1932

Abstract

Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder–based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-112122-025214
2024-10-02
2025-02-12
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-112122-025214.html?itemId=/content/journals/10.1146/annurev-cellbio-112122-025214&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilar G, Bauer M, Vigano MA, Schnider ST, Brügger L, et al. 2024.. Seamless knockins in Drosophila via CRISPR-triggered single-strand annealing. . Dev. Cell. In press. https://doi.org/10.1016/j.devcel.2024.06.004
    [Google Scholar]
  2. Aguilar G, Matsuda S, Vigano MA, Affolter M. 2019.. Using nanobodies to study protein function in developing organisms. . Antibodies 8::16
    [Crossref] [Google Scholar]
  3. Anton T, Bultmann S. 2017.. Site-specific recruitment of epigenetic factors with a modular CRISPR/Cas system. . Nucleus 8::27986
    [Crossref] [Google Scholar]
  4. Ariotti N, Rae J, Giles N, Martel N, Sierecki E, et al. 2018.. Ultrastructural localisation of protein interactions using conditionally stable nanobodies. . PLOS Biol. 16::e2005473
    [Crossref] [Google Scholar]
  5. Baker FC, Neiswender H, Veeranan-Karmegam R, Gonsalvez GB. 2021.. In vivo proximity biotin ligation identifies the interactome of Egalitarian, a Dynein cargo adaptor. . Development 148::dev199935
    [Crossref] [Google Scholar]
  6. Banik SM, Pedram K, Wisnovsky S, Ahn G, Riley NM, Bertozzi CR. 2020.. Lysosome-targeting chimaeras for degradation of extracellular proteins. . Nature 584::29197
    [Crossref] [Google Scholar]
  7. Basler K, Struhl G. 1994.. Compartment boundaries and the control of Drosopfiffa limb pattern by hedgehog protein. . Nature 368::20814
    [Crossref] [Google Scholar]
  8. Bauer M, Aguilar G, Wharton KA, Matsuda S, Affolter M. 2023.. Heterodimerization-dependent secretion of bone morphogenetic proteins in Drosophila. . Dev. Cell 58::64559.e4
    [Crossref] [Google Scholar]
  9. Beghein E, Gettemans J. 2017.. Nanobody technology: a versatile toolkit for microscopic imaging, protein-protein interaction analysis, and protein function exploration. . Front. Immunol. 8::771
    [Crossref] [Google Scholar]
  10. Bellec M, Chen R, Dhayni J, Favard C, Trullo A, et al. 2023.. Boosting the toolbox for live imaging of translation. . bioRxiv 2023.02.25.529998. https://doi.org/10.1101/2023.02.25.529998
  11. Beste G, Schmidt FS, Stibora T, Skerra A. 1999.. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. . PNAS 96::1898903
    [Crossref] [Google Scholar]
  12. Bieli D, Alborelli I, Harmansa S, Matsuda S, Caussinus E, Affolter M. 2016.. Development and application of functionalized protein binders in multicellular organisms. . Int. Rev. Cell Mol. Biol. 325::181213
    [Crossref] [Google Scholar]
  13. Binz HK, Amstutz P, Plückthun A. 2005.. Engineering novel binding proteins from nonimmunoglobulin domains. . Nat. Biotechnol. 23::125768
    [Crossref] [Google Scholar]
  14. Biocca S, Pierandreiamaldi P, Cattaneo A. 1993.. Intracellular expression of anti-p21ras single chain Fv fragments inhibits meiotic maturation of Xenopus oocytes. . Biochem. Biophys. Res. Commun. 197::42227
    [Crossref] [Google Scholar]
  15. Birnie A, Plat A, Korkmaz C, Bothma JP. 2023.. Precisely timed regulation of enhancer activity defines the binary expression pattern of Fushi tarazu in the Drosophila embryo. . Curr. Biol. 33::283950.e7
    [Crossref] [Google Scholar]
  16. Boersma S, Khuperkar D, Verhagen BMP, Sonneveld S, Grimm JB, et al. 2019.. Multi-color single-molecule imaging uncovers extensive heterogeneity in mRNA decoding. . Cell 178::45872.e19
    [Crossref] [Google Scholar]
  17. Boswell CW, Hoppe C, Sherrard A, Miao L, Kojima ML, et al. 2023.. Genetically encoded affinity reagents (GEARs): a toolkit for visualizing and manipulating endogenous protein function in vivo. . bioRxiv 2023.11.15.567075. https://doi.org/10.1101/2023.11.15.567075
  18. Bothma JP, Norstad MR, Alamos S, Garcia HG. 2018.. LlamaTags: a versatile tool to image transcription factor dynamics in live embryos. . Cell 173::181022.e16
    [Crossref] [Google Scholar]
  19. Brauchle M, Hansen S, Caussinus E, Lenard A, Ochoa-Espinosa A, et al. 2014.. Protein interference applications in cellular and developmental biology using DARPins that recognize GFP and mCherry. . Biol. Open 3::125261
    [Crossref] [Google Scholar]
  20. Brinkmann U, Kontermann RE. 2017.. The making of bispecific antibodies. . mAbs 9::182212
    [Crossref] [Google Scholar]
  21. Bryan CM, Rocklin GJ, Bick MJ, Ford A, Majri-Morrison S, et al. 2021.. Computational design of a synthetic PD-1 agonist. . PNAS 118::e2102164118
    [Crossref] [Google Scholar]
  22. Campbell BFN, Dittmann A, Dreier B, Plückthun A, Tyagarajan SK. 2022.. A DARPin-based molecular toolset to probe gephyrin and inhibitory synapse biology. . eLife 11::e80895
    [Crossref] [Google Scholar]
  23. Cao L, Goreshnik I, Coventry B, Case JB, Miller L, et al. 2020.. De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. . Science 370::42631
    [Crossref] [Google Scholar]
  24. Carrasco-López C, Zhao EM, Gil AA, Alam N, Toettcher JE, Avalos JL. 2020.. Development of light-responsive protein binding in the monobody non-immunoglobulin scaffold. . Nat. Commun. 11::4045
    [Crossref] [Google Scholar]
  25. Caussinus E, Kanca O, Affolter M. 2011.. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. . Nat. Struct. Mol. Biol. 19::11721
    [Crossref] [Google Scholar]
  26. Chang Y, Dickinson DJ. 2022.. A particle size threshold governs diffusion and segregation of PAR-3 during cell polarization. . Cell Rep. 39::110652
    [Crossref] [Google Scholar]
  27. Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, et al. 2018.. Structure of the nanobody-stabilized active state of the kappa opioid receptor. . Cell 172::5567.e15
    [Crossref] [Google Scholar]
  28. Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. 2020.. Exploring cellular biochemistry with nanobodies. . J. Biol. Chem. 295::1530727
    [Crossref] [Google Scholar]
  29. Chen R, Stainier W, Dufourt J, Lagha M, Lehmann R. 2024.. Direct observation of translational activation by a ribonucleoprotein granule. . Nat. Cell Biol. https://doi.org/10.1038/s41556-024-01452-5
    [Google Scholar]
  30. Chevalier A, Silva D-A, Rocklin GJ, Hicks DR, Vergara R, et al. 2017.. Massively parallel de novo protein design for targeted therapeutics. . Nature 550::7479
    [Crossref] [Google Scholar]
  31. Chidyausiku TM, Mendes SR, Klima JC, Nadal M, Eckhard U, et al. 2022.. De novo design of immunoglobulin-like domains. . Nat. Commun. 13::5661
    [Crossref] [Google Scholar]
  32. Choi J, Chen W, Minkina A, Chardon FM, Suiter CC, et al. 2022.. A time-resolved, multi-symbol molecular recorder via sequential genome editing. . Nature 608::98107
    [Crossref] [Google Scholar]
  33. Clift D, McEwan WA, Labzin LI, Konieczny V, Mogessie B, et al. 2017.. A method for the acute and rapid degradation of endogenous proteins. . Cell 171::1692706.e18
    [Crossref] [Google Scholar]
  34. Cohen T, Halfon M, Schneidman-Duhovny D. 2022.. NanoNet: rapid and accurate end-to-end nanobody modeling by deep learning. . Front. Immunol. 13::958584
    [Crossref] [Google Scholar]
  35. Cook SG, Goodell DJ, Restrepo S, Arnold DB, Bayer KU. 2019.. Simultaneous live imaging of multiple endogenous proteins reveals a mechanism for Alzheimer's-related plasticity impairment. . Cell Rep. 27::65865.e4
    [Crossref] [Google Scholar]
  36. Courtemanche N, Pollard TD, Chen Q. 2016.. Avoiding artefacts when counting polymerized actin in live cells with LifeAct fused to fluorescent proteins. . Nat. Cell Biol. 18::67683
    [Crossref] [Google Scholar]
  37. Daniel K, Icha J, Horenburg C, Mueller D, Norden C, Mansfeld J. 2018.. Conditional control of fluorescent protein degradation by an auxin-dependent nanobody. . Nat. Commun. 9::3297
    [Crossref] [Google Scholar]
  38. Danielsson BE, George Abraham B, Mäntylä E, Cabe JI, Mayer CR, et al. 2023.. Nuclear lamina strain states revealed by intermolecular force biosensor. . Nat. Commun. 14::3867
    [Crossref] [Google Scholar]
  39. Davis RL, Kiger JA Jr. 1981.. dunce mutants of Drosophila melanogaster: mutants defective in the cyclic AMP phosphodiesterase enzyme system. . J. Cell Biol. 90::10107
    [Crossref] [Google Scholar]
  40. Deng W, Bates JA, Wei H, Bartoschek MD, Conradt B, Leonhardt H. 2020.. Tunable light and drug induced depletion of target proteins. . Nat. Commun. 11::304
    [Crossref] [Google Scholar]
  41. Derivery E, Seum C, Daeden A, Loubéry S, Holtzer L, et al. 2015.. Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. . Nature 528::28085
    [Crossref] [Google Scholar]
  42. Dingus JG, Tang JCY, Amamoto R, Wallick GK, Cepko CL. 2022.. A general approach for stabilizing nanobodies for intracellular expression. . eLife 11::e68253
    [Crossref] [Google Scholar]
  43. Dufourt J, Bellec M, Trullo A, Dejean M, De Rossi S, et al. 2021.. Imaging translation dynamics in live embryos reveals spatial heterogeneities. . Science 372::84044
    [Crossref] [Google Scholar]
  44. Edgar BA, Odell GM, Schubiger G. 1987.. Cytoarchitecture and the patterning of fushi tarazu expression in the Drosophila blastoderm. . Genes Dev. 1::122637
    [Crossref] [Google Scholar]
  45. Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, et al. 2022.. Optogenetics for light control of biological systems. . Nat. Rev. Methods Primers 2::55
    [Crossref] [Google Scholar]
  46. Fan X, Jin WY, Lu J, Wang J, Wang YT. 2014.. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. . Nat. Neurosci. 17::47180
    [Crossref] [Google Scholar]
  47. Farrants H, Tarnawski M, Müller TG, Otsuka S, Hiblot J, et al. 2020.. Chemogenetic control of nanobodies. . Nat. Methods 17::27982
    [Crossref] [Google Scholar]
  48. Frecot DI, Froehlich T, Rothbauer U. 2023.. 30years of nanobodies – an ongoing success story of small binders in biological research. . J. Cell Sci. 136::jcs261395
    [Crossref] [Google Scholar]
  49. Ge Y, Ramirez DH, Yang B, D'Souza AK, Aonbangkhen C, et al. 2021.. Target protein deglycosylation in living cells by a nanobody-fused split O-GlcNAcase. . Nat. Chem. Biol. 17::593600
    [Crossref] [Google Scholar]
  50. Gebauer M, Skerra A. 2020.. Engineered Protein scaffolds as next-generation therapeutics. . Annu. Rev. Pharmacol. Toxicol. 60::391415
    [Crossref] [Google Scholar]
  51. Gil AA, Carrasco-Lopez C, Zhu L, Zhao EM, Ravindran PT, et al. 2020.. Optogenetic control of protein binding using light-switchable nanobodies. . Nat. Commun. 11::4044
    [Crossref] [Google Scholar]
  52. Goldner AN, Fessehaye SM, Rodriguez N, Mapes KA, Osterfield M, Doubrovinski K. 2023.. Evidence that tissue recoil in the early Drosophila embryo is a passive not active process. . Mol. Biol. Cell 34::br16
    [Crossref] [Google Scholar]
  53. Götzke H, Kilisch M, Martínez-Carranza M, Sograte-Idrissi S, Rajavel A, et al. 2019.. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. . Nat. Commun. 10::4403
    [Crossref] [Google Scholar]
  54. Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF. 1995.. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. . Nature 374::16873
    [Crossref] [Google Scholar]
  55. Griep RA, van Twisk C, van der Wolf JM, Schots A. 1999.. Fluobodies: green fluorescent single-chain Fv fusion proteins. . J. Immunol. Methods 230::12130
    [Crossref] [Google Scholar]
  56. Gross GG, Junge JA, Mora RJ, Kwon HB, Olson CA, et al. 2013.. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. . Neuron 78::97185
    [Crossref] [Google Scholar]
  57. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hammers C, et al. 1993.. Naturally occurring antibodies devoid of light chains. . Nature 363::44648
    [Crossref] [Google Scholar]
  58. Hansen JN, Kaiser F, Klausen C, Stüven B, Chong R, et al. 2020.. Nanobody-directed targeting of optogenetic tools to study signaling in the primary cilium. . eLife 9::e57907
    [Crossref] [Google Scholar]
  59. Hantschel O, Biancalana M, Koide S. 2020.. Monobodies as enabling tools for structural and mechanistic biology. . Curr. Opin. Struct. Biol. 60::16774
    [Crossref] [Google Scholar]
  60. Harmansa S, Affolter M. 2018.. Protein binders and their applications in developmental biology. . Development 145::dev148874
    [Crossref] [Google Scholar]
  61. Harmansa S, Alborelli I, Bieli D, Caussinus E, Affolter M. 2017.. A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. . eLife 6::22549
    [Crossref] [Google Scholar]
  62. Harmansa S, Hamaratoglu F, Affolter M, Caussinus E. 2015.. Dpp spreading is required for medial but not for lateral wing disc growth. . Nature 527::31722
    [Crossref] [Google Scholar]
  63. Haruki H, Nishikawa J, Laemmli UK. 2008.. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. . Mol. Cell 31::92532
    [Crossref] [Google Scholar]
  64. He L, Huang J, Perrimon N. 2017.. Development of an optimized synthetic Notch receptor as an in vivo cell-cell contact sensor. . PNAS 114::546772
    [Crossref] [Google Scholar]
  65. Helma J, Cardoso MC, Muyldermans S, Leonhardt H. 2015.. Nanobodies and recombinant binders in cell biology. . J. Cell Biol. 209::63344
    [Crossref] [Google Scholar]
  66. Herce HD, Deng W, Helma J, Leonhardt H, Cardoso MC. 2013.. Visualization and targeted disruption of protein interactions in living cells. . Nat. Commun. 4::2660
    [Crossref] [Google Scholar]
  67. Hirata H, Bessho Y, Kokubu H, Masamizu Y, Yamada S, et al. 2004.. Instability of Hes7 protein is crucial for the somite segmentation clock. . Nat. Genet. 36::75054
    [Crossref] [Google Scholar]
  68. Huang P-S, Boyken SE, Baker D. 2016.. The coming of age of de novo protein design. . Nature 537::32027
    [Crossref] [Google Scholar]
  69. Huang T-H, Niesman P, Arasu D, Lee D, De La Cruz AL, et al. 2017.. Tracing neuronal circuits in transgenic animals by transneuronal control of transcription (TRACT). . eLife 6::e32027
    [Crossref] [Google Scholar]
  70. Huang TH, Velho T, Lois C. 2016.. Monitoring cell-cell contacts in vivo in transgenic animals. . Development 143::407384
    [Crossref] [Google Scholar]
  71. Huang Y-H, Su J, Lei Y, Brunetti L, Gundry MC, et al. 2017.. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. . Genome Biol. 18::176
    [Crossref] [Google Scholar]
  72. Hutson MS, Tokutake Y, Chang M-S, Bloor JW, Venakides S, et al. 2003.. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. . Science 300::14549
    [Crossref] [Google Scholar]
  73. Ingram JR, Schmidt FI, Ploegh HL. 2018.. Exploiting nanobodies' singular traits. . Annu. Rev. Immunol. 36::695715
    [Crossref] [Google Scholar]
  74. Inutsuka A, Maejima S, Mizoguchi H, Kaneko R, Nomura R, et al. 2022.. Nanobody-based RFP-dependent Cre recombinase for selective anterograde tracing in RFP-expressing transgenic animals. . Commun. Biol. 5::979
    [Crossref] [Google Scholar]
  75. Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, et al. 2013.. Conformational biosensors reveal GPCR signalling from endosomes. . Nature 495::53438
    [Crossref] [Google Scholar]
  76. Juan T, Bellec M, Cardoso B, Athéa H, Fukuda N, et al. 2024.. Control of cardiac contractions using Cre-lox and degron strategies in zebrafish. . PNAS 121::e2309842121
    [Crossref] [Google Scholar]
  77. Kaiser PD, Maier J, Traenkle B, Emele F, Rothbauer U. 2014.. Recent progress in generating intracellular functional antibody fragments to target and trace cellular components in living cells. . Biochim. Biophys. Acta Proteins Proteom. 1844::193342
    [Crossref] [Google Scholar]
  78. Kamiyama D, McGorty R, Kamiyama R, Kim MD, Chiba A, Huang B. 2015.. Specification of dendritogenesis site in Drosophila aCC motoneuron by membrane enrichment of Pak1 through Dscam1. . Dev. Cell 35::93106
    [Crossref] [Google Scholar]
  79. Keller BM, Maier J, Secker KA, Egetemaier SM, Parfyonova Y, et al. 2018.. Chromobodies to quantify changes of endogenous protein concentration in living cells. . Mol. Cell Proteom. 17::251833
    [Crossref] [Google Scholar]
  80. Keller BM, Maier J, Weldle M, Segan S, Traenkle B, Rothbauer U. 2019.. A strategy to optimize the generation of stable chromobody cell lines for visualization and quantification of endogenous proteins in living cells. . Antibodies 8::10
    [Crossref] [Google Scholar]
  81. Khalsa O, Yoon JW, Torres-Schumann S, Wharton KA. 1998.. TGF-β/BMP superfamily members, Gbb-60A and Dpp, cooperate to provide pattern information and establish cell identity in the Drosophila wing. . Development 125::272334
    [Crossref] [Google Scholar]
  82. Kim YJ, Rhee K, Liu J, Jeammet S, Turner MA, et al. 2022.. Predictive modeling reveals that higher-order cooperativity drives transcriptional repression in a synthetic developmental enhancer. . eLife 11::e73395
    [Crossref] [Google Scholar]
  83. Koide A, Bailey CW, Huang XL, Koide S. 1998.. The fibronectin type III domain as a scaffold for novel binding proteins. . J. Mol. Biol. 284::114151
    [Crossref] [Google Scholar]
  84. Komatsu S, Ohno H, Saito H. 2023.. Target-dependent RNA polymerase as universal platform for gene expression control in response to intracellular molecules. . Nat. Commun. 14::7256
    [Crossref] [Google Scholar]
  85. Kroll JR, Remmelzwaal S, Boxem M. 2021.. CeLINC, a fluorescence-based protein-protein interaction assay in Caenorhabditis elegans. . Genetics 219::iyab163
    [Crossref] [Google Scholar]
  86. Kubala MH, Kovtun O, Alexandrov K, Collins BM. 2010.. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex. . Protein Sci. 19::2389401
    [Crossref] [Google Scholar]
  87. Layalle S, Volovitch M, Mugat B, Bonneaud N, Parmentier ML, et al. 2011.. Engrailed homeoprotein acts as a signaling molecule in the developing fly. . Development 138::231523
    [Crossref] [Google Scholar]
  88. Lepeta K, Roubinet C, Bauer M, Vigano MA, Aguilar G, et al. 2022.. Engineered kinases as a tool for phosphorylation of selected targets in vivo. . J. Cell Biol. 221::e202106179
    [Crossref] [Google Scholar]
  89. Lin B, Luo J, Lehmann R. 2020.. Collectively stabilizing and orienting posterior migratory forces disperses cell clusters in vivo. . Nat. Commun. 11::4477
    [Crossref] [Google Scholar]
  90. Lin B, Luo J, Lehmann R. 2022.. An AMPK phosphoregulated RhoGEF feedback loop tunes cortical flow–driven amoeboid migration in vivo. . Sci. Adv. 8::eabo0323
    [Crossref] [Google Scholar]
  91. Linghu C, An B, Shpokayte M, Celiker OT, Shmoel N, et al. 2023.. Recording of cellular physiological histories along optically readable self-assembling protein chains. . Nat. Biotechnol. 41::64051
    [Crossref] [Google Scholar]
  92. Liu Y, Zhao N, Kanemaki MT, Yamamoto Y, Sadamura Y, et al. 2021.. Visualizing looping of two endogenous genomic loci using synthetic zinc-finger proteins with anti-FLAG and anti-HA frankenbodies in living cells. . Genes Cells 26::90526
    [Crossref] [Google Scholar]
  93. Loreau V, Rees R, Chan EH, Taxer W, Gregor K, et al. 2023.. A nanobody toolbox to investigate localisation and dynamics of Drosophila titins and other key sarcomeric proteins. . eLife 12::e79343
    [Crossref] [Google Scholar]
  94. Luo N, Shang D, Tang Z, Mai J, Huang X, . 2023.. Engineered ATG8-binding motif-based selective autophagy to degrade proteins and organelles in planta. . New Phytol. 237:68497
    [Google Scholar]
  95. Manhas J, Edelstein HI, Leonard JN, Morsut L. 2022.. The evolution of synthetic receptor systems. . Nat. Chem. Biol. 18::24455
    [Crossref] [Google Scholar]
  96. Mannix KM, Starble RM, Kaufman RS, Cooley L. 2019.. Proximity labeling reveals novel interactomes in live Drosophila tissue. . Development 146::dev176644
    [Crossref] [Google Scholar]
  97. Marschall AL, Dübel S, Böldicke T. 2015.. Specific in vivo knockdown of protein function by intrabodies. . mAbs 7::101035
    [Crossref] [Google Scholar]
  98. Martínez-Ara G, Stapornwongkul KS, Ebisuya M. 2022.. Scaling up complexity in synthetic developmental biology. . Science 378::86468
    [Crossref] [Google Scholar]
  99. Matsuda S, Aguilar G, Vigano MA, Affolter M. 2022.. Nanobody-based GFP traps to study protein localization and function in developmental biology. . In Single-Domain Antibodies: Methods and Protocols, ed. G Hussack, KA Henry , pp. 58193. New York:: Springer
    [Google Scholar]
  100. Matsuda S, Schaefer JV, Mii Y, Hori Y, Bieli D, et al. 2021.. Asymmetric requirement of Dpp/BMP morphogen dispersal in the Drosophila wing disc. . Nat. Commun. 12::6435
    [Crossref] [Google Scholar]
  101. McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. 2016.. Whole-organism lineage tracing by combinatorial and cumulative genome editing. . Science 353::aaf7907
    [Crossref] [Google Scholar]
  102. McNamara HM, Ramm B, Toettcher JE. 2023.. Synthetic developmental biology: new tools to deconstruct and rebuild developmental systems. . Semin. Cell Dev. Biol. 141::3342
    [Crossref] [Google Scholar]
  103. Michael W, Daesun S, Vandon D, Daniel F, Po-Ssu H, Michael ZL. 2023.. Photoswitchable binders enable temporal dissection of endogenous protein function. . bioRxiv 2023.09.14.557687. https://doi.org/10.1101/2023.09.14.557687
  104. Mitchell LS, Colwell LJ. 2018.. Analysis of nanobody paratopes reveals greater diversity than classical antibodies. . Protein Eng. Des. Sel. 31::26775
    [Crossref] [Google Scholar]
  105. Mohan K, Ueda G, Kim AR, Jude KM, Fallas JA, et al. 2019.. Topological control of cytokine receptor signaling induces differential effects in hematopoiesis. . Science 364::eaav7532
    [Crossref] [Google Scholar]
  106. Morgan DO, Roth RA. 1988.. Analysis of intracellular protein function by antibody injection. . Immunol. Today 9::8488
    [Crossref] [Google Scholar]
  107. Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, et al. 2016.. Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. . Nat. Biotechnol. 34::106065
    [Crossref] [Google Scholar]
  108. Muyldermans S. 2021a.. Applications of nanobodies. . Annu. Rev. Anim. Biosci. 9::40121
    [Crossref] [Google Scholar]
  109. Muyldermans S. 2021b.. A guide to: generation and design of nanobodies. . FEBS J. 288::2084102
    [Crossref] [Google Scholar]
  110. Nagarkar-Jaiswal S, Lee P-T, Campbell ME, Chen K, Anguiano-Zarate S, et al. 2015.. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. . eLife 4::e05338
    [Crossref] [Google Scholar]
  111. Nizak C, Monier S, del Nery E, Moutel S, Goud B, Perez F. 2003.. Recombinant antibodies to the small GTPase Rab6 as conformation sensors. . Science 300::98487
    [Crossref] [Google Scholar]
  112. Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren P-Å. 1997.. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. . Nat. Biotechnol. 15::77277
    [Crossref] [Google Scholar]
  113. Nüsslein-Volhard C, Wieschaus E. 1980.. Mutations affecting segment number and polarity in Drosophila. . Nature 287::795801
    [Crossref] [Google Scholar]
  114. Oliinyk OS, Baloban M, Clark CL, Carey E, Pletnev S, et al. 2022.. Single-domain near-infrared protein provides a scaffold for antigen-dependent fluorescent nanobodies. . Nat. Methods 19::74050
    [Crossref] [Google Scholar]
  115. Pance K, Gramespacher JA, Byrnes JR, Salangsang F, Serrano J-AC, et al. 2023.. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins. . Nat. Biotechnol. 41::27381
    [Crossref] [Google Scholar]
  116. Pasakarnis L, Frei E, Caussinus E, Affolter M, Brunner D. 2016.. Amnioserosa cell constriction but not epidermal actin cable tension autonomously drives dorsal closure. . Nat. Cell Biol. 18::116172
    [Crossref] [Google Scholar]
  117. Prole DL, Taylor CW. 2019.. A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling. . BMC Biol. 17::41
    [Crossref] [Google Scholar]
  118. Qiu YH, Chen CN, Malone T, Richter L, Beckendorf SK, Davis RL. 1991.. Characterization of the memory gene dunce of Drosophila melanogaster. . J. Mol. Biol. 222::55365
    [Crossref] [Google Scholar]
  119. Okur Z, Schlauri N, Bitsikas V, Panopoulou M, Ortiz R, et al. 2024.. Control of neuronal excitation–inhibition balance by BMP–SMAD1 signalling. . Nature 629::4029
    [Crossref] [Google Scholar]
  120. Rabbitts TH. 2023.. Intracellular antibodies for drug discovery and as drugs of the future. . Antibodies 12::24
    [Crossref] [Google Scholar]
  121. Ramirez DH, Aonbangkhen C, Wu HY, Naftaly JA, Tang S, et al. 2020.. Engineering a proximity-directed O-GlcNAc transferase for selective protein O-GlcNAcylation in cells. . ACS Chem. Biol. 15::105966
    [Crossref] [Google Scholar]
  122. Ramirez DH, Ge Y, Woo CM. 2021.. O-GlcNAc engineering on a target protein in cells with nanobody-OGT and nanobody-splitOGA. . Curr. Protoc. 1::e117
    [Crossref] [Google Scholar]
  123. Redchuk TA, Karasev MM, Verkhusha PV, Donnelly SK, Hülsemann M, et al. 2020.. Optogenetic regulation of endogenous proteins. . Nat. Commun. 11::605
    [Crossref] [Google Scholar]
  124. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, et al. 2008.. Lifeact: a versatile marker to visualize F-actin. . Nat. Methods 5::6057
    [Crossref] [Google Scholar]
  125. Robinson MS, Sahlender DA, Foster SD. 2010.. Rapid inactivation of proteins by rapamycin-induced rerouting to mitochondria. . Dev. Cell 18::32431
    [Crossref] [Google Scholar]
  126. Rothbauer U, Zolghadr K, Muyldermans S, Schepers A, Cardoso MC, Leonhardt H. 2008.. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. . Mol. Cell. Proteom. 7::28289
    [Crossref] [Google Scholar]
  127. Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, et al. 2006.. Targeting and tracing antigens in live cells with fluorescent nanobodies. . Nat. Methods 3::88789
    [Crossref] [Google Scholar]
  128. Roubinet C, Tsankova A, Pham TT, Monnard A, Caussinus E, et al. 2017.. Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells. . Nat. Commun. 8::1383
    [Crossref] [Google Scholar]
  129. Roy A, Shi L, Chang A, Dong X, Fernandez A, et al. 2023.. De novo design of highly selective miniprotein inhibitors of integrins αβ6 and αβ8. . Nat. Commun. 14::5660
    [Crossref] [Google Scholar]
  130. Santos AC, Lehmann R. 2004.. Germ cell specification and migration in Drosophila and beyond. . Curr. Biol. 14::R57889
    [Crossref] [Google Scholar]
  131. Schueder F, Mangeol P, Chan EH, Rees R, Schünemann J, et al. 2023.. Nanobodies combined with DNA-PAINT super-resolution reveal a staggered titin nanoarchitecture in flight muscles. . eLife 12::e79344
    [Crossref] [Google Scholar]
  132. Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. 2018.. Nanobodies: chemical functionalization strategies and intracellular applications. . Angew. Chemie Int. Ed. 57::231433
    [Crossref] [Google Scholar]
  133. Schwein PA, Ge Y, Yang B, D'Souza A, Mody A, et al. 2022.. Writing and erasing O-GlcNAc on casein kinase 2 alpha alters the phosphoproteome. . ACS Chem. Biol. 17::111121
    [Crossref] [Google Scholar]
  134. Seller CA, Cho CY, O'Farrell PH. 2019.. Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila. . Genes Dev. 33::40317
    [Crossref] [Google Scholar]
  135. Seydoux G, Braun RE. 2006.. Pathway to totipotency: lessons from germ cells. . Cell 127::891904
    [Crossref] [Google Scholar]
  136. Shen F, Dassama LMK. 2023.. Opportunities and challenges of protein-based targeted protein degradation. . Chem. Sci. 14::843347
    [Crossref] [Google Scholar]
  137. Shin YJ, Park SK, Jung YJ, Kim YN, Kim KS, et al. 2015.. Nanobody-targeted E3-ubiquitin ligase complex degrades nuclear proteins. . Sci. Rep. 5::14269
    [Crossref] [Google Scholar]
  138. Siciliano V, DiAndreth B, Monel B, Beal J, Huh J, et al. 2018.. Engineering modular intracellular protein sensor-actuator devices. . Nat. Commun. 9::1881
    [Crossref] [Google Scholar]
  139. Solon J, Kaya-Copur A, Colombelli J, Brunner D. 2009.. Pulsed forces timed by a ratchet-like mechanism drive directed tissue movement during dorsal closure. . Cell 137::133142
    [Crossref] [Google Scholar]
  140. Spiess C, Zhai Q, Carter PJ. 2015.. Alternative molecular formats and therapeutic applications for bispecific antibodies. . Mol. Immunol. 67::95106
    [Crossref] [Google Scholar]
  141. Stapornwongkul KS, de Gennes M, Cocconi L, Salbreux G, Vincent JP. 2020.. Patterning and growth control in vivo by an engineered GFP gradient. . Science 370::32127
    [Crossref] [Google Scholar]
  142. Stevens AJ, Harris AR, Gerdts J, Kim KH, Trentesaux C, et al. 2023.. Programming multicellular assembly with synthetic cell adhesion molecules. . Nature 614::14452
    [Crossref] [Google Scholar]
  143. Stoeber M, Jullié D, Lobingier BT, Laeremans T, Steyaert J, et al. 2018.. A genetically encoded biosensor reveals location bias of opioid drug action. . Neuron 98::96376.e5
    [Crossref] [Google Scholar]
  144. Suzuki M, Takagi C, Miura S, Sakane Y, Suzuki M, et al. 2016.. In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration. . Genes Cells 21::35869
    [Crossref] [Google Scholar]
  145. Tanaka T, Chung GTY, Forster A, Lobato MN, Rabbitts TH. 2003.. De novo production of diverse intracellular antibody libraries. . Nucleic Acids Res. 31::e23
    [Crossref] [Google Scholar]
  146. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD. 2014.. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. . Cell 159::63546
    [Crossref] [Google Scholar]
  147. Tang JC, Drokhlyansky E, Etemad B, Rudolph S, Guo B, et al. 2016.. Detection and manipulation of live antigen-expressing cells using conditionally stable nanobodies. . eLife 5::15312
    [Crossref] [Google Scholar]
  148. Tang JLY, Hakes AE, Krautz R, Suzuki T, Contreras EG, et al. 2022.. NanoDam identifies Homeobrain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the Drosophila central brain and visual system. . Dev. Cell 57::1193207.e7
    [Crossref] [Google Scholar]
  149. Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeffi P. 1993.. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. . Nature 366::46972
    [Crossref] [Google Scholar]
  150. Toda S, McKeithan WL, Hakkinen TJ, Lopez P, Klein OD, Lim WA. 2020.. Engineering synthetic morphogen systems that can program multicellular patterning. . Science 370::32731
    [Crossref] [Google Scholar]
  151. Torres SV, Leung PJY, Venkatesh P, Lutz ID, Hink F, et al. 2023.. De novo design of high-affinity binders of bioactive helical peptides. . Nature 626::43542
    [Crossref] [Google Scholar]
  152. Truong K, Ikura M. 2001.. The use of FRET imaging microscopy to detect protein–protein interactions and protein conformational changes in vivo. . Curr. Opin. Struct. Biol. 11::57378
    [Crossref] [Google Scholar]
  153. Uchański T, Pardon E, Steyaert J. 2020.. Nanobodies to study protein conformational states. . Curr. Opin. Struct. Biol. 60::11723
    [Crossref] [Google Scholar]
  154. Van MV, Fujimori T, Bintu L. 2021.. Nanobody-mediated control of gene expression and epigenetic memory. . Nat. Commun. 12::537
    [Crossref] [Google Scholar]
  155. Van Audenhove I, Gettemans J. 2016.. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. . EBioMedicine 8::4048
    [Crossref] [Google Scholar]
  156. Van Audenhove I, Van Impe K, Ruano-Gallego D, De Clercq S, De Muynck K, et al. 2013.. Mapping cytoskeletal protein function in cells by means of nanobodies. . Cytoskeleton 70::60422
    [Crossref] [Google Scholar]
  157. Verhaar ER, Woodham AW, Ploegh HL. 2021.. Nanobodies in cancer. . Semin. Immunol. 52::101425
    [Crossref] [Google Scholar]
  158. Vigano MA, Ell CM, Kustermann MMM, Aguilar G, Matsuda S, et al. 2021.. Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster. . Development 148::dev191700
    [Crossref] [Google Scholar]
  159. Visintin M, Quondam M, Cattaneo A. 2004.. The intracellular antibody capture technology: towards the high-throughput selection of functional intracellular antibodies for target validation. . Methods 34::20014
    [Crossref] [Google Scholar]
  160. Wang JY, Doudna JA. 2023.. CRISPR technology: A decade of genome editing is only the beginning. . Science 379::eadd8643
    [Crossref] [Google Scholar]
  161. Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK, et al. 2015.. NOCA-1 functions with γ-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. . eLife 4::e08649
    [Crossref] [Google Scholar]
  162. Watson JL, Krüger LK, Ben-Sasson AJ, Bittleston A, Shahbazi MN, et al. 2023.. Synthetic Par polarity induces cytoskeleton asymmetry in unpolarized mammalian cells. . Cell 186::471027.e35
    [Crossref] [Google Scholar]
  163. Wörn A, Plückthun A. 2001.. Stability engineering of antibody single-chain Fv fragments. . J. Mol. Biol. 305::9891010
    [Crossref] [Google Scholar]
  164. Wu K, Bai H, Chang Y-T, Redler R, McNally KE, et al. 2023.. De novo design of modular peptide-binding proteins by superhelical matching. . Nature 616::58189
    [Crossref] [Google Scholar]
  165. Xu J, Kim A-R, Cheloha RW, Fischer FA, Li JSS, et al. 2022.. Protein visualization and manipulation in Drosophila through the use of epitope tags recognized by nanobodies. . eLife 11::e74326
    [Crossref] [Google Scholar]
  166. Xu Y, Wang B, Bush I, Saunders HA, Wildonger J, Han C. 2023.. Light-induced trapping of endogenous proteins reveals spatiotemporal roles of microtubule and kinesin-1 in dendrite patterning of Drosophila sensory neurons. . bioRxiv 2023.09.30.560303. https://doi.org/10.1101/2023.09.30.560303
  167. Yamaguchi N, Colak-Champollion T, Knaut H. 2019.. zGrad is a nanobody-based degron system that inactivates proteins in zebrafish. . eLife 8::e43125
    [Crossref] [Google Scholar]
  168. Yu D, Lee H, Hong J, Jung H, Jo Y, et al. 2019.. Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins. . Nat. Methods 16::1095100
    [Crossref] [Google Scholar]
  169. Yu JJS, Maugarny-Cales A, Pelletier S, Alexandre C, Bellaiche Y, et al. 2020.. Frizzled-dependent planar cell polarity without secreted Wnt ligands. . Dev. Cell 54::58392.e5
    [Crossref] [Google Scholar]
  170. Zeghal M, Matte K, Venes A, Patel S, Laroche G, et al. 2023.. Development of a V5-tag–directed nanobody and its implementation as an intracellular biosensor of GPCR signaling. . J. Biol. Chem. 299::105107
    [Crossref] [Google Scholar]
  171. Zhang H, Han Y, Yang Y, Lin F, Li K, et al. 2021.. Covalently engineered nanobody chimeras for targeted membrane protein degradation. . J. Am. Chem. Soc. 143::1637782
    [Crossref] [Google Scholar]
  172. Zhang S, Zhao H, Liu Z, Liu K, Zhu H, et al. 2022.. Monitoring of cell-cell communication and contact history in mammals. . Science 378::eabo5503
    [Crossref] [Google Scholar]
  173. Zhao N, Kamijo K, Fox PD, Oda H, Morisaki T, et al. 2019.. A genetically encoded probe for imaging nascent and mature HA-tagged proteins in vivo. . Nat. Commun. 10::2947
    [Crossref] [Google Scholar]
  174. Zhou P, Bogacki R, McReynolds L, Howley PM. 2000.. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. . Mol. Cell 6::75156
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-112122-025214
Loading
/content/journals/10.1146/annurev-cellbio-112122-025214
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error