulation. . Reproduction 128:(6):66978
    [Crossref] [Google Scholar]
  104. Luo H, Cortés-López M, Tam CL, Xiao M, Wakiro I, et al. 2023.. SON is an essential m6A target for hematopoietic stem cell fate. . Cell Stem Cell 30:(12):165873.e10
    [Crossref] [Google Scholar]
  105. Maillard I, Koch U, Dumortier A, Shestova O, Xu L, et al. 2008.. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. . Cell Stem Cell 2:(4):35666
    [Crossref] [Google Scholar]
  106. Marqués-Torrejón , Porlan E, Banito A, Gómez-Ibarlucea E, Lopez-Contreras AJ, et al. 2013.. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. . Cell Stem Cell 12:(1):88100
    [Crossref] [Google Scholar]
  107. Martin GR. 1981.. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. . PNAS 78:(12):763438
    [Crossref] [Google Scholar]
  108. Medema RH, Kops GJPL, Bos JL, Burgering BMT. 2000.. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. . Nature 404:(6779):78287
    [Crossref] [Google Scholar]
  109. Meletis K, Wirta V, Hede S-M, Nistér M, Lundeberg J, Frisén J. 2005.. p53 suppresses the self-renewal of adult neural stem cells. . Development 133:(2):36369
    [Crossref] [Google Scholar]
  110. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, et al. 2007.. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. . Cell Stem Cell 1:(1):10112
    [Crossref] [Google Scholar]
  111. Mizushima N. 2010.. The role of the Atg1/ULK1 complex in autophagy regulation. . Curr. Opin. Cell Biol. 22:(2):13239
    [Crossref] [Google Scholar]
  112. Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, et al. 2010.. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. . Cell Stem Cell 7:(2):17485
    [Crossref] [Google Scholar]
  113. Mohrin M, Widjaja A, Liu Y, Luo H, Chen D. 2018.. The mitochondrial unfolded protein response is activated upon hematopoietic stem cell exit from quiescence. . Aging Cell 17:(3):e12756
    [Crossref] [Google Scholar]
  114. Mortensen M, Soilleux EJ, Djordjevic G, Tripp R, Lutteropp M, et al. 2011a.. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. . J. Exp. Med. 208:(3):45567
    [Crossref] [Google Scholar]
  115. Mortensen M, Watson AS, Simon AK. 2011b.. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation. . Autophagy 7:(9):106970
    [Crossref] [Google Scholar]
  116. Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S. 2012.. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. . Stem Cells 30:(2):24352
    [Crossref] [Google Scholar]
  117. Nagamatsu G. 2021.. Regulation of primordial follicle formation, dormancy, and activation in mice. . J. Reprod. Dev. 67:(3):18995
    [Crossref] [Google Scholar]
  118. Nakada D, Saunders TL, Morrison SJ. 2010.. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. . Nature 468:(7324):65358
    [Crossref] [Google Scholar]
  119. Nichols J, Chambers I, Taga T, Smith A. 2001.. Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. . Development 128:(12):233339
    [Crossref] [Google Scholar]
  120. O'Brien LC, Keeney PM, Bennett JP. 2015.. Differentiation of human neural stem cells into motor neurons stimulates mitochondrial biogenesis and decreases glycolytic flux. . Stem Cells Dev. 24:(17):198494
    [Crossref] [Google Scholar]
  121. Oki T, Nishimura K, Kitaura J, Togami K, Maehara A, et al. 2014.. A novel cell-cycle-indicator, mVenus-p27K, identifies quiescent cells and visualizes G0–G1 transition. . Sci. Rep. 4:(1):4012
    [Crossref] [Google Scholar]
  122. Paik J, Ding Z, Narurkar R, Ramkissoon S, Muller F, et al. 2009.. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. . Cell Stem Cell 5:(5):54053
    [Crossref] [Google Scholar]
  123. Pala F, Girolamo DD, Mella S, Yennek S, Chatre L, et al. 2018.. Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. . J. Cell Sci. 131:(14):jcs212977
    [Crossref] [Google Scholar]
  124. Paria BC, Huet-Hudson YM, Dey SK. 1993.. Blastocyst's state of activity determines the “window” of implantation in the receptive mouse uterus. . PNAS 90:(21):1015962
    [Crossref] [Google Scholar]
  125. Peng H, Park JK, Katsnelson J, Kaplan N, Yang W, et al. 2014.. microRNA-103/107 family regulates multiple epithelial stem cell characteristics. . Stem Cells 33:(5):164256
    [Crossref] [Google Scholar]
  126. Pereira JD, Sansom SN, Smith J, Dobenecker M-W, Tarakhovsky A, Livesey FJ. 2010.. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. . PNAS 107:(36):1595762
    [Crossref] [Google Scholar]
  127. Pozzi S, Bowling S, Apps J, Brickman JM, Rodriguez TA, Martinez-Barbera JP. 2019.. Genetic deletion of Hesx1 promotes exit from the pluripotent state and impairs developmental diapause. . Stem Cell Rep. 13:(6):97079
    [Crossref] [Google Scholar]
  128. Qiu J, Takagi Y, Harada J, Topalkara K, Wang Y, et al. 2009.. p27Kip1 constrains proliferation of neural progenitor cells in adult brain under homeostatic and ischemic conditions. . Stem Cells 27:(4):92027
    [Crossref] [Google Scholar]
  129. Rafalski VA, Mancini E, Brunet A. 2012.. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. . J. Cell Sci. 125:(23):5597608
    [Crossref] [Google Scholar]
  130. Rando TA. 2007.. The immortal strand hypothesis: segregation and reconstruction. . Cell 129:(7):123943
    [Crossref] [Google Scholar]
  131. Reddy P, Zheng W, Liu K. 2010.. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. . Trends Endocrinol. Metab. 21:(2):96103
    [Crossref] [Google Scholar]
  132. Renault VM, Rafalski VA, Morgan AA, Salih DAM, Brett JO, et al. 2009.. FoxO3 regulates neural stem cell homeostasis. . Cell Stem Cell 5:(5):52739
    [Crossref] [Google Scholar]
  133. Renfree MB, Fenelon JC. 2017.. The enigma of embryonic diapause. . Development 144:(18):3199210
    [Crossref] [Google Scholar]
  134. Revuelta M, Matheu A. 2017.. Autophagy in stem cell aging. . Aging Cell 16:(5):91215
    [Crossref] [Google Scholar]
  135. Richards M, Tan S, Tan J, Chan W, Bongso A. 2004.. The transcriptome profile of human embryonic stem cells as defined by SAGE. . Stem Cells 22:(1):5164
    [Crossref] [Google Scholar]
  136. Rimmelé P, Liang R, Bigarella CL, Kocabas F, Xie J, et al. 2015.. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. . EMBO Rep. 16:(9):116476
    [Crossref] [Google Scholar]
  137. Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S. 2012.. A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. . Cell 148:(12):11225
    [Crossref] [Google Scholar]
  138. Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, et al. 2012.. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. . Sci. Signal 5:(228):ra42
    [Crossref] [Google Scholar]
  139. Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, et al. 2014.. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. . Nature 510:(7505):39396
    [Crossref] [Google Scholar]
  140. Rodgers JT, Schroeder MD, Ma C, Rando TA. 2017.. HGFA is an injury-regulated systemic factor that induces the transition of stem cells into GAlert. . Cell Rep. 19:(3):47986
    [Crossref] [Google Scholar]
  141. Rüegg A, Bernal S, Moser F, Rutzen I, Ulbrich S. 2020.. Trophectoderm and embryoblast proliferate at slow pace in the course of embryonic diapause in the roe deer (Capreolus capreolus). . Biosci. Proc. 10::ised13
    [Google Scholar]
  142. Rumman M, Dhawan J, Kassem M. 2015.. Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. . Stem Cells 33:(10):290312
    [Crossref] [Google Scholar]
  143. Ryall JG, Dell'Orso S, Derfoul A, Juan A, Zare H, et al. 2015.. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. . Cell Stem Cell 16:(2):17183
    [Crossref] [Google Scholar]
  144. Sang L, Coller HA. 2009.. Fear of commitment: Hes1 protects quiescent fibroblasts from irreversible cellular fates. . Cell Cycle 8:(14):216167
    [Crossref] [Google Scholar]
  145. Sang L, Coller HA, Roberts JM. 2008.. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. . Science 321:(5892):1095100
    [Crossref] [Google Scholar]
  146. Scognamiglio R, Cabezas-Wallscheid N, Thier MC, Altamura S, Reyes A, et al. 2016.. Myc depletion induces a pluripotent dormant state mimicking diapause. . Cell 164:(4):66880
    [Crossref] [Google Scholar]
  147. Shinin V, Gayraud-Morel B, Gomès D, Tajbakhsh S. 2006.. Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. . Nat. Cell Biol. 8:(7):67782
    [Crossref] [Google Scholar]
  148. Shyh-Chang N, Ng H-H. 2017.. The metabolic programming of stem cells. . Genes Dev. 31:(4):33646
    [Crossref] [Google Scholar]
  149. Signer RAJ, Qi L, Zhao Z, Thompson D, Sigova AA, et al. 2016.. The rate of protein synthesis in hematopoietic stem cells is limited partly by 4E-BPs. . Genes Dev. 30:(15):1698703
    [Crossref] [Google Scholar]
  150. Simsek T, Kocabas F, Zheng J, DeBerardinis RJ, Mahmoud AI, et al. 2010.. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. . Cell Stem Cell 7:(3):38090
    [Crossref] [Google Scholar]
  151. Sotiropoulou PA, Candi A, Blanpain C. 2008.. The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. . Stem Cells 26:(11):296473
    [Crossref] [Google Scholar]
  152. Sousa MI, Correia B, Rodrigues AS, Ramalho-Santos J. 2020.. Metabolic characterization of a paused-like pluripotent state. . Biochim. Biophys. Acta Gen. Subj. 1864:(8):129612
    [Crossref] [Google Scholar]
  153. Spencer SL, Cappell SD, Tsai F-C, Overton KW, Wang CL, Meyer T. 2013.. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. . Cell 155:(2):36983
    [Crossref] [Google Scholar]
  154. Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, et al. 1992.. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. . Nature 359:(6390):7679
    [Crossref] [Google Scholar]
  155. Stoll EA, Makin R, Sweet IR, Trevelyan AJ, Miwa S, et al. 2015.. Neural stem cells in the adult subventricular zone oxidize fatty acids to produce energy and support neurogenic activity. . Stem Cells 33:(7):230619
    [Crossref] [Google Scholar]
  156. Stötzel M, Cheng C-Y, Ilik IA, Kumar AS, Omgba PA, et al. 2024.. TET activity safeguards pluripotency throughout embryonic dormancy. . Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01313-7
    [Google Scholar]
  157. Strączyńska P, Papis K, Morawiec E, Czerwiński M, Gajewski Z, et al. 2022.. Signaling mechanisms and their regulation during in vivo or in vitro maturation of mammalian oocytes. . Reprod. Biol. Endocrinol. 20:(1):37
    [Crossref] [Google Scholar]
  158. Subramaniam S, Sreenivas P, Cheedipudi S, Reddy VR, Shashidhara LS, et al. 2013.. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible versus irreversible arrest. . PLOS ONE 8:(6):e65097
    [Crossref] [Google Scholar]
  159. Takahashi S, Tanaka T, Sakai J. 2007.. New therapeutic target for metabolic syndrome: PPARδ. . Endocr. J. 54:(3):34757
    [Crossref] [Google Scholar]
  160. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, et al. 2010.. Regulation of the HIF-1α level is essential for hematopoietic stem cells. . Cell Stem Cell 7:(3):391402
    [Crossref] [Google Scholar]
  161. Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, et al. 2013.. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. . Cell Stem Cell 12:(1):4961
    [Crossref] [Google Scholar]
  162. Tang AH, Rando TA. 2014.. Induction of autophagy supports the bioenergetic demands of quiescent muscle stem cell activation. . EMBO J. 33:(23):278297
    [Crossref] [Google Scholar]
  163. Tiku V, Jain C, Raz Y, Nakamura S, Heestand B, et al. 2017.. Small nucleoli are a cellular hallmark of longevity. . Nat. Commun. 8:(1):16083
    [Crossref] [Google Scholar]
  164. Tothova Z, Gilliland DG. 2007.. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. . Cell Stem Cell 1:(2):14052
    [Crossref] [Google Scholar]
  165. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, et al. 2007.. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. . Cell 128:(2):32539
    [Crossref] [Google Scholar]
  166. Tran H, Brunet A, Grenier JM, Datta SR, Fornace AJ Jr., et al. 2002.. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. . Science 296:(5567):53034
    [Crossref] [Google Scholar]
  167. van der Weijden VA, Bick JT, Bauersachs S, Rüegg AB, Hildebrandt TB, et al. 2021.. Amino acids activate mTORC1 to release roe deer embryos from decelerated proliferation during diapause. . PNAS 118:(35):e2100500118
    [Crossref] [Google Scholar]
  168. van der Weijden VA, Bulut-Karslioglu A. 2021.. Molecular regulation of paused pluripotency in early mammalian embryos and stem cells. . Front. Cell Dev. Biol. 9::708318
    [Crossref] [Google Scholar]
  169. van der Weijden VA, Stötzel M, Iyer DP, Fauler B, Gralinska E, et al. 2024.. FOXO1-mediated lipid metabolism maintains mammalian embryos in dormancy. . Nat. Cell Biol. 26::18193
    [Crossref] [Google Scholar]
  170. van der Weijden VA, Ulbrich SE. 2020.. Embryonic diapause in roe deer: a model to unravel embryo-maternal communication during pre-implantation development in wildlife and livestock species. . Theriogenology 158::10511
    [Crossref] [Google Scholar]
  171. Vannini N, Girotra M, Naveiras O, Nikitin G, Campos V, et al. 2016.. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. . Nat. Commun. 7:(1):13125
    [Crossref] [Google Scholar]
  172. Vessoni AT, Muotri AR, Okamoto OK. 2012.. Autophagy in stem cell maintenance and differentiation. . Stem Cells Dev. 21:(4):51320
    [Crossref] [Google Scholar]
  173. Viatour P, Somervaille TC, Venkatasubrahmanyam S, Kogan S, McLaughlin ME, et al. 2008.. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. . Cell Stem Cell 3:(4):41628
    [Crossref] [Google Scholar]
  174. Walkley CR, Fero ML, Chien W-M, Purton LE, McArthur GA. 2005.. Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. . Nat. Cell Biol. 7:(2):17278
    [Crossref] [Google Scholar]
  175. Wang C, Liang C-C, Bian ZC, Zhu Y, Guan J-L. 2013.. FIP200 is required for maintenance and differentiation of postnatal neural stem cells. . Nat. Neurosci. 16:(5):53242
    [Crossref] [Google Scholar]
  176. Wang L, Jin S, Dai P, Zhang T, Shi Y, et al. 2020.. p57Kip2 is a master regulator of human adipose derived stem cell quiescence and senescence. . Stem Cell Res. 44::101759
    [Crossref] [Google Scholar]
  177. Wang P, Feng M, Han G, Yin R, Li Y, et al. 2021.. RNA m6A modification plays a key role in maintaining stem cell function in normal and malignant hematopoiesis. . Front. Cell Dev. Biol. 9::710964
    [Crossref] [Google Scholar]
  178. Wang X, Fujimaki K, Mitchell GC, Kwon JS, Croce KD, et al. 2017.. Exit from quiescence displays a memory of cell growth and division. . Nat. Commun. 8:(1):321
    [Crossref] [Google Scholar]
  179. Wang Y, Hussein AM, Somasundaram L, Sankar R, Detraux D, et al. 2019.. microRNAs regulating human and mouse naïve pluripotency. . Int. J. Mol. Sci. 20:(23):5864
    [Crossref] [Google Scholar]
  180. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. 2007.. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. . Nat. Genet. 39:(3):38085
    [Crossref] [Google Scholar]
  181. Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, et al. 2013.. FOXO3A directs a protective autophagy program in haematopoietic stem cells. . Nature 494:(7437):32327
    [Crossref] [Google Scholar]
  182. Webb AE, Pollina EA, Vierbuchen T, Urbán N, Ucar D, et al. 2013.. FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. . Cell Rep. 4:(3):47791
    [Crossref] [Google Scholar]
  183. Weitlauf HM, Greenwald GS. 1968.. Survival of blastocysts in the uteri of ovariectomized mice. . Reproduction 17:(3):51520
    [Crossref] [Google Scholar]
  184. Wiles ET, Selker EU. 2017.. H3K27 methylation: a promiscuous repressive chromatin mark. . Curr. Opin. Genet. Dev. 43::3137
    [Crossref] [Google Scholar]
  185. Xie Z, Jones A, Deeney JT, Hur SK, Bankaitis VA. 2016.. Inborn errors of long-chain fatty acid β-oxidation link neural stem cell self-renewal to autism. . Cell Rep. 14:(5):99199
    [Crossref] [Google Scholar]
  186. Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, et al. 2006.. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. . EMBO J. 25:(15):351523
    [Crossref] [Google Scholar]
  187. Yan H, Malik N, Kim Y, He Y, Li M, et al. 2021.. Fatty acid oxidation is required for embryonic stem cell survival during metabolic stress. . EMBO Rep. 22:(6):e52122
    [Crossref] [Google Scholar]
  188. Yao G. 2014.. Modelling mammalian cellular quiescence. . Interface Focus 4:(3):20130074
    [Crossref] [Google Scholar]
  189. Yao G, Lee TJ, Mori S, Nevins JR, You L. 2008.. A bistable Rb–E2F switch underlies the restriction point. . Nat. Cell Biol. 10:(4):47682
    [Crossref] [Google Scholar]
  190. Yilmaz ÖH, Valdez R, Theisen BK, Guo W, Ferguson DO, et al. 2006.. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. . Nature 441:(7092):47582
    [Crossref] [Google Scholar]
  191. Yu W-M, Liu X, Shen J, Jovanovic O, Pohl EE, et al. 2013.. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. . Cell Stem Cell 12:(1):6274
    [Crossref] [Google Scholar]
  192. Yu X, Alder JK, Chun JH, Friedman AD, Heimfeld S, et al. 2006.. HES1 inhibits cycling of hematopoietic progenitor cells via DNA binding. . Stem Cells 24:(4):87688
    [Crossref] [Google Scholar]
  193. Yue F, Bi P, Wang C, Shan T, Nie Y, et al. 2017.. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. . Nat. Commun. 8:(1):14328
    [Crossref] [Google Scholar]
  194. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, et al. 2006.. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. . Nature 441:(7092):51822
    [Crossref] [Google Scholar]
  195. Zhang P, Liang X, Shan T, Jiang Q, Deng C, et al. 2015.. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration. . Biochem. Biophys. Res. Commun. 463:(12):1028
    [Google Scholar]
  196. Zhang X, Yalcin S, Lee D-F, Yeh T-YJ, Lee S-M, et al. 2011.. FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. . Nat. Cell Biol. 13:(9):109299
    [Crossref] [Google Scholar]
  197. Zheng X, Boyer L, Jin M, Mertens J, Kim Y, et al. 2016.. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. . eLife 5::e13374
    [Crossref] [Google Scholar]
  198. Zhou J, Shrikhande G, Xu J, McKay RM, Burns DK, et al. 2011.. Tsc1 mutant neural stem/progenitor cells exhibit migration deficits and give rise to subependymal lesions in the lateral ventricle. . Genes Dev. 25:(15):1595600
    [Crossref] [Google Scholar]
  199. Zhou Y, Bond AM, Shade JE, Zhu Y, Davis CO, et al. 2018.. Autocrine Mfge8 signaling prevents developmental exhaustion of the adult neural stem cell pool. . Cell Stem Cell 23:(3):44452.e4
    [Crossref] [Google Scholar]
  200. Zismanov V, Chichkov V, Colangelo V, Jamet S, Wang S, et al. 2016.. Phosphorylation of eIF2α is a translational control mechanism regulating muscle stem cell quiescence and self-renewal. . Cell Stem Cell 18:(1):7990
    [Crossref] [Google Scholar]
  201. Zou P, Yoshihara H, Hosokawa K, Tai I, Shinmyozu K, et al. 2011.. p57Kip2 and p27Kip1 cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. . Cell Stem Cell 9:(3):24761
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-112122-022528
Loading
/content/journals/10.1146/annurev-cellbio-112122-022528
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error