1932

Abstract

Neural stem cells (NSCs) persist in the adult mammalian brain and are able to give rise to new neurons and glia throughout life. The largest stem cell niche in the adult mouse brain is the ventricular-subventricular zone (V-SVZ) lining the lateral ventricles. Adult NSCs in the V-SVZ coexist in quiescent and actively proliferating states, and they exhibit a regionalized molecular identity. The importance of such spatial diversity is just emerging, as depending on their position within the niche, adult NSCs give rise to distinct subtypes of olfactory bulb interneurons and different types of glia. However, the functional relevance of stem cell heterogeneity in the V-SVZ is still poorly understood. Here, we put into perspective findings highlighting the importance of adult NSC diversity for brain plasticity, and how the body signals to brain stem cells in different physiological states to regulate their behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120320-040213
2024-10-02
2025-06-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-120320-040213.html?itemId=/content/journals/10.1146/annurev-cellbio-120320-040213&mimeType=html&fmt=ahah

Literature Cited

  1. Agoston Z, Heine P, Brill MS, Grebbin BM, Hau A-C, et al. 2014.. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. . Development 141:(1):2838
    [Crossref] [Google Scholar]
  2. Ahn S, Joyner AL. 2005.. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. . Nature 437:(7060):89497
    [Crossref] [Google Scholar]
  3. Alfonso J, Le Magueresse C, Zuccotti A, Khodosevich K, Monyer H. 2012.. Diazepam binding inhibitor promotes progenitor proliferation in the postnatal SVZ by reducing GABA signaling. . Cell Stem Cell 10:(1):7687
    [Crossref] [Google Scholar]
  4. Ammari R, Monaca F, Cao M, Nassar E, Wai P, et al. 2023.. Hormone-mediated neural remodeling orchestrates parenting onset during pregnancy. . Science 382:(6666):7681
    [Crossref] [Google Scholar]
  5. Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, et al. 2022.. Metabolic regulation of the neural stem cell fate: unraveling new connections, establishing new concepts. . Front. Neurosci. 16::1009125
    [Crossref] [Google Scholar]
  6. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. 2002.. Neuronal replacement from endogenous precursors in the adult brain after stroke. . Nat. Med. 8:(9):96370
    [Crossref] [Google Scholar]
  7. Arzate DM, Portillo W, Corona R, Paredes RG. 2013.. Repeated paced mating promotes the arrival of more newborn neurons in the main and accessory olfactory bulbs of adult female rats. . Neuroscience 232::15160
    [Crossref] [Google Scholar]
  8. Barba-Müller E, Craddock S, Carmona S, Hoekzema E. 2019.. Brain plasticity in pregnancy and the postpartum period: links to maternal caregiving and mental health. Archive Women's. Ment. Health 22:(2):28999
    [Google Scholar]
  9. Basak O, Krieger TG, Muraro MJ, Wiebrands K, Stange DE, et al. 2018.. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. . PNAS 115:(4):E61019
    [Crossref] [Google Scholar]
  10. Baser A, Skabkin M, Kleber S, Dang Y, Gülcüler Balta GS, et al. 2019.. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. . Nature 566:(7742):1004
    [Crossref] [Google Scholar]
  11. Batista-Brito R, Close J, Machold R, Fishell G. 2008.. The distinct temporal origins of olfactory bulb interneuron subtypes. . J. Neurosci. 28:(15):396675
    [Crossref] [Google Scholar]
  12. Baur K, Abdullah Y, Mandl C, Hölzl-Wenig G, Shi Y, et al. 2022.. A novel stem cell type at the basal side of the subventricular zone maintains adult neurogenesis. . EMBO Rep. 23:(9):e54078
    [Crossref] [Google Scholar]
  13. Belenguer G, Duart-Abadia P, Jordán-Pla A, Domingo-Muelas A, Blasco-Chamarro L, et al. 2021.. Adult neural stem cells are alerted by systemic inflammation through TNF-α receptor signaling. . Cell Stem Cell 28:(2):28599
    [Crossref] [Google Scholar]
  14. Benner EJ, Luciano D, Jo R, Abdi K, Paez-Gonzalez P, et al. 2013.. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. . Nature 497:(7449):36973
    [Crossref] [Google Scholar]
  15. Berg DA, Belnoue L, Song H, Simon A. 2013.. Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. . Development 140:(12):254861
    [Crossref] [Google Scholar]
  16. Blackmore DG, Golmohammadi MG, Large B, Waters MJ, Rietze RL. 2009.. Exercise increases neural stem cell number in a growth hormone-dependent manner, augmenting the regenerative response in aged mice. . Stem Cells 27:(8):204452
    [Crossref] [Google Scholar]
  17. Bonfanti L, Couillard-Després S. 2023.. Neuron and brain maturation 2.0. . Int. J. Mol. Sci. 24:(23):17113
    [Crossref] [Google Scholar]
  18. Bonfanti L, La Rosa C, Ghibaudi M, Sherwood CC. 2023.. Adult neurogenesis and “immature” neurons in mammals: an evolutionary trade-off in plasticity?. Brain Struct. Funct. https://doi.org/10.1007/s00429-023-02717-9
    [Google Scholar]
  19. Borrett MJ, Innes BT, Jeong D, Tahmasian N, Storer MA, et al. 2020.. Single-cell profiling shows murine forebrain neural stem cells reacquire a developmental state when activated for adult neurogenesis. . Cell Rep. 32:(6):108022
    [Crossref] [Google Scholar]
  20. Brill MS, Ninkovic J, Winpenny E, Hodge RD, Ozen I, et al. 2009.. Adult generation of glutamatergic olfactory bulb interneurons. . Nat. Neurosci. 12:(12):152433
    [Crossref] [Google Scholar]
  21. Brill MS, Snapyan M, Wohlfrom H, Ninkovic J, Jawerka M, et al. 2008.. A Dlx2- and Pax6-dependent transcriptional code for periglomerular neuron specification in the adult olfactory bulb. . J. Neurosci. 28:(25):643952
    [Crossref] [Google Scholar]
  22. Brunton PJ, Russell JA. 2008.. The expectant brain: adapting for motherhood. . Nat. Rev. Neurosci. 9:(1):1125
    [Crossref] [Google Scholar]
  23. Brus M, Trouillet AC, Hellier V, Bakker J. 2016.. Estradiol-induced neurogenesis in the female accessory olfactory bulb is required for the learning of the male odor. . J. Neurochem. 138:(3):45768
    [Crossref] [Google Scholar]
  24. Buckley MT, Sun ED, George BM, Liu L, Schaum N, et al. 2023.. Cell-type-specific aging clocks to quantify aging and rejuvenation in neurogenic regions of the brain. . Nat. Aging 3:(1):12137
    [Crossref] [Google Scholar]
  25. Calzolari F, Michel J, Baumgart EV, Theis F, Götz M, Ninkovic J. 2015.. Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. . Nat. Neurosci. 18:(4):49092
    [Crossref] [Google Scholar]
  26. Camargo Ortega G, Götz M. 2022.. Centrosome heterogeneity in stem cells regulates cell diversity. . Trends Cell Biol. 32:(8):70719
    [Crossref] [Google Scholar]
  27. Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo PM. 2003.. Becoming a new neuron in the adult olfactory bulb. . Nat. Neurosci. 6:(5):50718
    [Crossref] [Google Scholar]
  28. Cebrián-Silla A, Alfaro-Cervelló C, Herranz-Pérez V, Kaneko N, Park DH, et al. 2017.. Unique organization of the nuclear envelope in the post-natal quiescent neural stem cells. . Stem Cell Rep. 9:(1):20316
    [Crossref] [Google Scholar]
  29. Cebrián-Silla A, Nascimento MA, Redmond SA, Mansky B, Wu D, et al. 2021.. Single-cell analysis of the ventricular-subventricular zone reveals signatures of dorsal and ventral adult neurogenic lineages. . eLife 10::e67436
    [Crossref] [Google Scholar]
  30. Chaker Z, Codega P, Doetsch F. 2016.. A mosaic world: puzzles revealed by adult neural stem cell heterogeneity. . WIREs Dev. Biol. 5:(6):64058
    [Crossref] [Google Scholar]
  31. Chaker Z, Segalada C, Kretz JA, Acar IE, Delgado AC, et al. 2023.. Pregnancy-responsive pools of adult neural stem cells for transient neurogenesis in mothers. . Science 382:(6673):95863
    [Crossref] [Google Scholar]
  32. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto A, DeLeo AM, et al. 2014.. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. . Neuron 82:(3):54559
    [Crossref] [Google Scholar]
  33. Corona R, Larriva-Sahd J, Paredes RG. 2011.. Paced-mating increases the number of adult new born cells in the internal cellular (granular) layer of the accessory olfactory bulb. . PLOS ONE 6:(5):e19380
    [Crossref] [Google Scholar]
  34. Corona R, Retana-Márquez S, Portillo W, Paredes RG. 2016.. Sexual behavior increases cell proliferation in the rostral migratory stream and promotes the differentiation of the new cells into neurons in the accessory olfactory bulb of female rats. . Front. Neurosci. 10::48
    [Crossref] [Google Scholar]
  35. Crouch EE, Liu C, Silva-Vargas V, Doetsch F. 2015.. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. . J. Neurosci. 35:(11):452839
    [Crossref] [Google Scholar]
  36. Daynac M, Chicheportiche A, Pineda JR, Gauthier LR, Boussin FD, Mouthon M-A. 2013.. Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. . Stem Cell Res. 11:(1):51628
    [Crossref] [Google Scholar]
  37. Delgado AC, Maldonado-Soto AR, Silva-Vargas V, Mizrak D, Von Känel T, et al. 2021.. Release of stem cells from quiescence reveals gliogenic domains in the adult mouse brain. . Science 372:(6547):12059
    [Crossref] [Google Scholar]
  38. Delgado RN, Lim DA. 2015.. Embryonic Nkx2.1-expressing neural precursor cells contribute to the regional heterogeneity of adult V-SVZ neural stem cells. . Dev. Biol. 407:(2):26574
    [Crossref] [Google Scholar]
  39. Delgado RN, Mansky B, Ahanger SH, Lu C, Andersen RE, et al. 2020.. Maintenance of neural stem cell positional identity by mixed-lineage leukemia 1. . Science 368:(6486):4853
    [Crossref] [Google Scholar]
  40. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. 1999a.. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. . Cell 97:(6):70316
    [Crossref] [Google Scholar]
  41. Doetsch F, García-Verdugo JM, Alvarez-Buylla A. 1997.. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. . J. Neurosci. 17:(13):504661
    [Crossref] [Google Scholar]
  42. Doetsch F, García-Verdugo JM, Alvarez-Buylla A. 1999b.. Regeneration of a germinal layer in the adult mammalian brain. . PNAS 96:(20):1161924
    [Crossref] [Google Scholar]
  43. Domingo-Muelas A, Duart-Abadia P, Morante-Redolat JM, Jordán-Pla A, Belenguer G, et al. 2023.. Post-transcriptional control of a stemness signature by RNA-binding protein MEX3A regulates murine adult neurogenesis. . Nat. Commun. 14::373
    [Crossref] [Google Scholar]
  44. Donega V, van der Geest AT, Sluijs JA, van Dijk RE, Wang CC, et al. 2022.. Single-cell profiling of human subventricular zone progenitors identifies SFRP1 as a target to re-activate progenitors. . Nat. Commun. 13::1036
    [Crossref] [Google Scholar]
  45. Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R, et al. 2019.. Single-cell analysis reveals T cell infiltration in old neurogenic niches. . Nature 571:(7764):20510
    [Crossref] [Google Scholar]
  46. Dulken BW, Leeman DS, Boutet SC, Hebestreit K, Brunet A. 2017.. Single-cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. . Cell Rep. 18:(3):77790
    [Crossref] [Google Scholar]
  47. Dumitru I, Neitz A, Alfonso J, Monyer H. 2017.. Diazepam binding inhibitor promotes stem cell expansion controlling environment-dependent neurogenesis. . Neuron 94:(1):12537.e5
    [Crossref] [Google Scholar]
  48. Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, et al. 2014.. Neurogenesis in the striatum of the adult human brain. . Cell 156:(5):107283
    [Crossref] [Google Scholar]
  49. Faiz M, Sachewsky N, Gascón S, Bang KWA, Morshead CM, Nagy A. 2015.. Adult neural stem cells from the subventricular zone give rise to reactive astrocytes in the cortex after stroke. . Cell Stem Cell 17:(5):62434
    [Crossref] [Google Scholar]
  50. Fame RM, Kalugin PN, Petrova B, Xu H, Soden PA, et al. 2023.. Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution. . Nat. Commun. 14:(1):3720
    [Crossref] [Google Scholar]
  51. Favaloro F, DeLeo AM, Delgado AC, Doetsch F. 2022.. miR-17∼92 exerts stage-specific effects in adult V-SVZ neural stem cell lineages. . Cell Rep. 41:(10):111773
    [Crossref] [Google Scholar]
  52. Feierstein CE, Lazarini F, Wagner S, Gabellec MM, de Chaumont F, et al. 2010.. Disruption of adult neurogenesis in the olfactory bulb affects social interaction but not maternal behavior. . Front. Behav. Neurosci. 4::176
    [Crossref] [Google Scholar]
  53. Fernando RN, Eleuteri B, Abdelhady S, Nussenzweig A, Andäng M, Ernfors P. 2011.. Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. . PNAS 108:(14):583742
    [Crossref] [Google Scholar]
  54. Figueres-Oñate M, Sánchez-Villalón M, Sánchez-González R, López-Mascaraque L. 2019.. Lineage tracing and cell potential of postnatal single progenitor cells in vivo. . Stem Cell Rep. 13:(4):70012
    [Crossref] [Google Scholar]
  55. Fiorelli R, Azim K, Fischer B, Raineteau O. 2015.. Adding a spatial dimension to postnatal ventricular-subventricular zone neurogenesis. . Development 142:(12):210920
    [Crossref] [Google Scholar]
  56. Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, et al. 2015.. Embryonic origin of postnatal neural stem cells. . Cell 161:(7):164455
    [Crossref] [Google Scholar]
  57. Furutachi S, Miya H, Watanabe T, Kawai H, Yamasaki N, et al. 2015.. Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. . Nat. Neurosci. 18:(5):65765
    [Crossref] [Google Scholar]
  58. García-González D, Dumitru I, Zuccotti A, Yen TY, Herranz-Pérez V, et al. 2021.. Neurogenesis of medium spiny neurons in the nucleus accumbens continues into adulthood and is enhanced by pathological pain. . Mol. Psychiatry 26:(9):461632
    [Crossref] [Google Scholar]
  59. Gengatharan A, Malvaut S, Marymonchyk A, Ghareghani M, Snapyan M, et al. 2021.. Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. . Cell 184:(3):70922.e13
    [Crossref] [Google Scholar]
  60. Giachino C, Basak O, Lugert S, Knuckles P, Obernier K, et al. 2014.. Molecular diversity subdivides the adult forebrain neural stem cell population. . Stem Cells 32:(1):7084
    [Crossref] [Google Scholar]
  61. Gonzales KAU, Polak L, Matos I, Tierney MT, Gola A, et al. 2021.. Stem cells expand potency and alter tissue fitness by accumulating diverse epigenetic memories. . Science 374:(6571):eabh2444
    [Crossref] [Google Scholar]
  62. Hack MA, Saghatelyan A, De Chevigny A, Pfeifer A, Ashery-Padan R, et al. 2005.. Neuronal fate determinants of adult olfactory bulb neurogenesis. . Nat. Neurosci. 8:(7):86572
    [Crossref] [Google Scholar]
  63. Hillerer KM, Jacobs VR, Fischer T, Aigner L. 2014.. The maternal brain: an organ with peripartal plasticity. . Neural Plast. 2014::574159
    [Crossref] [Google Scholar]
  64. Hoekzema E, Barba-Müller E, Pozzobon C, Picado M, Lucco F, et al. 2017.. Pregnancy leads to long-lasting changes in human brain structure. . Nat. Neurosci. 20:(2):28796
    [Crossref] [Google Scholar]
  65. Höglinger GU, Arias-Carrión O, Ipach B, Oertel WH. 2014.. Origin of the dopaminergic innervation of adult neurogenic areas. . J. Comp. Neurol. 522:(10):233648
    [Crossref] [Google Scholar]
  66. Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, et al. 2004.. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. . Nat. Neurosci. 7:(7):72635
    [Crossref] [Google Scholar]
  67. Hoshooley JS, Phillmore LS, Sherry DF, MacDougall-Shackleton SA. 2007.. Annual cycle of the black-capped chickadee: seasonality of food-storing and the hippocampus. . Brain Behav. Evol. 69:(3):16168
    [Crossref] [Google Scholar]
  68. Ihrie RA, Shah JK, Harwell CC, Levine JH, Guinto CD, et al. 2011.. Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. . Neuron 71:(2):25062
    [Crossref] [Google Scholar]
  69. Jackson BT, Finley LWS. 2024.. Metabolic regulation of the hallmarks of stem cell biology. . Cell Stem Cell 31:(2):16180
    [Crossref] [Google Scholar]
  70. Johnson AC. 2020.. Physiology of the cerebrovascular adaptation to pregnancy. . Handb. Clin. Neurol. 171::8596
    [Crossref] [Google Scholar]
  71. Jurkowski MP, Bettio L, Woo EK, Patten A, Yau S-Y, Gil-Mohapel J. 2020.. Beyond the hippocampus and the SVZ: adult neurogenesis throughout the brain. . Front. Cell. Neurosci. 14::576444
    [Crossref] [Google Scholar]
  72. Kalamakis G, Brüne D, Ravichandran S, Bolz J, Fan W, et al. 2019.. Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. . Cell 176:(6):140719.e14
    [Crossref] [Google Scholar]
  73. Kalinina A, Lagace D. 2022.. Single-cell and single-nucleus RNAseq analysis of adult neurogenesis. . Cells 11:(10):1633
    [Crossref] [Google Scholar]
  74. Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, et al. 2014.. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. . Science 344:(6184):63034
    [Crossref] [Google Scholar]
  75. Kempermann G. 2016.. Adult neurogenesis: an evolutionary perspective. . Cold Spring Harb. Perspect. Biol. 8:(2):a018986
    [Crossref] [Google Scholar]
  76. Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, et al. 2018.. Human adult neurogenesis: evidence and remaining questions. . Cell Stem Cell 23:(1):2530
    [Crossref] [Google Scholar]
  77. Khatri P, Obernier K, Simeonova IK, Hellwig A, Hölzl-Wenig G, et al. 2014.. Proliferation and cilia dynamics in neural stem cells prospectively isolated from the SEZ. . Sci. Rep. 4::3803
    [Crossref] [Google Scholar]
  78. Kobayashi T, Kageyama R. 2021.. Lysosomes and signaling pathways for maintenance of quiescence in adult neural stem cells. . FEBS J. 288:(10):308293
    [Crossref] [Google Scholar]
  79. Kohwi M, Osumi N, Rubenstein J, Alvarez-Buylla A. 2005.. Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. . J. Neurosci. 25:(30):69977003
    [Crossref] [Google Scholar]
  80. Kohwi M, Petryniak MA, Long JE, Ekker M, Obata K, et al. 2007.. A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. . J. Neurosci. 27:(26):687891
    [Crossref] [Google Scholar]
  81. Labusch M, Mancini L, Morizet D, Bally-Cuif L. 2020.. Conserved and divergent features of adult neurogenesis in zebrafish. . Front. Cell Dev. Biol. 8::525
    [Crossref] [Google Scholar]
  82. Larsen CM, Grattan DR. 2010.. Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. . Endocrinology 151:(8):380514
    [Crossref] [Google Scholar]
  83. Leeman DS, Hebestreit K, Ruetz T, Webb AE, McKay A, et al. 2018.. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. . Science 359:(6381):127783
    [Crossref] [Google Scholar]
  84. Lennington JB, Pope S, Goodheart AE, Drozdowicz L, Daniels SB, et al. 2011.. Midbrain dopamine neurons associated with reward processing innervate the neurogenic subventricular zone. . J. Neurosci. 31:(37):1307887
    [Crossref] [Google Scholar]
  85. León-Espinosa G, García E, Gómez-Pinedo U, Hernández F, DeFelipe J, Ávila J. 2016.. Decreased adult neurogenesis in hibernating Syrian hamster. . Neuroscience 333::18192
    [Crossref] [Google Scholar]
  86. Lepko T, Pusch M, Müller T, Schulte D, Ehses J, et al. 2019.. Choroid plexus-derived miR-204 regulates the number of quiescent neural stem cells in the adult brain. . EMBO J. 38:(17):e100481
    [Crossref] [Google Scholar]
  87. Li YN, Hu DD, Cai XL, Wang Y, Yang C, et al. 2023.. Doublecortin-expressing neurons in human cerebral cortex layer II and amygdala from infancy to 100 years old. . Mol. Neurobiol. 60:(6):346485
    [Crossref] [Google Scholar]
  88. Lim AI, McFadden T, Link VM, Han SJ, Karlsson RM, et al. 2021.. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. . Science 373:(6558):eabf3002
    [Crossref] [Google Scholar]
  89. Liu X, Wang Q, Haydar TF, Bordey A. 2005.. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. . Nat. Neurosci. 8:(9):117987
    [Crossref] [Google Scholar]
  90. Lledo PM, Merkle FT, Alvarez-Buylla A. 2008.. Origin and function of olfactory bulb interneuron diversity. . Trends Neurosci. 31:(8):392400
    [Crossref] [Google Scholar]
  91. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. 2015.. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. . Cell Stem Cell 17:(3):32940
    [Crossref] [Google Scholar]
  92. Lopez-Juarez A, Howard J, Ullom K, Howard L, Grande A, et al. 2013.. Gsx2 controls region-specific activation of neural stem cells and injury-induced neurogenesis in the adult subventricular zone. . Genes Dev. 27:(11):127287
    [Crossref] [Google Scholar]
  93. Lucassen PJ, Toni N, Kempermann G, Frisen J, Gage FH, Swaab DF. 2020.. Limits to human neurogenesis—really?. Mol. Psychiatry 25:(10):22079
    [Crossref] [Google Scholar]
  94. Mak GK, Enwere EK, Gregg C, Pakarainen T, Poutanen M, et al. 2007.. Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. . Nat. Neurosci. 10:(8):100311
    [Crossref] [Google Scholar]
  95. Mana MD, Kuo EYS, Yilmaz ÖH. 2017.. Dietary regulation of adult stem cells. . Curr. Stem Cell Rep. 3:(1):18
    [Crossref] [Google Scholar]
  96. Marcy G, Foucault L, Babina E, Capeliez T, Texeraud E, et al. 2023.. Single-cell analysis of the postnatal dorsal V-SVZ reveals a role for Bmpr1a signaling in silencing pallial germinal activity. . Sci. Adv. 9:(18):eabq7553
    [Crossref] [Google Scholar]
  97. Marcy G, Raineteau O. 2019.. Contributions of single-cell approaches for probing heterogeneity and dynamics of neural progenitors throughout life: concise review. . Stem Cells 37:(11):138188
    [Crossref] [Google Scholar]
  98. Marques F, Sousa JC. 2015.. The choroid plexus is modulated by various peripheral stimuli: implications to diseases of the central nervous system. . Front. Cell. Neurosci. 9::136
    [Crossref] [Google Scholar]
  99. Marti-Fabregas J, Romaguera-Ros M, Gomez-Pinedo U, Martinez-Ramirez S, Jimenez-Xarrie E, et al. 2010.. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. . Neurology 74:(5):35765
    [Crossref] [Google Scholar]
  100. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. 2006.. Origin of oligodendrocytes in the subventricular zone of the adult brain. . J. Neurosci. 26:(30):790718
    [Crossref] [Google Scholar]
  101. Mercier F. 2016.. Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. . Cell. Mol. Life Sci. 73:(24):466174
    [Crossref] [Google Scholar]
  102. Merkle FT, Fuentealba LC, Sanders TA, Magno L, Kessaris N, Alvarez-Buylla A. 2014.. Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. . Nat. Neurosci. 17:(2):20714
    [Crossref] [Google Scholar]
  103. Merkle FT, Mirzadeh Z, Alvarez-Buylla A. 2007.. Mosaic organization of neural stem cells in the adult brain. . Science 317:(5836):38184
    [Crossref] [Google Scholar]
  104. Mich JK, Signer RAJ, Nakada D, Pineda A, Burgess RJ, et al. 2014.. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. . eLife 3::e02669
    [Crossref] [Google Scholar]
  105. Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A. 2008.. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. . Cell Stem Cell 3:(3):26578
    [Crossref] [Google Scholar]
  106. Mizrak D, Bayin NS, Yuan J, Liu Z, Suciu RM, et al. 2020.. Single-cell profiling and SCOPE-seq reveal lineage dynamics of adult ventricular-subventricular zone neurogenesis and NOTUM as a key regulator. . Cell Rep. 31:(12):107805
    [Crossref] [Google Scholar]
  107. Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, et al. 2019.. Single-cell analysis of regional differences in adult V-SVZ neural stem cell lineages. . Cell Rep. 26:(2):394406.e5
    [Crossref] [Google Scholar]
  108. Moore DL, Pilz GA, Araúzo-Bravo MJ, Barral Y, Jessberger S. 2015.. A mechanism for the segregation of age in mammalian neural stem cells. . Science 349:(6254):133438
    [Crossref] [Google Scholar]
  109. Mucignat-Caretta C, Redaelli M, Caretta A. 2012.. One nose, one brain: contribution of the main and accessory olfactory system to chemosensation. . Front. Neuroanat. 6::46
    [Crossref] [Google Scholar]
  110. Naffaa MM, Khan RR, Kuo CT, Yin HH. 2023.. Cortical regulation of neurogenesis and cell proliferation in the ventral subventricular zone. . Cell Rep. 42:(7):112783
    [Crossref] [Google Scholar]
  111. Nagayama S, Homma R, Imamura F. 2014.. Neuronal organization of olfactory bulb circuits. . Front. Neural Circuits 8::98
    [Crossref] [Google Scholar]
  112. Naik S, Fuchs E. 2022.. Inflammatory memory and tissue adaptation in sickness and in health. . Nature 607:(7918):24955
    [Crossref] [Google Scholar]
  113. Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Baron-Van Evercooren A. 1999.. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. . Eur. J. Neurosci. 11:(12):435766
    [Crossref] [Google Scholar]
  114. Nascimento MA, Biagiotti S, Herranz-Pérez V, Santiago S, Bueno R, et al. 2023.. Protracted neuronal recruitment in the temporal lobe of young children. . Nature 626::105665
    [Crossref] [Google Scholar]
  115. Navarro Negredo P, Yeo RW, Brunet A. 2020.. Aging and rejuvenation of neural stem cells and their niches. . Cell Stem Cell 27:(2):20223
    [Crossref] [Google Scholar]
  116. Nguyen PD, Gurevich DB, Sonntag C, Hersey L, Alaei S, et al. 2017.. Muscle stem cells undergo extensive clonal drift during tissue growth via Meox1-mediated induction of G2 cell-cycle arrest. . Cell Stem Cell 21:(1):10719.e6
    [Crossref] [Google Scholar]
  117. Nottebohm F. 2004.. The road we travelled: discovery, choreography, and significance of brain replaceable neurons. . Ann. N. Y. Acad. Sci. 1016::62858
    [Crossref] [Google Scholar]
  118. Obernier K, Alvarez-Buylla A. 2019.. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. . Development 146:(4):dev156059
    [Crossref] [Google Scholar]
  119. Obernier K, Cebrián-Silla A, Thomson M, Parraguez JI, Anderson R, et al. 2018.. Adult neurogenesis is sustained by symmetric self-renewal and differentiation. . Cell Stem Cell 22:(2):22134.e8
    [Crossref] [Google Scholar]
  120. Oboti L, Schellino R, Giachino C, Chamero P, Pyrski M, et al. 2011.. Newborn interneurons in the accessory olfactory bulb promote mate recognition in female mice. . Front. Neurosci. 5::113
    [Crossref] [Google Scholar]
  121. Ortega F, Gascón S, Masserdotti G, Deshpande A, Simon C, et al. 2013.. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signalling. . Nat. Cell Biol. 15:(6):60213
    [Crossref] [Google Scholar]
  122. Otsuki L, Brand AH. 2018.. Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. . Science 360:(6384):99102
    [Crossref] [Google Scholar]
  123. Otsuki L, Brand AH. 2019.. Dorsal-ventral differences in neural stem cell quiescence are induced by p57KIP2/Dacapo. . Dev. Cell 49:(2):293300.e3
    [Crossref] [Google Scholar]
  124. Ottone C, Parrinello S. 2015.. Multifaceted control of adult SVZ neurogenesis by the vascular niche. . Cell Cycle 14:(14):222225
    [Crossref] [Google Scholar]
  125. Paez-Gonzalez P, Asrican B, Rodriguez E, Kuo T. 2014.. Identification of distinct ChAT+ neurons and activity-dependent control of postnatal SVZ neurogenesis. . Nat. Neurosci. 17:(7):93442
    [Crossref] [Google Scholar]
  126. Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, et al. 2016a.. Extensive migration of young neurons into the infant human frontal lobe. . Science 354:(6308):aaf7073
    [Crossref] [Google Scholar]
  127. Paredes MF, Sorrells SF, Cebrián-Silla A, Sandoval K, Qi D, et al. 2018.. Does adult neurogenesis persist in the human hippocampus?. Cell Stem Cell 23:(6):78081
    [Crossref] [Google Scholar]
  128. Paredes MF, Sorrells SF, Garcia-Verdugo JM, Alvarez-Buylla A. 2016b.. Brain size and limits to adult neurogenesis. . J. Comp. Neurol. 524:(3):64664
    [Crossref] [Google Scholar]
  129. Pastrana E, Cheng L-C, Doetsch F. 2009.. Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. . PNAS 106:(15):638792
    [Crossref] [Google Scholar]
  130. Paternina-Die M, Martínez-García M, Soler A, Desco M, Carmona S. 2024.. Women's neuroplasticity during gestation, childbirth, and postpartum. . Nat. Neurosci. 27:(2):31927
    [Crossref] [Google Scholar]
  131. Paul A, Chaker Z, Doetsch F. 2017.. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. . Science 356:(6345):138386
    [Crossref] [Google Scholar]
  132. Petreanu L, Alvarez-Buylla A. 2002.. Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. . J. Neurosci. 22:(14):610613
    [Crossref] [Google Scholar]
  133. Petrik D, Myoga MH, Grade S, Gerkau NJ, Pusch M, et al. 2018.. Epithelial sodium channel regulates adult neural stem cell proliferation in a flow-dependent manner. . Cell Stem Cell 22:(6):86578.e8
    [Crossref] [Google Scholar]
  134. Pilz GA, Bottes S, Betizeau M, Jörg DJ, Carta S, et al. 2018.. Live imaging of neurogenesis in the adult mouse hippocampus. . Science 359:(6376):65862
    [Crossref] [Google Scholar]
  135. Platel JC, Angelova A, Bugeon S, Wallace J, Ganay T, et al. 2019.. Neuronal integration in the adult mouse olfactory bulb is a non-selective addition process. . eLife 8::e44830
    [Crossref] [Google Scholar]
  136. Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A. 2013.. Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. . PNAS 110:(11):E104554
    [Crossref] [Google Scholar]
  137. Portillo W, Ortiz G, Paredes RG. 2020.. Repeated paced mating increases the survival of new neurons in the accessory olfactory bulb. . Front. Neurosci. 14::249
    [Crossref] [Google Scholar]
  138. Puvogel S, Alsema A, North HF, Webster MJ, Weickert CS, Eggen BJL. 2024.. Single-nucleus RNA-seq characterizes the cell types along the neuronal lineage in the adult human subependymal zone and reveals reduced oligodendrocyte progenitor abundance with age. . eNeuro 11:(3):ENEURO.0246-23.2024
    [Crossref] [Google Scholar]
  139. Quaresima S, Istiaq A, Jono H, Cacci E, Ohta K, Lupo G. 2022.. Assessing the role of ependymal and vascular cells as sources of extracellular cues regulating the mouse ventricular-subventricular zone neurogenic niche. . Front. Cell Dev. Biol. 10::845567
    [Crossref] [Google Scholar]
  140. Radecki DZ, Samanta J. 2022.. Endogenous neural stem cell mediated oligodendrogenesis in the adult mammalian brain. . Cells 11:(13):2101
    [Crossref] [Google Scholar]
  141. Rahman AA, Amruta N, Pinteaux E, Bix GJ. 2021.. Neurogenesis after stroke: a therapeutic perspective. . Transl. Stroke Res. 12:(1):114
    [Crossref] [Google Scholar]
  142. Rehman J. 2010.. Empowering self-renewal and differentiation: the role of mitochondria in stem cells. . J. Mol. Med. 88:(10):98186
    [Crossref] [Google Scholar]
  143. Ribeiro Xavier AL, Kress BT, Goldman SA, De Lacerda Menezes JR, Nedergaard M. 2015.. A distinct population of microglia supports adult neurogenesis in the subventricular zone. . J. Neurosci. 35:(34):1184861
    [Crossref] [Google Scholar]
  144. Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, et al. 2014.. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. . Nature 509:(7505):39396
    [Crossref] [Google Scholar]
  145. Roeder SS, Burkardt P, Rost F, Rode J, Brusch L, et al. 2022.. Evidence for postnatal neurogenesis in the human amygdala. . Commun. Biol. 5:(1):366
    [Crossref] [Google Scholar]
  146. Sachewsky N, Leeder R, Xu W, Rose KL, Yu F, et al. 2014.. Primitive neural stem cells in the adult mammalian brain give rise to GFAP-expressing neural stem cells. . Stem Cell Rep. 2:(6):81024
    [Crossref] [Google Scholar]
  147. Sakamoto M, Ieki N, Miyoshi G, Mochimaru D, Miyachi H, et al. 2014.. Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. . J. Neurosci. 34:(17):578899
    [Crossref] [Google Scholar]
  148. Sakamoto M, Imayoshi I, Ohtsuka T, Yamaguchi M, Mori K, Kageyama R. 2011.. Continuous neurogenesis in the adult forebrain is required for innate olfactory responses. . PNAS 108:(20):847984
    [Crossref] [Google Scholar]
  149. Samanta J, Grund EM, Silva HM, Lafaille JJ, Fishell G, Salzer JL. 2015.. Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. . Nature 526::44853
    [Crossref] [Google Scholar]
  150. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, et al. 2011.. Corridors of migrating neurons in the human brain and their decline during infancy. . Nature 478:(7369):38286
    [Crossref] [Google Scholar]
  151. Sanai N, Tramontin AD, Quiñones-Hinojosa A, Barbaro NM, Gupta N, et al. 2004.. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. . Nature 427:(6976):74044
    [Crossref] [Google Scholar]
  152. Sato Y, Kiyozumi D, Futaki S, Nakano I, Shimono C, et al. 2019.. Ventricular-subventricular zone fractones are speckled basement membranes that function as a neural stem cell niche. . Mol. Biol. Cell 30:(1):5668
    [Crossref] [Google Scholar]
  153. Scandella V, Petrelli F, Moore DL, Braun SMG, Knobloch M. 2023.. Neural stem cell metabolism revisited: a critical role for mitochondria. . Trends Endocrinol. Metabol. 34:(8):44661
    [Crossref] [Google Scholar]
  154. Sequerra EB, Costa MR, Menezes JRL, Hedin-Pereira C. 2013.. Adult neural stem cells: plastic or restricted neuronal fates?. Development 140:(16):33039
    [Crossref] [Google Scholar]
  155. Shen Q, Wang Y, Kokovay E, Lin G, Chuang S, et al. 2008.. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. . Cell Stem Cell 3:(3):289300
    [Crossref] [Google Scholar]
  156. Shingo T, Gregg C, Enwere E, Fujikawa H, Hassam R, et al. 2003.. Pregnancy-stimulated neurogenesis in the adult female forebrain mediated by prolactin. . Science 299:(5603):11720
    [Crossref] [Google Scholar]
  157. Shook BA, Manz DH, Peters JJ, Kang S, Conover JC. 2012.. Spatiotemporal changes to the subventricular zone stem cell pool through aging. . J. Neurosci. 32:(20):694756
    [Crossref] [Google Scholar]
  158. Silva-Vargas V, Maldonado-Soto AR, Mizrak D, Codega P, Doetsch F. 2016.. Age-dependent niche signals from the choroid plexus regulate adult neural stem cells. . Cell Stem Cell 19:(5):64352
    [Crossref] [Google Scholar]
  159. Sirerol-Piquer MS, Belenguer G, Morante-Redolat JM, Duart-Abadia P, Perez-Villalba A, Fariñas I. 2019.. Physiological interactions between microglia and neural stem cells in the adult subependymal niche. . Neuroscience 1:(405):7791
    [Crossref] [Google Scholar]
  160. Sohn J, Orosco L, Guo F, Chung SH, Bannerman P, et al. 2015.. The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. . J. Neurosci. 35::375663
    [Crossref] [Google Scholar]
  161. Sorrells SF, Paredes MF, Velmeshev D, Herranz-Pérez V, Sandoval K, et al. 2019.. Immature excitatory neurons develop during adolescence in the human amygdala. . Nat. Commun. 10:(1):2748
    [Crossref] [Google Scholar]
  162. Sun B, Wang M, Hoerder-Suabedissen A, Xu C, Packer AM, Szele FG. 2022.. Intravital imaging of the murine subventricular zone with three photon microscopy. . Cereb. Cortex 32:(14):305767
    [Crossref] [Google Scholar]
  163. Tavazoie M, Van der Veken L, Silva-Vargas V, Louissaint M, Colonna L, et al. 2008.. A specialized vascular niche for adult neural stem cells. . Cell Stem Cell 3:(3):27988
    [Crossref] [Google Scholar]
  164. Tepe B, Hill MC, Pekarek BT, Hunt PJ, Martin TJ, et al. 2018.. Single-cell RNA-seq of mouse olfactory bulb reveals cellular heterogeneity and activity-dependent molecular census of adult-born neurons. . Cell Rep. 25:(10):2689703.e3
    [Crossref] [Google Scholar]
  165. Tome-Garcia J, Tejero R, Nudelman G, Yong RL, Sebra R, et al. 2017.. Prospective isolation and comparison of human germinal matrix and glioblastoma EGFR+ populations with stem cell properties. . Stem Cell Rep. 8:(5):142129
    [Crossref] [Google Scholar]
  166. Tong CK, Chen J, Cebrián-Silla A, Mirzadeh Z, Obernier K, et al. 2014.. Axonal control of the adult neural stem cell niche. . Cell Stem Cell 14:(4):50011
    [Crossref] [Google Scholar]
  167. Tong CK, Fuentealba LC, Shah JK, Lindquist RA, Ihrie RA, et al. 2015.. A dorsal SHH-dependent domain in the V-SVZ produces large numbers of oligodendroglial lineage cells in the postnatal brain. . Stem Cell Rep. 5:(4):46170
    [Crossref] [Google Scholar]
  168. Tosoni G, Ayyildiz D, Bryois J, Macnair W, Fitzsimons CP, et al. 2023.. Mapping human adult hippocampal neurogenesis with single-cell transcriptomics: reconciling controversy or fueling the debate?. Neuron 111:(11):171431.e3
    [Crossref] [Google Scholar]
  169. Tregub PP, Averchuk AS, Baranich TI, Ryazanova MV, Salmina AB. 2022.. Physiological and pathological remodeling of cerebral microvessels. . Int. J. Mol. Sci. 23:(20):12683
    [Crossref] [Google Scholar]
  170. Tufo C, Poopalasundaram S, Dorrego-Rivas A, Ford MC, Graham A, Grubb MS. 2022.. Development of the mammalian main olfactory bulb. . Development 149:(3):dev200210
    [Crossref] [Google Scholar]
  171. Unda NM, Portillo W, Corona R, Paredes RG. 2016.. Sexual stimulation increases the survival of new cells in the accessory olfactory bulb of the male rat. . Front. Neurosci. 10::65
    [Crossref] [Google Scholar]
  172. Urbán N, Blomfield IM, Guillemot F. 2019.. Quiescence of adult mammalian neural stem cells: a highly regulated rest. . Neuron 104:(5):83448
    [Crossref] [Google Scholar]
  173. van Velthoven CTJ, Rando TA. 2019.. Stem cell quiescence: dynamism, restraint, and cellular idling. . Cell Stem Cell 24:(2):21325
    [Crossref] [Google Scholar]
  174. Vancamp P, Gothié JD, Luongo C, Sébillot A, Le Blay K, et al. 2019.. Gender-specific effects of transthyretin on neural stem cell fate in the subventricular zone of the adult mouse. . Sci. Rep. 9:(1):19689
    [Crossref] [Google Scholar]
  175. Williamson MR, Le SP, Franzen RL, Donlan NA, Rosow JL, et al. 2023.. Subventricular zone cytogenesis provides trophic support for neural repair in a mouse model of stroke. . Nat. Commun. 14:(1):6341
    [Crossref] [Google Scholar]
  176. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG. 2002.. Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. . Eur. J. Neurosci. 16:(9):168189
    [Crossref] [Google Scholar]
  177. Winpenny E, Lebel-Potter M, Fernandez ME, Brill MS, Götz M, et al. 2011.. Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells. . Neural Dev. 6:(1):12
    [Crossref] [Google Scholar]
  178. Wu Y, Bottes S, Fisch R, Zehnder C, Cole JD, et al. 2023.. Chronic in vivo imaging defines age-dependent alterations of neurogenesis in the mouse hippocampus. . Nat. Aging 3:(4):38090
    [Crossref] [Google Scholar]
  179. Young KM, Fogarty M, Kessaris N, Richardson WD. 2007.. Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. . J. Neurosci. 27:(31):828696
    [Crossref] [Google Scholar]
  180. Young SZ, Taylor MM, Bordey A. 2012.. Neurotransmitters couple brain activity to subventricular zone neurogenesis. . J. Neurosci. 33:(6):112332
    [Google Scholar]
  181. Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, et al. 2004.. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. . J. Cereb. Blood Flow Metab. 24:(4):44148
    [Crossref] [Google Scholar]
  182. Zhao X, Wang Y, Wait E, Mankowski W, Bjornsson CS, et al. 2021.. 3D image analysis of the complete ventricular-subventricular zone stem cell niche reveals significant vasculature changes and progenitor deficits in males versus females with aging. . Stem Cell Rep. 16:(4):83650
    [Crossref] [Google Scholar]
  183. Zheng W, Zhuge Q, Zhong M, Chen G, Shao B, et al. 2013.. Neurogenesis in adult human brain after traumatic brain injury. . J. Neurotrauma 30:(22):187280
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120320-040213
Loading
/content/journals/10.1146/annurev-cellbio-120320-040213
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error