1932

Abstract

Antibodies that gain specificity by a large insert encoding for an extra domain were described for the first time in 2016. In malaria-exposed individuals, an exon deriving from the leukocyte-associated immunoglobulin-like 1 () gene integrated via a copy-and-paste insertion into the immunoglobulin heavy chain encoding region. A few years later, a second example was identified, namely a dual exon integration from the leukocyte immunoglobulin-like receptor B1 () gene that is located in close proximity to . A dedicated high-throughput characterization of chimeric immunoglobulin heavy chain transcripts unraveled, that insertions from distant genomic regions (including mitochondrial DNA) can contribute to human antibody diversity. This review describes the modalities of insert-containing antibodies. The role of known DNA mobility aspects, such as genomic translocation, gene conversion, and DNA fragility, is discussed in the context of insert-antibody generation. Finally, the review covers why insert antibodies were omitted from the past repertoire analyses and how insert antibodies can contribute to protective immunity or an autoreactive response.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-112122-030835
2024-10-02
2025-04-19
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-112122-030835.html?itemId=/content/journals/10.1146/annurev-cellbio-112122-030835&mimeType=html&fmt=ahah

Literature Cited

  1. Ågren JA, Wright SI. 2011.. Co-evolution between transposable elements and their hosts: a major factor in genome size evolution?. Chromosom. Res. 19:(6):77786
    [Crossref] [Google Scholar]
  2. Aguilera A, García-Muse T. 2012.. R loops: from transcription byproducts to threats to genome stability. . Mol. Cell 46:(2):11524
    [Crossref] [Google Scholar]
  3. Akasaka T, Balasas T, Russell LJ, Sugimoto K, Majid A, et al. 2007.. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). . Blood 109:(8):345161
    [Crossref] [Google Scholar]
  4. Anwar SL, Wulaningsih W, Lehmann U. 2017.. Transposable elements in human cancer: causes and consequences of deregulation. . Int. J. Mol. Sci. 18:(5):974
    [Crossref] [Google Scholar]
  5. Babushok DV, Ostertag EM, Kazazian HH. 2007.. Current topics in genome evolution: molecular mechanisms of new gene formation. . Cell. Mol. Life Sci. 64:(5):54254
    [Crossref] [Google Scholar]
  6. Barfod L, Dalgaard MB, Pleman ST, Ofori MF, Pleass RJ, Hviid L. 2011.. Evasion of immunity to Plasmodium falciparum malaria by IgM masking of protective IgG epitopes in infected erythrocyte surface-exposed PfEMP1. . PNAS 108:(30):1248590
    [Crossref] [Google Scholar]
  7. Barlow JH, Faryabi RB, Callén E, Wong N, Malhowski A, et al. 2013.. Identification of early replicating fragile sites that contribute to genome instability. . Cell 152:(3):62032
    [Crossref] [Google Scholar]
  8. Battey J, Moulding C, Taub R, Murphy W, Stewart T, et al. 1983.. The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. . Cell 34:(3):77987
    [Crossref] [Google Scholar]
  9. Batzer MA, Deininger PL. 2002.. Alu repeats and human genomic diversity. . Nat. Rev. Genet. 3:(5):37079
    [Crossref] [Google Scholar]
  10. Beau MML, Rassool FV, Neilly ME, Espinosa R, Glover TW, et al. 1998.. Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. . Hum. Mol. Genet. 7:(4):75561
    [Crossref] [Google Scholar]
  11. Belanger KG, Kreuzer KN. 1998.. Bacteriophage T4 initiates bidirectional DNA replication through a two-step process. . Mol. Cell 2:(5):693701
    [Crossref] [Google Scholar]
  12. Bemark M, Neuberger MS. 2000.. The c-MYC allele that is translocated into the IgH locus undergoes constitutive hypermutation in a Burkitt's lymphoma line. . Oncogene 19:(30):340410
    [Crossref] [Google Scholar]
  13. Blumenberg L, Skok JA. 2015.. RAG off-target activity is in the loop. . Trends Mol. Med. 21:(12):73335
    [Crossref] [Google Scholar]
  14. Brick K, Smagulova F, Khil P, Camerini-Otero RD, Petukhova GV. 2012.. Genetic recombination is directed away from functional genomic elements in mice. . Nature 485:(7400):64245
    [Crossref] [Google Scholar]
  15. Burnett DL, Reed JH, Christ D, Goodnow CC. 2019.. Clonal redemption and clonal anergy as mechanisms to balance B cell tolerance and immunity. . Immunol. Rev. 292:(1):6175
    [Crossref] [Google Scholar]
  16. Calderón M del C, Rey M-D, Cabrera A, Prieto P. 2014.. The subtelomeric region is important for chromosome recognition and pairing during meiosis. . Sci. Rep. 4:(1):6488
    [Crossref] [Google Scholar]
  17. Cantaert T, Schickel J-N, Bannock JM, Ng Y-S, Massad C, et al. 2015.. Activation-induced cytidine deaminase expression in human B cell precursors is essential for central B cell tolerance. . Immunity 43:(5):88495
    [Crossref] [Google Scholar]
  18. Castillo-Guzman D, Chédin F. 2021.. Defining R-loop classes and their contributions to genome instability. . DNA Repair 106::103182
    [Crossref] [Google Scholar]
  19. Chan J-A, Boyle MJ, Moore KA, Reiling L, Lin Z, et al. 2019.. Antibody targets on the surface of Plasmodium falciparum-infected erythrocytes that are associated with immunity to severe malaria in young children. . J. Infect. Dis. 219:(5):81928
    [Crossref] [Google Scholar]
  20. Chen Q, Barragan A, Fernandez V, Sundström A, Schlichtherle M, et al. 1998.. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. . J. Exp. Med. 187:(1):1523
    [Crossref] [Google Scholar]
  21. Chen Y, Xu K, Piccoli L, Foglierini M, Tan J, et al. 2021.. Structural basis of malaria RIFIN binding by LILRB1-containing antibodies. . Nature 592:(7855):63943
    [Crossref] [Google Scholar]
  22. Chuong EB, Elde NC, Feschotte C. 2017.. Regulatory activities of transposable elements: from conflicts to benefits. . Nat. Rev. Genet. 18:(2):7186
    [Crossref] [Google Scholar]
  23. Cook GP, Tomlinson IM, Walter G, Riethman H, Carter NP, et al. 1994.. A map of the human immunoglobulin VH locus completed by analysis of the telomeric region of chromosome 14q. . Nat. Genet. 7:(2):16268
    [Crossref] [Google Scholar]
  24. Dabney J, Meyer M. 2012.. Length and GC-biases during sequencing library amplification: a comparison of various polymerase-buffer systems with ancient and modern DNA sequencing libraries. . Biotechniques 52:(2):8794
    [Crossref] [Google Scholar]
  25. Dale GA, Wilkins DJ, Bohannon CD, Dilernia D, Hunter E, et al. 2019.. Clustered mutations at the murine and human IgH locus exhibit significant linkage consistent with templated mutagenesis. . J. Immunol. 203:(5):125264
    [Crossref] [Google Scholar]
  26. Drolet M, Brochu J. 2019.. R-loop-dependent replication and genomic instability in bacteria. . DNA Repair 84::102693
    [Crossref] [Google Scholar]
  27. Duty JA, Szodoray P, Zheng N-Y, Koelsch KA, Zhang Q, et al. 2009.. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. . J. Exp. Med. 206:(1):13951
    [Crossref] [Google Scholar]
  28. Eickbush TH, Eickbush DG. 2015.. Integration, regulation, and long-term stability of R2 retrotransposons. . Microbiol. Spectr. 3:(2):mdna3-0011-2014
    [Crossref] [Google Scholar]
  29. Finnegan DJ. 1989.. Eukaryotic transposable elements and genome evolution. . Trends Genet. 5:(4):1037
    [Crossref] [Google Scholar]
  30. Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD. 2012.. A genome-wide analysis of common fragile sites: What features determine chromosomal instability in the human genome?. Genome Res. 22:(6):9931005
    [Crossref] [Google Scholar]
  31. Ginno PA, Lott PL, Christensen HC, Korf I, Chédin F. 2012.. R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. . Mol. Cell 45:(6):81425
    [Crossref] [Google Scholar]
  32. Glover TW, Berger C, Coyle J, Echo B. 1984.. DNA polymerase α inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. . Hum. Genet. 67:(2):13642
    [Crossref] [Google Scholar]
  33. Gostissa M, Yan CT, Bianco JM, Cogné M, Pinaud E, Alt FW. 2009.. Long-range oncogenic activation of Igh/c-myc translocations by the Igh 3′ regulatory region. . Nature 462:(7274):8037
    [Crossref] [Google Scholar]
  34. Greinert R, Volkmer B, Henning S, Breitbart EW, Greulich KO, et al. 2012.. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. . Nucleic Acids Res. 40:(20):1026373
    [Crossref] [Google Scholar]
  35. Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. 2017.. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. . Cell 170:(4):77486.e19
    [Crossref] [Google Scholar]
  36. Helmrich A, Ballarino M, Tora L. 2011.. Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. . Mol. Cell 44:(6):96677
    [Crossref] [Google Scholar]
  37. Hoang ML, Tan FJ, Lai DC, Celniker SE, Hoskins RA, et al. 2010.. Competitive repair by naturally dispersed repetitive DNA during non-allelic homologous recombination. . PLOS Genet. 6:(12):e1001228
    [Crossref] [Google Scholar]
  38. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, et al. 2013.. The genomic landscape of hypodiploid acute lymphoblastic leukemia. . Nat. Genet. 45:(3):24252
    [Crossref] [Google Scholar]
  39. Holt IJ. 2022.. R-loops, methods and protocols. . Methods Mol. Biol. 2528::173202
    [Crossref] [Google Scholar]
  40. Hu J, Meyers RM, Dong J, Panchakshari RA, Alt FW, Frock RL. 2016.. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. . Nat. Protoc. 11:(5):85371
    [Crossref] [Google Scholar]
  41. Huber JA, Morrison HG, Huse SM, Neal PR, Sogin ML, Welch DBM. 2009.. Effect of PCR amplicon size on assessments of clone library microbial diversity and community structure. . Environ. Microbiol. 11:(5):1292302
    [Crossref] [Google Scholar]
  42. Irony-Tur Sinai M, Salamon A, Stanleigh N, Goldberg T, Weiss A, et al. 2019.. AT-dinucleotide rich sequences drive fragile site formation. . Nucleic Acids Res. 47:(18):968595
    [Crossref] [Google Scholar]
  43. Jones RM, Mortusewicz O, Afzal I, Lorvellec M, García P, et al. 2013.. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. . Oncogene 32:(32):374453
    [Crossref] [Google Scholar]
  44. Jung D, Giallourakis C, Mostoslavsky R, Alt FW. 2006.. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. . Annu. Rev. Immunol. 24::54170
    [Crossref] [Google Scholar]
  45. Kaushal S, Wollmuth CE, Das K, Hile SE, Regan SB, et al. 2019.. Sequence and nuclease requirements for breakage and healing of a structure-forming (AT)n sequence within fragile site FRA16D. . Cell Rep. 27:(4):115164.e5
    [Crossref] [Google Scholar]
  46. Klein IA, Resch W, Jankovic M, Oliveira T, Yamane A, et al. 2011.. Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. . Cell 147:(1):95106
    [Crossref] [Google Scholar]
  47. Kuhn GCS, Teo CH, Schwarzacher T, Heslop-Harrison JS. 2009.. Evolutionary dynamics and sites of illegitimate recombination revealed in the interspersion and sequence junctions of two nonhomologous satellite DNAs in cactophilic Drosophila species. . Heredity 102:(5):45364
    [Crossref] [Google Scholar]
  48. Laethem FV, Tikhonova AN, Singer A. 2012.. MHC restriction is imposed on a diverse T cell receptor repertoire by CD4 and CD8 co-receptors during thymic selection. . Trends Immunol. 33:(9):43741
    [Crossref] [Google Scholar]
  49. Lebedin M, Foglierini M, Khorkova S, García CV, Ratswohl C, et al. 2022.. Different classes of genomic inserts contribute to human antibody diversity. . PNAS 119:(36):e2205470119
    [Crossref] [Google Scholar]
  50. Lee DY, Clayton DA. 1998.. Initiation of mitochondrial DNA replication by transcription and R-loop processing. . J. Biol. Chem. 273:(46):3061421
    [Crossref] [Google Scholar]
  51. Letessier A, Millot GA, Koundrioukoff S, Lachagès A-M, Vogt N, et al. 2011.. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. . Nature 470:(7332):12023
    [Crossref] [Google Scholar]
  52. Li S, Wilkinson MF. 1998.. Nonsense surveillance in lymphocytes?. Immunity 8:(2):13541
    [Crossref] [Google Scholar]
  53. Linardopoulou EV, Williams EM, Fan Y, Friedman C, Young JM, Trask BJ. 2005.. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. . Nature 437:(7055):94100
    [Crossref] [Google Scholar]
  54. Liu M, Grigoriev A. 2004.. Protein domains correlate strongly with exons in multiple eukaryotic genomes – evidence of exon shuffling?. Trends Genet. 20:(9):399403
    [Crossref] [Google Scholar]
  55. Lukyanov KA, Launer GA, Tarabykin VS, Zaraisky AG, Lukyanov SA. 1995.. Inverted terminal repeats permit the average length of amplified DNA fragments to be regulated during preparation of cDNA libraries by polymerase chain reaction. . Anal. Biochem. 229:(2):198202
    [Crossref] [Google Scholar]
  56. Masukata H, Tomizawa J. 1990.. A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. . Cell 62:(2):33138
    [Crossref] [Google Scholar]
  57. Mazoyer S. 2005.. Genomic rearrangements in the BRCA1 and BRCA2 genes. . Hum. Mutat. 25:(5):41522
    [Crossref] [Google Scholar]
  58. Mehta A, Haber JE. 2014.. Sources of DNA double-strand breaks and models of recombinational DNA repair. . Cold Spring Harb. Perspect. Biol. 6:(9):a016428
    [Crossref] [Google Scholar]
  59. Mijušković M, Chou Y-F, Gigi V, Lindsay CR, Shestova O, et al. 2015.. Off-target V(D)J recombination drives lymphomagenesis and is escalated by loss of the Rag2 C terminus. . Cell Rep. 12:(11):184252
    [Crossref] [Google Scholar]
  60. Min J, Zhao J, Zagelbaum J, Lee J, Takahashi S, et al. 2023.. Mechanisms of insertions at a DNA double-strand break. . Mol. Cell 83:(14):243448.e7
    [Crossref] [Google Scholar]
  61. Mirkin EV, Mirkin SM. 2007.. Replication fork stalling at natural impediments. . Microbiol. Mol. Biol. Rev. 71:(1):1335
    [Crossref] [Google Scholar]
  62. Moran JV, DeBerardinis RJ, Kazazian HH Jr. 1999.. Exon shuffling by L1 retrotransposition. . Science 283:(5407):153034
    [Crossref] [Google Scholar]
  63. Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, et al. 2002.. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. . Nat. Genet. 31:(2):15965
    [Crossref] [Google Scholar]
  64. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, et al. 2008.. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. . Science 322:(5906):137780
    [Crossref] [Google Scholar]
  65. Murano I, Kuwano A, Kajii T. 1989.. Fibroblast-specific common fragile sites induced by aphidicolin. . Hum. Genet. 83:(1):4548
    [Crossref] [Google Scholar]
  66. Nicholson DJ. 2012.. The concept of mechanism in biology. . Stud. Hist. Philos. Sci. C 43:(1):15263
    [Google Scholar]
  67. Niehrs C, Luke B. 2020.. Regulatory R-loops as facilitators of gene expression and genome stability. . Nat. Rev. Mol. Cell Biol. 21:(3):16778
    [Crossref] [Google Scholar]
  68. Olsen RW, Ecklu-Mensah G, Bengtsson A, Ofori MF, Lusingu JPA, et al. 2018.. Natural and vaccine-induced acquisition of cross-reactive IgG-inhibiting ICAM-1-specific binding of a Plasmodium falciparum PfEMP1 subtype associated specifically with cerebral malaria. . Infect. Immun. 86:(4):e00622-17
    [Crossref] [Google Scholar]
  69. Onozawa M, Aplan PD. 2016.. Templated sequence insertion polymorphisms in the human genome. . Front. Chem. 4::43
    [Crossref] [Google Scholar]
  70. Onozawa M, Zhang Z, Kim YJ, Goldberg L, Varga T, et al. 2014.. Repair of DNA double-strand breaks by templated nucleotide sequence insertions derived from distant regions of the genome. . PNAS 111:(21):772934
    [Crossref] [Google Scholar]
  71. Palm W, de Lange T. 2008.. How shelterin protects mammalian telomeres. . Annu. Rev. Genet. 42::30134
    [Crossref] [Google Scholar]
  72. Papaemmanuil E, Rapado I, Li Y, Potter NE, Wedge DC, et al. 2014.. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. . Nat. Genet. 46:(2):11625
    [Crossref] [Google Scholar]
  73. Patthy L. 1999.. Genome evolution and the evolution of exon-shuffling—a review. . Gene 238:(1):10314
    [Crossref] [Google Scholar]
  74. Pavri R, Gazumyan A, Jankovic M, Virgilio MD, Klein I, et al. 2010.. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. . Cell 143:(1):12233
    [Crossref] [Google Scholar]
  75. Pieper K, Tan J, Piccoli L, Foglierini M, Barbieri S, et al. 2017.. Public antibodies to malaria antigens generated by two LAIR1 insertion modalities. . Nature 548:(7669):597601
    [Crossref] [Google Scholar]
  76. Prado F, Aguilera A. 2005.. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. . EMBO J. 24:(6):126776
    [Crossref] [Google Scholar]
  77. Ricchetti M, Fairhead C, Dujon B. 1999.. Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. . Nature 402:(6757):96100
    [Crossref] [Google Scholar]
  78. Ruiz JF, Gómez-González B, Aguilera A. 2011.. AID induces double-strand breaks at immunoglobulin switch regions and c-MYC causing chromosomal translocations in yeast THO mutants. . PLOS Genet. 7:(2):e1002009
    [Crossref] [Google Scholar]
  79. Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, et al. 2016.. Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. . Mol. Cell 63:(1):16778
    [Crossref] [Google Scholar]
  80. Schimmel J, van Schendel R, den Dunnen JT, Tijsterman M. 2019.. Templated insertions: a smoking gun for polymerase theta-mediated end joining. . Trends Genet. 35:(9):63244
    [Crossref] [Google Scholar]
  81. Singh KK, Choudhury AR, Tiwari HK. 2017.. Numtogenesis as a mechanism for development of cancer. . Semin. Cancer Biol. 47::1019
    [Crossref] [Google Scholar]
  82. Skourti-Stathaki K, Proudfoot NJ. 2014.. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. . Genes Dev. 28:(13):138496
    [Crossref] [Google Scholar]
  83. Skourti-Stathaki K, Proudfoot NJ, Gromak N. 2011.. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. . Mol. Cell 42:(6):794805
    [Crossref] [Google Scholar]
  84. Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA. 2014.. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. . Mol. Cell 56:(6):77785
    [Crossref] [Google Scholar]
  85. Storici F, Bebenek K, Kunkel TA, Gordenin DA, Resnick MA. 2007.. RNA-templated DNA repair. . Nature 447:(7142):33841
    [Crossref] [Google Scholar]
  86. Sugimoto N, Maehara K, Yoshida K, Ohkawa Y, Fujita M. 2018.. Genome-wide analysis of the spatiotemporal regulation of firing and dormant replication origins in human cells. . Nucleic Acids Res. 46:(13):668396
    [Crossref] [Google Scholar]
  87. Svilenov HL, Sacherl J, Protzer U, Zacharias M, Buchner J. 2021.. Mechanistic principles of an ultra-long bovine CDR reveal strategies for antibody design. . Nat. Commun. 12:(1):6737
    [Crossref] [Google Scholar]
  88. Syeda AH, Hawkins M, McGlynn P. 2014.. Recombination and replication. . Cold Spring Harb. Perspect. Biol. 6:(11):a016550
    [Crossref] [Google Scholar]
  89. Tan J, Piccoli L, Lanzavecchia A. 2018.. The antibody response to Plasmodium falciparum: cues for vaccine design and the discovery of receptor-based antibodies. . Annu. Rev. Immunol. 37::22546
    [Crossref] [Google Scholar]
  90. Tan J, Pieper K, Piccoli L, Abdi A, Foglierini M, et al. 2016.. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. . Nature 529:(7584):1059
    [Crossref] [Google Scholar]
  91. Teng S-C, Kim B, Gabriel A. 1996.. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. . Nature 383:(6601):64144
    [Crossref] [Google Scholar]
  92. Tinguely A, Chemin G, Péron S, Sirac C, Reynaud S, et al. 2012.. Cross talk between immunoglobulin heavy-chain transcription and RNA surveillance during B cell development. . Mol. Cell. Biol. 32:(1):10717
    [Crossref] [Google Scholar]
  93. Waanders E, Scheijen B, van der Meer LT, van Reijmersdal SV, van Emst L, et al. 2012.. The origin and nature of tightly clustered BTG1 deletions in precursor B-cell acute lymphoblastic leukemia support a model of multiclonal evolution. . PLOS Genet. 8:(2):e1002533
    [Crossref] [Google Scholar]
  94. Walter MA, Cox DW. 1991.. Nonuniform linkage disequilibrium within a 1,500-kb region of the human immunoglobulin heavy-chain complex. . Am. J. Hum. Genet. 49:(5):91731
    [Google Scholar]
  95. Wegrzyn JL, Lin BY, Zieve JJ, Dougherty WM, Martínez-García PJ, et al. 2013.. Insights into the loblolly pine genome: characterization of BAC and fosmid sequences. . PLOS ONE 8:(9):e72439
    [Crossref] [Google Scholar]
  96. Wells JN, Feschotte C. 2020.. A field guide to eukaryotic transposable elements. . Annu. Rev. Genet. 54::53961
    [Crossref] [Google Scholar]
  97. Wu J, Liu Y, Ou L, Gan T, Zhangding Z, et al. 2023.. Genome editing induces the transfer of mitochondrial DNA into the nuclear genome. . bioRxiv 2023.07.19.549443. https://doi.org/10.1101/2023.07.19.549443
  98. Yamane A, Resch W, Kuo N, Kuchen S, Li Z, et al. 2011.. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. . Nat. Immunol. 12:(1):6269
    [Crossref] [Google Scholar]
  99. Yang N, Chaudhry MA, Wallace SS. 2006.. Base excision repair by hNTH1 and hOGG1: a two edged sword in the processing of DNA damage in γ-irradiated human cells. . DNA Repair 5:(1):4351
    [Crossref] [Google Scholar]
  100. Yang N, Galick H, Wallace SS. 2004.. Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks. . DNA Repair 3:(10):132334
    [Crossref] [Google Scholar]
  101. Yang Y, McBride KM, Hensley S, Lu Y, Chedin F, Bedford MT. 2014.. Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. . Mol. Cell 53:(3):48497
    [Crossref] [Google Scholar]
  102. Yoda A, Yoda Y, Chiaretti S, Bar-Natan M, Mani K, et al. 2010.. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. . PNAS 107:(1):25257
    [Crossref] [Google Scholar]
  103. Yu K, Chedin F, Hsieh C-L, Wilson TE, Lieber MR. 2003.. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. . Nat. Immunol. 4:(5):44251
    [Crossref] [Google Scholar]
  104. Yu X, Gabriel A. 1999.. Patching broken chromosomes with extranuclear cellular DNA. . Mol. Cell 4:(5):87381
    [Crossref] [Google Scholar]
  105. Yu Y, Pham N, Xia B, Papusha A, Wang G, et al. 2018.. Dna2 nuclease deficiency results in large and complex DNA insertions at chromosomal breaks. . Nature 564:(7735):28790
    [Crossref] [Google Scholar]
  106. Zhang L, Reynolds TL, Shan X, Desiderio S. 2011.. Coupling of V(D)J recombination to the cell cycle suppresses genomic instability and lymphoid tumorigenesis. . Immunity 34:(2):16374
    [Crossref] [Google Scholar]
  107. Zhang M, Swanson PC. 2008.. V(D)J recombinase binding and cleavage of cryptic recombination signal sequences identified from lymphoid malignancies. . J. Biol. Chem. 283:(11):671727
    [Crossref] [Google Scholar]
  108. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, et al. 2017.. Massively parallel digital transcriptional profiling of single cells. . Nat. Commun. 8:(1):14049
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-112122-030835
Loading
/content/journals/10.1146/annurev-cellbio-112122-030835
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error