1932

Abstract

Oxygenic photosynthesis evolved billions of years ago, becoming Earth's main source of biologically available carbon and atmospheric oxygen. Since then, phototrophic organisms have diversified from prokaryotic cyanobacteria into several distinct clades of eukaryotic algae and plants through endosymbiosis events. This diversity can be seen in the thylakoid membranes, complex networks of lipids, proteins, and pigments that perform the light-dependent reactions of photosynthesis. In this review, we highlight the structural diversity of thylakoids, following the evolutionary history of phototrophic species. We begin with a molecular inventory of different thylakoid components and then illustrate how these building blocks are integrated to form membrane networks with diverse architectures. We conclude with an outlook on understanding how thylakoids remodel their architecture and molecular organization during dynamic processes such as biogenesis, repair, and environmental adaptation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120823-022747
2024-10-02
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-120823-022747.html?itemId=/content/journals/10.1146/annurev-cellbio-120823-022747&mimeType=html&fmt=ahah

Literature Cited

  1. Akhtar P, Balog-Vig F, Han W, Li X, Han G, et al. 2024.. Quantifying the energy spillover between photosystems II and I in cyanobacterial thylakoid membranes and cells. . Plant Cell Physiol. 65:(1):95106
    [Crossref] [Google Scholar]
  2. Albanese P, Tamara S, Saracco G, Scheltema RA, Pagliano C. 2020.. How paired PSII-LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry. . Nat. Commun. 11::1361
    [Crossref] [Google Scholar]
  3. Allen MB, Dougherty EC, McLaughlin JJA. 1959.. Photoreactive pigments in flagellates. . Nature 4692::104749
    [Crossref] [Google Scholar]
  4. Andersen RA. 2004.. Biology and systematics of heterokont and haptophyte algae. . Am. J. Bot. 91:(10):150822
    [Crossref] [Google Scholar]
  5. Anderson J, Chow W, Goodchild D. 1988.. Thylakoid membrane organisation in sun/shade acclimation. . Funct. Plant Biol. 15:(2):1126
    [Crossref] [Google Scholar]
  6. Anderson JM. 1999.. Insights into the consequences of grana stacking of thylakoid membranes in vascular plants: a personal perspective. . Funct. Plant Biol. 26:(7):62539
    [Crossref] [Google Scholar]
  7. Andersson B, Anderson JM. 1980.. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. . Biochim. Biophys. Acta Bioenerg. 593:(2):42740
    [Crossref] [Google Scholar]
  8. Antoshvili M, Caspy I, Hippler M, Nelson N. 2019.. Structure and function of photosystem I in Cyanidioschyzon merolae. . Photosynth. Res. 139:(1–3):499508
    [Crossref] [Google Scholar]
  9. Archibald JM, Simpson AGB, Slamovits CH, eds. 2017.. Handbook of the Protists. Cham, Switz:.: Springer
    [Google Scholar]
  10. Armbruster U, Labs M, Pribil M, Viola S, Xu W, et al. 2013.. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. . Plant Cell 25:(7):266178
    [Crossref] [Google Scholar]
  11. Aseeva E, Ossenbühl F, Sippel C, Cho WK, Stein B, et al. 2007.. Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes. . Plant Physiol. Biochem. 45:(2):11928
    [Crossref] [Google Scholar]
  12. Ballottari M, Girardon J, Dall'Osto L, Bassi R. 2012.. Evolution and functional properties of Photosystem II light harvesting complexes in eukaryotes. . Biochim. Biophys. Acta– Bioenerg. 1817:(1):14357
    [Crossref] [Google Scholar]
  13. Balogi Z, Török Z, Balogh G, Jósvay K, Shigapova N, et al. 2005.. “ Heat shock lipid” in cyanobacteria during heat/light-acclimation. . Arch. Biochem. Biophys. 436:(2):34654
    [Crossref] [Google Scholar]
  14. Benning C. 2009.. Mechanisms of lipid transport involved in organelle biogenesis in plant cells. . Annu. Rev. Cell Dev. Biol. 25::7191
    [Crossref] [Google Scholar]
  15. Ben-Shem A, Frolow F, Nelson N. 2003.. Crystal structure of plant photosystem I. . Nature 426::63035
    [Crossref] [Google Scholar]
  16. Bergholtz T, Daugbjerg N, Moestrup Ø, Fernández-Tejedor M. 2006.. On the identity of Karlodinium veneficum and description of Karlodinium armiger sp. Nov. (dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition. . J. Phycol. 42:(1):17093
    [Crossref] [Google Scholar]
  17. Block MA, Dorne AJ, Joyard J, Douce R. 1983.. Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. . J. Biol. Chem. 258:(21):1328186
    [Crossref] [Google Scholar]
  18. Bonaventura C, Myers J. 1969.. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. . Biochim. Biophys. Acta– Bioenerg. 189:(3):36683
    [Crossref] [Google Scholar]
  19. Bos PR, Berentsen J, Wientjes E. 2024.. Expansion microscopy resolves the thylakoid structure of spinach. . Plant Physiol. 194:(1):34758
    [Crossref] [Google Scholar]
  20. Broderson M, Niyogi KK, Iwai M. 2024.. Macroscale structural changes of thylakoid architecture during high light acclimation in Chlamydomonas reinhardtii. . Photosynth. Res. https://doi.org/10.1007/s11120-023-01067-1
    [Google Scholar]
  21. Bryant DA, Canniffe DP. 2018.. How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes. . J. Phys. B At. Mol. Opt. Phys. 51:(3):033001
    [Crossref] [Google Scholar]
  22. Büchel C. 2020.. Light harvesting complexes in chlorophyll c-containing algae. . Biochim. Biophys. Acta Bioenerg. 1861:(4):148027
    [Crossref] [Google Scholar]
  23. Bussi Y, Shimoni E, Weiner A, Kapon R, Charuvi D, et al. 2019.. Fundamental helical geometry consolidates the plant photosynthetic membrane. . PNAS 116:(44):2236675
    [Crossref] [Google Scholar]
  24. Chapman DJ. 1966.. The pigments of the symbiotic algae (cyanomes) of Cyanophora paradoxa and filaucocystis nostochinearum and two rhodophyceae, Porphyridium aerugineum and Asteroeytis ramosa. . Arch. Für Mikrobiol. 55::1725
    [Crossref] [Google Scholar]
  25. Charuvi D, Nevo R, Kaplan-Ashiri I, Shimoni E, Reich Z. 2016.. Studying the supramolecular organization of photosynthetic membranes within freeze-fractured leaf tissues by cryo-scanning electron microscopy. . J. Vis. Exp. (112):54066
    [Google Scholar]
  26. Crawley J. 1964.. Cytoplasmic fine structure in Acetabularia. . Exp. Cell Res. 35:(3):497506
    [Crossref] [Google Scholar]
  27. Croce R, van Amerongen H. 2014.. Natural strategies for photosynthetic light harvesting. . Nat. Chem. Biol. 10:(7):492501
    [Crossref] [Google Scholar]
  28. Croce R, van Amerongen H. 2020.. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. . Science 369:(6506):eaay2058
    [Crossref] [Google Scholar]
  29. Cui Y-L, Jia Q-S, Yin Q-Q, Lin G-N, Kong M-M, Yang Z-N. 2011.. The GDC1 gene encodes a novel ankyrin domain-containing protein that is essential for grana formation in Arabidopsis. . Plant Physiol. 155:(1):13041
    [Crossref] [Google Scholar]
  30. Day DA, Ryrie IJ, Fuad N. 1984.. Investigations of the role of the main light-harvesting chlorophyll-protein complex in thylakoid membranes. Reconstitution of depleted membranes from intermittent-light-grown plants with the isolated complex. . J. Cell Biol. 98:(1):16372
    [Crossref] [Google Scholar]
  31. Dekker JP, Boekema EJ. 2005.. Supramolecular organization of thylakoid membrane proteins in green plants. . Biochim. Biophys. Acta– Bioenerg. 1706:(1–2):1239
    [Crossref] [Google Scholar]
  32. Dekker JP, Germano M, van Roon H, Boekema EJ. 2002.. Photosystem II solubilizes as a monomer by mild detergent treatment of unstacked thylakoid membranes. . Photosynth. Res. 72::20310
    [Crossref] [Google Scholar]
  33. Deschamps P, Haferkamp I, Dauvillée D, Haebel S, Steup M, et al. 2006.. Nature of the periplastidial pathway of starch synthesis in the cryptophyte Guillardia theta. . Eukaryot. Cell 5:(6):95463
    [Crossref] [Google Scholar]
  34. Dolganov NA, Bhaya D, Grossman AR. 1995.. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. . PNAS 92:(2):63640
    [Crossref] [Google Scholar]
  35. Doust AB, Marai CNJ, Harrop SJ, Wilk KE, Curmi PMG, Scholes GD. 2004.. Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. . J. Mol. Biol. 344:(1):13553
    [Crossref] [Google Scholar]
  36. Dwarte D, Vesk M. 1983.. A freeze-fracture study of cryptomonad thylakoids. . Protoplasma 117:(2):13041
    [Crossref] [Google Scholar]
  37. Eberhard S, Finazzi G, Wollman F-A. 2008.. The dynamics of photosynthesis. . Annu. Rev. Genet. 42::463515
    [Crossref] [Google Scholar]
  38. Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, et al. 2024.. Lighting the way: compelling open questions in photosynthesis research. . Plant Cell. In press
    [Google Scholar]
  39. Eikrem W, Medlin LK, Henderiks J, Rokitta S, Rost B, et al. 2016.. Haptophyta. . In Handbook of the Protists, ed. JM Archibald, AGB Simpson, CH Slamovits , pp. 893953. Cham, Switz:.: Springer
    [Google Scholar]
  40. Engel BD, Schaffer M, Kuhn Cuellar L, Villa E, Plitzko JM, Baumeister W. 2015.. Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. . eLife 4::e04889
    [Crossref] [Google Scholar]
  41. Engelken J, Brinkmann H, Adamska I. 2010.. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. . BMC Evol. Biol. 10:(1):233
    [Crossref] [Google Scholar]
  42. Faust MA, Gantt E. 1973.. Effect of light intensity and glycerol on the growth, pigment composition, and ultrastructure of Chroomonas sp. . J. Phycol. 9:(4):48995
    [Crossref] [Google Scholar]
  43. Fristedt R, Willig A, Granath P, Crèvecoeur M, Rochaix J-D, Vener AV. 2010.. Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. . Plant Cell 21:(12):395064
    [Crossref] [Google Scholar]
  44. Fuhrmann E, Gathmann S, Rupprecht E, Golecki J, Schneider D. 2009.. Thylakoid membrane reduction affects the photosystem stoichiometry in the cyanobacterium Synechocystis sp. PCC 6803. . Plant Physiol. 149:(2):73544
    [Crossref] [Google Scholar]
  45. Gantt E, Conti S. 1965.. The ultrastructure of Porphyridium cruentum. . J. Cell Biol. 26:(2):36581
    [Crossref] [Google Scholar]
  46. Gantt E, Edwards MR, Provasoli L. 1971.. Chloroplast structure of the Cryptophyceae. . J. Cell Biol. 48::28090
    [Crossref] [Google Scholar]
  47. Garab G, Yaguzhinsky LS, Dlouhý O, Nesterov SV, Špunda V, Gasanoff ES. 2022.. Structural and functional roles of non-bilayer lipid phases of chloroplast thylakoid membranes and mitochondrial inner membranes. . Prog. Lipid Res. 86::101163
    [Crossref] [Google Scholar]
  48. Garcia-Cuetos L, Moestrup Ø, Hansen PJ, Daugbjerg N. 2010.. The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. . Harmful Algae 9:(1):2538
    [Crossref] [Google Scholar]
  49. Garcia-Pichel F, López-Cortés A, Nübel U. 2001.. Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. . Appl. Environ. Microbiol. 67:(4):190210
    [Crossref] [Google Scholar]
  50. Gates C, Hill NC, Dahlgren K, Cameron JC. 2022.. Kinetics and targeting of Vipp1 aggregation in cyanobacteria. . bioRxiv 2022.12.01.518719. https://doi.org/10.1101/2022.12.01.518719
  51. Gattuso J-P, Gentili B, Duarte CM, Kleypas JA, Middelburg JJ, Antoine D. 2006.. Light availability in the coastal ocean: impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. . Biogeosciences 3:(4):489513
    [Crossref] [Google Scholar]
  52. Gibbs SP. 1960.. The fine structure of Euglena gracilis with special reference to the chloroplasts and pyrenoids. . J. Ultrastruct. Res. 4:(2):12748
    [Crossref] [Google Scholar]
  53. Giddings TH, Wasmann C, Staehelin LA. 1983.. Structure of the thylakoids and envelope membranes of the cyanelles of Cyanophora paradoxal. . Plant Physiol. 71::40919
    [Crossref] [Google Scholar]
  54. Gisriel CJ, Elias E, Shen G, Soulier NT, Flesher DA, et al. 2023.. Helical allophycocyanin nanotubes absorb far-red light in a thermophilic cyanobacterium. . Sci. Adv. 9:(12):eadg0251
    [Crossref] [Google Scholar]
  55. Glazer AN, Wedemayer GJ. 1995.. Cryptomonad biliproteins—an evolutionary perspective. . Photosynth. Res. 46:(1–2):93105
    [Crossref] [Google Scholar]
  56. Gómez F. 2012.. A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata). . Syst. Biodivers. 10:(3):26775
    [Crossref] [Google Scholar]
  57. Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, et al. 2015.. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. . PNAS 112:(18):576772
    [Crossref] [Google Scholar]
  58. Gounaris K, Mannock DA, Sen A, Brain APR, Williams WP, Quinn PJ. 1983.. Polyunsaturated fatty acyl residues of galactolipids are involved in the control of bilayer/non-bilayer lipid transitions in higher plant chloroplasts. . Biochim. Biophys. Acta– Biomembr. 732:(1):22942
    [Crossref] [Google Scholar]
  59. Guardini Z, Gomez RL, Caferri R, Stuttmann J, Dall'Osto L, Bassi R. 2022.. Thylakoid grana stacking revealed by multiplex genome editing of LHCII encoding genes. . bioRxiv 2021.12.31.474624. https://doi.org/10.1101/2021.12.31.474624
  60. Gupta TK, Klumpe S, Gries K, Heinz S, Wietrzynski W, et al. 2021.. Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. . Cell 184:(14):364359.e23
    [Crossref] [Google Scholar]
  61. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. 2004.. Dinoflagellates: a remarkable evolutionary experiment. . Am. J. Bot. 91:(10):152334
    [Crossref] [Google Scholar]
  62. Hahn A, Vonck J, Mills DJ, Meier T, Kühlbrandt W. 2018.. Structure, mechanism, and regulation of the chloroplast ATP synthase. . Science 360:(6389):eaat4318
    [Crossref] [Google Scholar]
  63. Hall WT, Claus G. 1967.. Ultrastructural studies on the cyanelles of Glaucocystis nostochinearum itzigsohn. . J. Phycol. 3:(1):3751
    [Crossref] [Google Scholar]
  64. Hehenberger E, Gast RJ, Keeling PJ. 2019.. A kleptoplastidic dinoflagellate and the tipping point between transient and fully integrated plastid endosymbiosis. . PNAS 116:(36):1793442
    [Crossref] [Google Scholar]
  65. Hehenberger E, Imanian B, Burki F, Keeling PJ. 2014.. Evidence for the retention of two evolutionary distinct plastids in dinoflagellates with diatom endosymbionts. . Genome Biol. Evol. 6:(9):232134
    [Crossref] [Google Scholar]
  66. Heinz S, Rast A, Shao L, Gutu A, Gügel IL, et al. 2016.. Thylakoid membrane architecture in Synechocystis depends on CurT, a homolog of the granal CURVATURE THYLAKOID1 proteins. . Plant Cell 28:(9):223860
    [Crossref] [Google Scholar]
  67. Hernández ML, Cejudo FJ. 2021.. Chloroplast lipids metabolism and function. A redox perspective. . Front. Plant Sci. 12::712022
    [Crossref] [Google Scholar]
  68. Hiller RG, Broughton MJ, Wrench PM, Sharples FP, Miller DJ, Catmull J. 1999.. Dinoflagellate light-harvesting proteins: genes, structure and reconstitution. . In The Chloroplast: From Molecular Biology to Biotechnology, ed. JH Argyroudi-Akoyunoglou, H Senger , pp. 310. Dordrecht, Neth:.: Springer
    [Google Scholar]
  69. Hiller RG, Wrench PM, Gooley AP, Shoebridge G, Breton J. 1993.. The major intrinsic light-harvesting protein of Amphidinium: characterization and relation to other light-harvesting proteins. . Photochem. Photobiol. 57:(1):12531
    [Crossref] [Google Scholar]
  70. Hippler M, Nelson N. 2021.. The plasticity of photosystem I. . Plant Cell Physiol. 62:(7):107381
    [Crossref] [Google Scholar]
  71. Hirakawa Y, ed. 2017.. Secondary Endosymbioses. San Diego, CA:: Academic
    [Google Scholar]
  72. Hoffman GE, Sanchez-Puerta MV, Delwiche CF. 2011.. Evolution of light-harvesting complex proteins from Chl c-containing algae. . BMC Evol. Biol. 11:(1):101
    [Crossref] [Google Scholar]
  73. Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K. 1996.. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. . Science 272:(5269):178891
    [Crossref] [Google Scholar]
  74. Hölzl G, Dörmann P. 2019.. Chloroplast lipids and their biosynthesis. . Annu. Rev. Plant Biol. 70::5181
    [Crossref] [Google Scholar]
  75. Homi S, Takechi K, Tanidokoro K, Sato H, Takio S, Takano H. 2009.. The peptidoglycan biosynthesis genes MurA and MraY are related to chloroplast division in the moss Physcomitrella patens. . Plant Cell Physiol. 50:(12):204756
    [Crossref] [Google Scholar]
  76. Horiguchi T, Pienaar RN. 1991.. Ultrastructure of a marine dinoflagellate, Peridinium quinquecorne Abé (Peridiniales) from South Africa with particular reference to its chrysophyte endosymbiont. . Bot. Mar. 34::12331
    [Crossref] [Google Scholar]
  77. Horiguchi T, Takano Y. 2006.. Serial replacement of a diatom endosymbiont in the marine dinoflagellate Peridinium quinquecorne (Peridiniales, Dinophyceae). . Phycol. Res. 54:(3):193200
    [Crossref] [Google Scholar]
  78. Huang Z, Shen L, Wang W, Mao Z, Yi X, et al. 2021.. Structure of photosystem I-LHCI-LHCII from the green alga Chlamydomonas reinhardtii in state 2. . Nat. Commun. 12:(1):1100
    [Crossref] [Google Scholar]
  79. Huokko T, Ni T, Dykes GF, Simpson DM, Brownridge P, et al. 2021.. Probing the biogenesis pathway and dynamics of thylakoid membranes. . Nat. Commun. 12:(1):3475
    [Crossref] [Google Scholar]
  80. Hurlock AK, Roston RL, Wang K, Benning C. 2014.. Lipid trafficking in plant cells. . Traffic 15:(9):91532
    [Crossref] [Google Scholar]
  81. Iwai M, Roth MS, Niyogi KK. 2018.. Subdiffraction-resolution live-cell imaging for visualizing thylakoid membranes. . Plant J. 96:(1):23343
    [Crossref] [Google Scholar]
  82. Jackson C, Knoll AH, Chan CX, Verbruggen H. 2018.. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. . Sci. Rep. 8:(1):1523
    [Crossref] [Google Scholar]
  83. Jiang H-W, Wu H-Y, Wang C-H, Yang C-H, Ko J-T, et al. 2023.. A structure of the relict phycobilisome from a thylakoid-free cyanobacterium. . Nat. Commun. 14:(1):8009
    [Crossref] [Google Scholar]
  84. Jiang J, Zhang H, Orf GS, Lu Y, Xu W, et al. 2014.. Evidence of functional trimeric chlorophyll a/c2-peridinin proteins in the dinoflagellate Symbiodinium. . Biochim. Biophys. Acta– Bioenerg. 1837:(11):190412
    [Crossref] [Google Scholar]
  85. Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV. 2011.. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. . Plant Cell 23:(4):146879
    [Crossref] [Google Scholar]
  86. Johnson MP, Wientjes E. 2020.. The relevance of dynamic thylakoid organisation to photosynthetic regulation. . Biochim. Biophys. Acta– Bioenerg. 1861:(4):148039
    [Crossref] [Google Scholar]
  87. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauû N. 2001.. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. . Nature 411::90917
    [Crossref] [Google Scholar]
  88. Jouhet J, Maréchal E, Block MA. 2007.. Glycerolipid transfer for the building of membranes in plant cells. . Prog. Lipid Res. 46:(1):3755
    [Crossref] [Google Scholar]
  89. Junglas B, Orru R, Axt A, Siebenaller C, Steinchen W, . 2020.. IM30 IDPs form a membrane-protective carpet upon super-complex disassembly. . Commun. Biol. 3::595
    [Crossref] [Google Scholar]
  90. Kaňa R, Prášil O, Mullineaux CW. 2009.. Immobility of phycobilins in the thylakoid lumen of a cryptophyte suggests that protein diffusion in the lumen is very restricted. . FEBS Lett. 583:(4):67074
    [Crossref] [Google Scholar]
  91. Kern J, Zouni A, Guskov A, Krauß N. 2009.. Lipids in the structure of photosystem I, photosystem II and the cytochrome b6f complex. . In Lipids in Photosynthesis: Essential and Regulatory Functions, ed. H Wada, N Murata , pp. 20342. Dordrecht, Neth:.: Springer
    [Google Scholar]
  92. Kirchhoff H, Haferkamp S, Allen JF, Epstein DBA, Mullineaux CW. 2008.. Protein diffusion and macromolecular crowding in thylakoid membranes. . Plant Physiol. 146:(4):157178
    [Crossref] [Google Scholar]
  93. Kirilovsky D, Büchel C. 2019.. Evolution and function of light-harvesting antenna in oxygenic photosynthesis. . In Advances in Botanical Research, Vol. 91, ed. B Grimm , pp. 24793. Amsterdam:: Elsevier
    [Google Scholar]
  94. Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, et al. 2016.. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. . Curr. Biol. 26:(21):286272
    [Crossref] [Google Scholar]
  95. Kobayashi K, Endo K, Wada H. 2017.. Specific distribution of phosphatidylglycerol to photosystem complexes in the thylakoid membrane. . Front. Plant Sci. 8::1991
    [Crossref] [Google Scholar]
  96. Kowalewska Ł, Bykowski M, Mostowska A. 2019.. Spatial organization of thylakoid network in higher plants. . Bot. Lett. 166:(3):32643
    [Crossref] [Google Scholar]
  97. Kowalewska Ł, Mazur R, Suski S, Garstka M, Mostowska A. 2016.. Three-dimensional visualization of the tubular-lamellar transformation of the internal plastid membrane network during runner bean chloroplast biogenesis. . Plant Cell 28:(4):87591
    [Crossref] [Google Scholar]
  98. Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, et al. 2001.. VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. . PNAS 98:(7):423842
    [Crossref] [Google Scholar]
  99. Levitan O, Chen M, Kuang X, Cheong KY, Jiang J, et al. 2019.. Structural and functional analyses of photosystem II in the marine diatom Phaeodactylum tricornutum. . PNAS 116:(35):1731622
    [Crossref] [Google Scholar]
  100. Li M, Ma J, Li X, Sui S-F. 2021.. In situ cryo-ET structure of phycobilisome-photosystem II supercomplex from red alga. . eLife 10::e69635
    [Crossref] [Google Scholar]
  101. Liang Z, Zhu N, Mai KK, Liu Z, Tzeng D, et al. 2018.. Thylakoid-bound polysomes and a dynamin-related protein, FZL, mediate critical stages of the linear chloroplast biogenesis program in greening Arabidopsis cotyledons. . Plant Cell 30:(7):147695
    [Crossref] [Google Scholar]
  102. Liberton M, Austin JR, Berg RH, Pakrasi HB. 2011.. Unique thylakoid membrane architecture of a unicellular N2-fixing cyanobacterium revealed by electron tomography. . Plant Physiol. 155:(4):165666
    [Crossref] [Google Scholar]
  103. Lindquist E, Aronsson H. 2018.. Chloroplast vesicle transport. . Photosynth. Res. 138:(3):36171
    [Crossref] [Google Scholar]
  104. Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, et al. 2013.. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. . Science 342:(6162):11047
    [Crossref] [Google Scholar]
  105. Löffelhardt W. 2014.. The single primary endosymbiotic event. . In Endosymbiosis, ed. W Löffelhardt , pp. 3952. Vienna:: Springer
    [Google Scholar]
  106. MacGregor-Chatwin C, Sener M, Barnett SFH, Hitchcock A, Barnhart-Dailey MC, et al. 2017.. Lateral segregation of photosystem I in cyanobacterial thylakoids. . Plant Cell 29:(5):111936
    [Crossref] [Google Scholar]
  107. Macpherson AN, Hiller RG. 2003.. Light-harvesting systems in chlorophyll c-containing algae. . In Light-Harvesting Antennas in Photosynthesis, Vol. 13, ed. BR Green, WW Parson , pp. 32352. Dordrecht, Neth:.: Springer
    [Google Scholar]
  108. Mai KKK, Yeung W-T, Han S-Y, Cai X, Hwang I, Kang B-H. 2019.. Electron tomography analysis of thylakoid assembly and fission in chloroplasts of a single-cell C4 plant. , Bienertia sinuspersici. Sci. Rep. 9:(1):19640
    [Crossref] [Google Scholar]
  109. Malone LA, Proctor MS, Hitchcock A, Hunter CN, Johnson MP. 2021.. Cytochrome b6f—orchestrator of photosynthetic electron transfer. . Biochim. Biophys. Acta– Bioenerg. 1862:(5):148380
    [Crossref] [Google Scholar]
  110. Maréchal E. 2024.. How did thylakoids emerge in cyanobacteria, and how were the primary chloroplast and chromatophore acquired?. Methods Mol. Biol. 2776::320
    [Crossref] [Google Scholar]
  111. Mareš J, Strunecký O, Bučinská L, Wiedermannová J. 2019.. Evolutionary patterns of thylakoid architecture in cyanobacteria. . Front. Microbiol. 10::277
    [Crossref] [Google Scholar]
  112. Marin B, Nowack ECM, Melkonian M. 2005.. A plastid in the making: evidence for a secondary primary endosymbiosis. . Protist 156:(4):42532
    [Crossref] [Google Scholar]
  113. Mazor Y, Borovikova A, Nelson N. 2015.. The structure of plant photosystem I super-complex at 2.8 Å resolution. . eLife 4::e07433
    [Crossref] [Google Scholar]
  114. McCafferty C, Klumpe S, Amaro RE, Kukulski W, Collinson L, Engel BD. 2024.. Integrating cellular electron microscopy with multimodal data to explore biology across space and time. . Cell 187::56384
    [Crossref] [Google Scholar]
  115. McDonnel A, Staehelin LA. 1980.. Adhesion between liposomes mediated by the chlorophyll a/b light-harvesting complex isolated from chloroplast membranes. . J. Cell Biol. 84:(1):4056
    [Crossref] [Google Scholar]
  116. Melo Clavijo J, Donath A, Serôdio J, Christa G. 2018.. Polymorphic adaptations in metazoans to establish and maintain photosymbioses. . Biol. Rev. 93:(4):200620
    [Crossref] [Google Scholar]
  117. Meng EC, Goddard TD, Pettersen EF, Couch GS, Pearson ZJ, et al. 2023.. UCSF ChimeraX: tools for structure building and analysis. . Protein Sci. 32:(11):e4792
    [Crossref] [Google Scholar]
  118. Mereschkowsky C. 1905.. Über natur und ursprung der chromatophoren im pflanzenreiche. . Biol. Cent. 25::593604
    [Google Scholar]
  119. Miller KR, Staehelin LA. 1973.. Fine structure of the chloroplast membranes of Euglena gracilis as revealed by freeze-cleaving and deep-etching techniques. . Protoplasma 77:(1):5578
    [Crossref] [Google Scholar]
  120. Mirkovic T, Wilk KE, Curmi PMG, Scholes GD. 2009.. Phycobiliprotein diffusion in chloroplasts of cryptophyte Rhodomonas CS24. . Photosynth. Res. 100:(1):717
    [Crossref] [Google Scholar]
  121. Moestrup O, Sengco M. 2001.. Ultrastructural studies on Bigelowiella natans, gen. Et sp. Nov., a chlorarachniophyte flagellate. . J. Phycol. 37:(4):62446
    [Crossref] [Google Scholar]
  122. Morré DJ, Selldén G, Sundqvist C, Sandelius AS. 1991.. Stromal low temperature compartment derived from the inner membrane of the chloroplast envelope. . Plant Physiol. 97:(4):155864
    [Crossref] [Google Scholar]
  123. Mullineaux CW. 2005.. Function and evolution of grana. . Trends Plant Sci. 10:(11):52125
    [Crossref] [Google Scholar]
  124. Mullineaux CW. 2014.. Co-existence of photosynthetic and respiratory activities in cyanobacterial thylakoid membranes. . Biochim. Biophys. Acta –Bioenerg. 1837:(4):50311
    [Crossref] [Google Scholar]
  125. Mullineaux CW, Liu L-N. 2020.. Membrane dynamics in phototrophic bacteria. . Annu. Rev. Microbiol. 74::63354
    [Crossref] [Google Scholar]
  126. Murata N. 1969.. Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. . Biochim Biophys Acta Bioenerg. 172::24251
    [Crossref] [Google Scholar]
  127. Nagao R, Kato K, Ifuku K, Suzuki T, Kumazawa M, et al. 2020.. Structural basis for assembly and function of a diatom photosystem I-light-harvesting supercomplex. . Nat. Commun. 11:(1):2481
    [Crossref] [Google Scholar]
  128. Nagao R, Kato K, Suzuki T, Ifuku K, Uchiyama I, et al. 2019.. Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII supercomplex. . Nat. Plants 5:(8):890901
    [Crossref] [Google Scholar]
  129. Nagao R, Takahashi S, Suzuki T, Dohmae N, Nakazato K, Tomo T. 2013.. Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. . Photosynth. Res. 117:(1–3):28188
    [Crossref] [Google Scholar]
  130. Naskar S, Merino A, Espadas J, Singh J, Roux A, et al. 2023.. Mechanism for Vipp1 spiral formation, ring biogenesis and membrane repair. . bioRxiv 2023.09.26.559607. https://doi.org/10.1101/2023.09.26.559607
  131. Nawrocki WJ, Liu X, Raber B, Hu C, De Vitry C, et al. 2021.. Molecular origins of induction and loss of photoinhibition-related energy dissipation qI. . Sci. Adv. 7:(52):eabj0055
    [Crossref] [Google Scholar]
  132. Nelson N, Junge W. 2015.. Structure and energy transfer in photosystems of oxygenic photosynthesis. . Annu. Rev. Biochem. 84::65983
    [Crossref] [Google Scholar]
  133. Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, et al. 2007.. Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. . EMBO J. 26:(5):146773
    [Crossref] [Google Scholar]
  134. Nevo R, Charuvi D, Tsabari O, Reich Z. 2012.. Composition, architecture and dynamics of the photosynthetic apparatus in higher plants. . Plant J. 70:(1):15776
    [Crossref] [Google Scholar]
  135. Nevo R, Chuartzman SG, Tsabari O, Reich Z, Charuvi D, Shimoni E. 2009.. Architecture of thylakoid membrane networks. . In Lipids in Photosynthesis, Vol. 30, ed. H Wada, N Murata , pp. 295328. Dordrecht, Neth:.: Springer
    [Google Scholar]
  136. Nordhues A, Schöttler MA, Unger A-K, Geimer S, Schönfelder S, et al. 2012.. Evidence for a role of VIPP1 in the structural organization of the photosynthetic apparatus in Chlamydomonas. . Plant Cell 24:(2):63759
    [Crossref] [Google Scholar]
  137. Norris BJ, Miller DJ. 1994.. Nucleotide sequence of a cDNA clone encoding the precursor of the peridinin-chlorophyll a-binding protein from the dinoflagellate Symbiodinium sp. . Plant Mol. Biol. 24:(4):67377
    [Crossref] [Google Scholar]
  138. Ohad I, Siekevitz P, Palade GE. 1967.. Biogenesis of chloroplast membranes: I. Plastid dedifferentiation in a dark-grown algal mutant (Chlamydomonas reinhardi). . J. Cell Biol. 35:(3):52152
    [Crossref] [Google Scholar]
  139. Ojakian GK, Satir P. 1974.. Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique. . PNAS 71:(5):205256
    [Crossref] [Google Scholar]
  140. Ostermeier M, Heinz S, Hamm J, Zabret J, Rast A, et al. 2022.. Thylakoid attachment to the plasma membrane in Synechocystis sp. PCC 6803 requires the AncM protein. . Plant Cell 34:(1):65578
    [Crossref] [Google Scholar]
  141. Pajot A, Lavaud J, Carrier G, Garnier M, Saint-Jean B, et al. 2022.. The fucoxanthin chlorophyll a/c-binding protein in Tisochrysis lutea: influence of nitrogen and light on fucoxanthin and chlorophyll a/c-binding protein gene expression and fucoxanthin synthesis. . Front. Plant Sci. 13::830069
    [Crossref] [Google Scholar]
  142. Páli T, Garab G, Horváth LI, Kóta Z. 2003.. Functional significance of the lipid-protein interface in photosynthetic membranes. . Cell. Mol. Life Sci. 60:(8):1591606
    [Crossref] [Google Scholar]
  143. Pi X, Tian L, Dai H-E, Qin X, Cheng L, et al. 2018.. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. . PNAS 115:(17):442328
    [Crossref] [Google Scholar]
  144. Pipitone R, Eicke S, Pfister B, Glauser G, Falconet D, et al. 2021.. A multifaceted analysis reveals two distinct phases of chloroplast biogenesis during de-etiolation in Arabidopsis. . eLife 10::e62709
    [Crossref] [Google Scholar]
  145. Rast A, Heinz S, Nickelsen J. 2015.. Biogenesis of thylakoid membranes. . Biochim. Biophys. Acta –Bioenerg. 1847:(9):82130
    [Crossref] [Google Scholar]
  146. Rast A, Schaffer M, Albert S, Wan W, Pfeffer S, et al. 2019.. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. . Nat. Plants 5:(4):43646
    [Crossref] [Google Scholar]
  147. Rathbone HW, Laos AJ, Michie KA, Iranmanesh H, Biazik J, et al. 2023.. Molecular dissection of the soluble photosynthetic antenna from the cryptophyte alga Hemiselmis andersenii. . Commun. Biol. 6:(1):1158
    [Crossref] [Google Scholar]
  148. Rippka R, Waterbury J, Cohen-Bazire G. 1974.. A cyanobacterium which lacks thylakoids. . Arch. Microbiol. 100:(1):41936
    [Crossref] [Google Scholar]
  149. Rochaix J-D. 2014.. Regulation and dynamics of the light-harvesting system. . Annu. Rev. Plant Biol. 65::287309
    [Crossref] [Google Scholar]
  150. Rockwell NC, Lagarias JC, Bhattacharya D. 2014.. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. . Front. Ecol. Evol. 2::66
    [Crossref] [Google Scholar]
  151. Roth MS, Gallaher SD, Westcott DJ, Iwai M, Louie KB, et al. 2019.. Regulation of oxygenic photosynthesis during trophic transitions in the green alga Chromochloris zofingiensis. . Plant Cell 31:(3):579601
    [Crossref] [Google Scholar]
  152. Sagan L. 1966.. On the origin of mitosing cells. . J. Theor. Biol. 14::22574
    [Crossref] [Google Scholar]
  153. Sakurai I, Mizusawa N, Wada H, Sato N. 2007.. Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. . Plant Physiol. 145:(4):136170
    [Crossref] [Google Scholar]
  154. Sakurai I, Shen J-R, Leng J, Ohashi S, Kobayashi M, Wada H. 2006.. Lipids in oxygen-evolving photosystem II complexes of cyanobacteria and higher plants. . J. Biochem. 140:(2):2019
    [Crossref] [Google Scholar]
  155. Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, et al. 2021.. Catalytic reactions and energy conservation in the cytochrome bc1 and b6f complexes of energy-transducing membranes. . Chem. Rev. 121:(4):2020108
    [Crossref] [Google Scholar]
  156. Schulte T, Niedzwiedzki DM, Birge RR, Hiller RG, Polívka T, et al. 2009a.. Identification of a single peridinin sensing Chl-a excitation in reconstituted PCP by crystallography and spectroscopy. . PNAS 106:(49):2076469
    [Crossref] [Google Scholar]
  157. Schulte T, Sharples FP, Hiller RG, Hofmann E. 2009b.. X-ray structure of the high-salt form of the peridinin-chlorophyll a-protein from the dinoflagellate Amphidinium carterae: modulation of the spectral properties of pigments by the protein environment. . Biochemistry 48:(21):446675
    [Crossref] [Google Scholar]
  158. Schwarz R, Forchhammer K. 2005.. Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. . Microbiology 151:(8):250314
    [Crossref] [Google Scholar]
  159. Şener M, Strümpfer J, Hsin J, Chandler D, Scheuring S, et al. 2011.. Förster energy transfer theory as reflected in the structures of photosynthetic light-harvesting systems. . ChemPhysChem 12:(3):51831
    [Crossref] [Google Scholar]
  160. Serôdio J, Cruz S, Cartaxana P, Calado R. 2014.. Photophysiology of kleptoplasts: photosynthetic use of light by chloroplasts living in animal cells. . Philos. Trans. R. Soc. B 369:(1640):20130242
    [Crossref] [Google Scholar]
  161. Shen J-R. 2015.. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. . Annu. Rev. Plant Biol. 66::2348
    [Crossref] [Google Scholar]
  162. Sheng X, Watanabe A, Li A, Kim E, Song C, et al. 2019.. Structural insight into light harvesting for photosystem II in green algae. . Nat. Plants 5:(12):132030
    [Crossref] [Google Scholar]
  163. Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z. 2005.. Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. . Plant Cell 17:(9):258086
    [Crossref] [Google Scholar]
  164. Shin M, Arnon DI. 1965.. Enzymic mechanisms of pyridine nucleotide reduction in chloroplasts. . J. Biol. Chem. 240:(3):140511
    [Crossref] [Google Scholar]
  165. Simidjiev I, Stoylova S, Amenitsch H, Jávorfi T, Mustárdy L, et al. 2000.. Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. . PNAS 97:(4):147376
    [Crossref] [Google Scholar]
  166. Spear-Bernstein L, Miller KR. 1989.. Unique location of the phycobiliprotein light-harvesting pigment in the cryptophyceae. . J. Phycol. 25:(3):41219
    [Crossref] [Google Scholar]
  167. Staehelin LA, Paolillo DJ. 2020.. A brief history of how microscopic studies led to the elucidation of the 3D architecture and macromolecular organization of higher plant thylakoids. . Photosynth. Res. 145:(3):23758
    [Crossref] [Google Scholar]
  168. Storti M, Hsine H, Uwizeye C, Bastien O, Yee DP, et al. 2023.. Tailoring confocal microscopy for real-time analysis of photosynthesis at single-cell resolution. . Cell Rep. Methods 3:(9):100568
    [Crossref] [Google Scholar]
  169. Strašková A, Steinbach G, Konert G, Kotabová E, Komenda J, et al. 2019.. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. . Biochim. Biophys. Acta –Bioenerg. 1860:(12):148053
    [Crossref] [Google Scholar]
  170. Stroebel D, Choquet Y, Popot J-L, Picot D. 2003.. An atypical haem in the cytochrome b6f complex. . Nature 426:(6965):41318
    [Crossref] [Google Scholar]
  171. Sturm S, Engelken J, Gruber A, Vugrinec S, Kroth PG, et al. 2013.. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. . BMC Evol. Biol. 13:(1):159
    [Crossref] [Google Scholar]
  172. Su X, Ma J, Pan X, Zhao X, Chang W, et al. 2019.. Antenna arrangement and energy transfer pathways of a green algal photosystem-I-LHCI supercomplex. . Nat. Plants 5:(3):27381
    [Crossref] [Google Scholar]
  173. Suga M, Ozawa S-I, Yoshida-Motomura K, Akita F, Miyazaki N, Takahashi Y. 2019.. Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. . Nat. Plants 5:(6):62636
    [Crossref] [Google Scholar]
  174. Takishita K, Kawachi M, Noël M-H, Matsumoto T, Kakizoe N, et al. 2008.. Origins of plastids and glyceraldehyde-3-phosphate dehydrogenase genes in the green-colored dinoflagellate Lepidodinium chlorophorum. . Gene 410:(1):2636
    [Crossref] [Google Scholar]
  175. Taylor FJR. 1974.. II. Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. . Taxon 23:(2–3):22958
    [Crossref] [Google Scholar]
  176. Theis J, Niemeyer J, Schmollinger S, Ries F, Rütgers M, et al. 2020.. VIPP2 interacts with VIPP1 and HSP22E/F at chloroplast membranes and modulates a retrograde signal for HSP22E/F gene expression. . Plant Cell Environ. 43:(5):121229
    [Crossref] [Google Scholar]
  177. Trissl HW, Wilhelm C. 1993.. Why do thylakoid membranes from higher plants form grana stacks?. Trends Biochem. Sci. 18:(11):41519
    [Crossref] [Google Scholar]
  178. Vallon O, Bulte L, Dainese P, Olive J, Bassi R, Wollman FA. 1991.. Later redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions. . PNAS 88:(18):826266
    [Crossref] [Google Scholar]
  179. van de Meene AML, Sharp WP, McDaniel JH, Friedrich H, Vermaas WFJ, Roberson RW. 2012.. Gross morphological changes in thylakoid membrane structure are associated with photosystem I deletion in Synechocystis sp. PCC 6803. . Biochim. Biophys. Acta Biomembr. 1818:(5):142734
    [Crossref] [Google Scholar]
  180. Watanabe M, Kubota H, Wada H, Narikawa R, Ikeuchi M. 2011.. Novel supercomplex organization of photosystem I in Anabaena and Cyanophora paradoxa. . Plant Cell Physiol. 52:(1):16268
    [Crossref] [Google Scholar]
  181. Watanabe M, Sato M, Kondo K, Narikawa R, Ikeuchi M. 2012.. Phycobilisome model with novel skeleton-like structures in a glaucocystophyte Cyanophora paradoxa. . Biochim. Biophys. Acta –Bioenerg. 1817:(8):142835
    [Crossref] [Google Scholar]
  182. Watanabe M, Semchonok DA, Webber-Birungi MT, Ehira S, Kondo K, et al. 2014.. Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria. . PNAS 111:(7):251217
    [Crossref] [Google Scholar]
  183. Watanabe MM, Suda S, Inouya I, Sawaguchi T, Chihara M. 1990.. Lepidodinium viride gen. Et sp. Nov. (Gymnodinaiales, Dinophyta), a green dinoflagellate with a chlorophyll a- and b-containing endosymbiont. . J. Phycol. 26:(4):74151
    [Crossref] [Google Scholar]
  184. Watanabe MM, Takeda Y, Sasa T, Inouye I, Suda S, et al. 1987.. A green dinoflagellate with chlorophylls a and b: morphology, fine structure of the chloroplast and chlorophyll composition. . J. Phycol. 23:(s2):38289
    [Crossref] [Google Scholar]
  185. Webb MS, Green BR. 1991.. Biochemical and biophysical properties of thylakoid acyl lipids. . Biochim. Biophys. Acta –Bioenerg. 1060:(2):13358
    [Crossref] [Google Scholar]
  186. Wei X, Su X, Cao P, Liu X, Chang W, et al. 2016.. Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. . Nature 534:(7605):6974
    [Crossref] [Google Scholar]
  187. Westphal S, Soll J, Vothknecht UC. 2001.. A vesicle transport system inside chloroplasts. . FEBS Lett. 506:(3):25761
    [Crossref] [Google Scholar]
  188. Wientjes E, Drop B, Kouřil R, Boekema EJ, Croce R. 2013.. During state 1 to state 2 transition in Arabidopsis thaliana, the photosystem II supercomplex gets phosphorylated but does not disassemble. . J. Biol. Chem. 288:(46):3282126
    [Crossref] [Google Scholar]
  189. Wietrzynski W, Schaffer M, Tegunov D, Albert S, Kanazawa A, et al. 2020.. Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. . eLife 9::e53740
    [Crossref] [Google Scholar]
  190. Wilhelm C, Goss R, Garab G. 2020.. The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid?. J. Plant Physiol. 252::153246
    [Crossref] [Google Scholar]
  191. Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, et al. 1999.. Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. . PNAS 96:(16):89016
    [Crossref] [Google Scholar]
  192. Wood WHJ, MacGregor-Chatwin C, Barnett SFH, Mayneord GE, Huang X, et al. 2018.. Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. . Nat. Plants 4:(2):11627
    [Crossref] [Google Scholar]
  193. Xu C, Pi X, Huang Y, Han G, Chen X, et al. 2020.. Structural basis for energy transfer in a huge diatom PSI-FCPI supercomplex. . Nat. Commun. 11:(1):5081
    [Crossref] [Google Scholar]
  194. You X, Zhang X, Cheng J, Xiao Y, Ma J, et al. 2023.. In situ structure of the red algal phycobilisome-PSII-PSI-LHC megacomplex. . Nature 616:(7955):199206
    [Crossref] [Google Scholar]
  195. Zapata M, Fraga S, Rodríguez F, Garrido J. 2012.. Pigment-based chloroplast types in dinoflagellates. . Mar. Ecol. Prog. Ser. 465::3352
    [Crossref] [Google Scholar]
  196. Zhang X, Xiao Y, You X, Sun S, Sui S-F. 2023.. In situ structural determination of cyanobacterial phycobilisome-PSII supercomplex by STAgSPA strategy. . bioRxiv 2023.12.17.572042. https://doi.org/10.1101/2023.12.17.572042
  197. Zhao L-S, Wang N, Li K, Li C-Y, Guo J-P, et al. 2024.. Architecture of symbiotic dinoflagellate photosystem I–light-harvesting supercomplex in Symbiodinium. . Nat. Commun. 15::2392
    [Crossref] [Google Scholar]
  198. Zhao L-S, Wang P, Li K, Zhang Q-B, He F-Y, et al. 2023.. Structural basis and evolution of the photosystem I-light-harvesting supercomplex of cryptophyte algae. . Plant Cell 35:(7):244963
    [Crossref] [Google Scholar]
  199. Zheng L, Li Y, Li X, Zhong Q, Li N, et al. 2019.. Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. . Nat. Plants 5:(10):108797
    [Crossref] [Google Scholar]
  200. Zheng L, Zheng Z, Li X, Wang G, Zhang K, et al. 2021.. Structural insight into the mechanism of energy transfer in cyanobacterial phycobilisomes. . Nat. Commun. 12:(1):5497
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120823-022747
Loading
/content/journals/10.1146/annurev-cellbio-120823-022747
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error