Petroleum reservoirs are enshrouded in mysteries associated with all manner of geologic and fluid complexities that Mother Nature can inspire. Efficient exploitation of petroleum reservoirs mandates elucidation of these complexities; downhole fluid analysis (DFA) has proven to be indispensable for understanding both fluids and reservoir architecture. Crude oil consists of dissolved gases, liquids, and dissolved solids, known as the asphaltenes. These different fluid components exhibit fluid gradients vertically and laterally, which are best revealed by DFA, with its excellent precision and accuracy. Compositional gradient analysis falls within the purview of thermodynamics. Gas-liquid equilibria can be treated with a cubic equation of state (EoS), such as the Peng-Robinson EoS, a modified van der Waals EoS. In contrast, the first EoS for asphaltene gradients, the Flory-Huggins-Zuo (FHZ) EoS, was developed only recently. The resolution of the asphaltene molecular and nanocolloidal species in crude oil, which is codified in the Yen-Mullins model of asphaltenes, enabled the development of this EoS. The combination of DFA characterization of gradients of reservoir crude oil with the cubic EoS and FHZ EoS analyses brings into view wide-ranging reservoir concerns, such as reservoir connectivity, fault-block migration, heavy oil gradients, tar mat formation, huge disequilibrium fluid gradients, and even stochastic variations of reservoir fluids. New petroleum science and DFA technology are helping to offset the increasing costs and technical difficulties of exploiting ever-more-remote petroleum reservoirs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dake LP. 1.  1978. Fundamentals of Reservoir Engineering Amsterdam, Neth.: Elsevier [Google Scholar]
  2. Mullins OC. 2.  2008. The Physic of Reservoir Fluids: Discovery Through Downhole Fluid Analysis Houston, TX: Schlumberger Press [Google Scholar]
  3. Deepstar Technol. Dev. Deepwater Res 2009. Lookback study of appraisal programs Report 9702, Houston, TX [Google Scholar]
  4. Pfeiffer T, Reza Z, Schechter DS, McCain WD, Mullins OC. 4.  2011. Determination of fluid composition equilibrium under consideration of asphaltenes—a substantially superior way to assess reservoir connectivity than formation pressure surveys Paper SPE 145609. Presented at SPE Annu. Tech. Conf. Exhib., 30 Oct.–2 Nov., Denver, CO [Google Scholar]
  5. Peng D-Y, Robinson DB. 5.  1976. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15:59–64 [Google Scholar]
  6. Mullins OC, Martínez-Haya B, Marshall AG. 6.  2008. Contrasting perspective on asphaltene molecular weight. Energy Fuels 22:1765–73 [Google Scholar]
  7. Mullins OC, Sheu EY, Hammami A, Marshall AG. 7.  2007. Asphaltenes, Heavy Oils and Petroleomics New York: Springer [Google Scholar]
  8. Mullins OC. 8.  2010. The modified Yen model. Energy Fuels 24:2179–207 [Google Scholar]
  9. Mullins OC, Sabbah H, Eyssautier J, Pomerantz A, Barré L. 9.  et al. 2012. Advances in asphaltene science and the Yen-Mullins model. Energy Fuels 26:3986–4003 [Google Scholar]
  10. Freed D, Mullins OC, Zuo JY. 10.  2010. Asphaltene gradients in the presence of GOR gradients. Energy Fuels 24:73942–49 [Google Scholar]
  11. Zuo JY, Mullins OC, Freed DE, Dong C, Elshahawi H, Seifert DJ. 11.  2013. Advances of the Flory-Huggins-Zuo equation of state for asphaltene gradients and formation evaluation. Energy Fuels 27:1722–35 [Google Scholar]
  12. Zimmerman TH, Pop JJ, Perkins JL. 12.  1989. Down hole tool for determination of formation properties. US Patent No. 4,860,581
  13. van Agthoven MA, Fujisawa G, Rabbito P, Mullins OC. 13.  2002. Near-infrared spectral analysis of gas mixtures. Appl. Spectrosc. 56:593–98 [Google Scholar]
  14. Mullins OC, Daigle T, Crowell C, Groenzin H, Joshi NB. 14.  2001. Gas-oil ratio of live crude oils determined by near-infrared spectroscopy. Appl. Spectrosc. 55:197–201 [Google Scholar]
  15. Mullins OC, Betancourt SS, Cribbs ME, Creek JL, Andrews AB. 15.  et al. 2007. The colloidal structure of crude oil and the structure of reservoirs. Energy Fuels 21:2785–94 [Google Scholar]
  16. Ruiz-Morales Y, Mullins OC. 16.  2009. Simulated and measured optical absorption spectra of asphaltenes. Energy Fuels 23:1169–77 [Google Scholar]
  17. Kharrat AM, Indo K, Mostowfi F. 17.  2013. Asphaltene content measurement using an optical spectroscopy technique. Energy Fuels 27:2452–57 [Google Scholar]
  18. Juyal P, McKenna AM, Yen A, Rodgers RP, Reddy CM. 18.  et al. 2011. Analysis and identification of biomarkers and origin of blue color in an unusually blue crude oil. Energy Fuels 25:172–82 [Google Scholar]
  19. Urbach F. 19.  1953. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92:1324 [Google Scholar]
  20. Mullins OC, Mitra-Kirtley S, Zhu Y. 20.  1992. Electronic absorption edge of petroleum. Appl. Spectrosc. 46:1405–11 [Google Scholar]
  21. Mullins OC, Zhu Y. 21.  1992. First observation of the Urbach tail in a multicomponent organic system. Appl. Spectrosc. 46:354–56 [Google Scholar]
  22. Ruiz-Morales Y, Mullins OC. 22.  2007. Polycyclic aromatic hyodrocarbons of asphaltenes analyzed by molecular orbital calculations with optical spectroscopy. Energy Fuels 21:256–65 [Google Scholar]
  23. Ruiz-Morales Y, Wu X, Mullins OC. 23.  2007. Electronic absorption edge of crude oils and asphaltenes analyzed by molecular orbital calculations with optical spectroscopy. Energy Fuels 21:944–52 [Google Scholar]
  24. Klee T, Masterson T, Miller B, Barrasso E, Bell J. 24.  et al. 2011. Triplet electronic spin states of crude oils and asphaltenes. Energy Fuels 25:2065–75 [Google Scholar]
  25. Bergmann U, Groenzin H, Mullins OC, Glatzel P, Fetzer J, Cramer SP. 25.  2003. Carbon K-edge X-ray Raman spectroscopy supports simple yet powerful description of aromatic hydrocarbons and asphaltenes. Chem. Phys. Lett. 369:184–91 [Google Scholar]
  26. Fujisawa G, van Agthoven MA, Rabbito P, Mullins OC. 26.  2002. Near-infrared compositional analysis of gas and condensate reservoir fluids at elevated pressures and temperatures. Appl. Spec. 56:1615–20 [Google Scholar]
  27. Dong C, Elshahawi H, Mullins OC, Fujisawa G, Kurkjian A. 27.  2003. Advances in downhole contamination monitoring and GOR measurements of formation fluids Presented at Soc. Petrophys. Well-Log Anal., Galveston, TX [Google Scholar]
  28. Dong C, O'Keefe M, Elshahawi H, Williams S, Stensland D. 28.  et al. 2008. New downhole fluid analyzer tool for improved reservoir characterization. SPE Res. Eval. Eng. 11:61107–16 [Google Scholar]
  29. O'Keefe M, Eriksen KO, Williams S, Stensland D, Vasques R. 29.  2006. Focused sampling of reservoir fluids achieves undetectable levels of contamination Paper SPE 101084. Presented at SPE Asia Pacific Oil & Gas Conf. Exhib., Adelaide, Aust. [Google Scholar]
  30. Mullins OC, Schroer J. 30.  2000. Real-time determination of filtrate contamination during openhole wireline sampling by optical spectroscopy Presented at SPE Annu. Tech. Conf. Exhib., Dallas, TX [Google Scholar]
  31. Mullins OC, Beck G, Cribbs ME, Terabayshi T, Kegasawa K. 31.  2001. Downhole determination of GOR on single phase fluids by optical spectroscopy Paper M. Presented at SPWLA 42nd Annu. Symp., Houston, TX [Google Scholar]
  32. Hammond PS. 32.  1991. One- and two-phase flow during fluid sampling by a wireline tool. Transp. Porous Media 6:299–330 [Google Scholar]
  33. Elshahawi H, Shyamalan R, Zuo JY, Dong C, Mullins OC. 33.  et al. 2013. Advanced reservoir evaluation using downhole fluid analysis and asphaltene Flory-Huggins-Zuo equation of state Presented at SPWLA Annu. Symp., New Orleans, LA [Google Scholar]
  34. Ralston CY, Wu X, Mullins OC. 34.  1996. Quantum yields of crude oils. Appl. Spectrosc. 50:1563–68 [Google Scholar]
  35. Downare TD, Mullins OC. 35.  1995. Visible and near-infrared fluorescence of crude oils. Appl. Spectrosc. 49:754–64 [Google Scholar]
  36. Mullins OC, Martínez-Haya B, Marshall AG. 36.  2008. Contrasting perspective on asphaltene molecular weight. This comment vs the overview of A.A. Herod, K.D. Bartle, and R. Kandiyoti. Energy Fuels 22:1765–73 [Google Scholar]
  37. Mullins OC. 37.  2007. Rebuttal to comment by Professors Herod, Kandiyoti, and Bartle on “Molecular size and weight of asphaltene and asphaltene solubility fractions from coals, crude oils and bitumen.”. Fuel 86:309–12 [Google Scholar]
  38. Groenzin H, Mullins OC. 38.  1999. Asphaltene molecular size and structure. J. Phys. Chem. A 103:11237–45 [Google Scholar]
  39. Groenzin H, Mullins OC. 39.  2000. Molecular sizes of asphaltenes from different origin. Energy Fuels 14:677 [Google Scholar]
  40. Buenrostro-Gonzalez E, Groenzin H, Lira-Galeana C, Mullins OC. 40.  2001. The overriding chemical principles that define asphaltenes. Energy Fuels 15:972–78 [Google Scholar]
  41. Buch L, Groenzin H, Buenrostro-Gonzalez E, Andersen SI, Lira-Galeana C, Mullins OC. 41.  2003. Effect of hydrotreatment on asphaltene fractions. Fuel 82:1075 [Google Scholar]
  42. Groenzin H, Mullins OC, Eser S, Mathews J, Yang M-G, Jones D. 42.  2003. Molecular size of asphaltene solubility fractions. Energy Fuel 17:498–503 [Google Scholar]
  43. Mullins OC. 43.  2009. Rebuttal of Strausz et al. regarding time-resolved fluorescence depolarization. Energy Fuels 23:2845–54 [Google Scholar]
  44. Andrews AB, Guerra R, Mullins OC, Sen PN. 44.  2006. Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. J. Phys. Chem. A 110:8095–97 [Google Scholar]
  45. Guerra R, Andrews AB, Mullins OC, Sen PN. 45.  2007. Comparison of asphaltene molecular diffusivity of various asphaltenes by fluorescence correlation spectroscopy. Fuel 86:2016–20 [Google Scholar]
  46. Schneider M, Andrews AB, Mitra-Kirtley S, Mullins OC. 46.  2007. Asphaltene molecular size from translational diffusion constant by fluorescence correlation spectroscopy. Energy Fuels 21:2875–82 [Google Scholar]
  47. Freed DE, Lisitza NV, Sen PN, Song YQ. 47.  2009. A study of asphaltene nanoaggregation by NMR. Energy Fuels 23:1189–93 [Google Scholar]
  48. Wargadalam VJ, Norinaga K, Iino M. 48.  2002. Size and shape of a coal asphaltene studied by viscosity and diffusion coefficient measurements. Fuel 81:1403–7 [Google Scholar]
  49. Hortal AR, Martínez-Haya B, Lobato MD, Pedrosa JM, Lago S. 49.  2006. On the determination of molecular weight distributions of asphaltenes and their aggregates in laser desorption ionization experiments. J. Mass Spectrom. 41:960–68 [Google Scholar]
  50. Martínez-Haya B, Hortal AR, Hurtado PM, Lobato MD, Pedrosa JM. 50.  2007. Laser desorption/ionization determination of molecular weight distributions of polyaromatic carbonaceous compounds and their aggregates. J. Mass Spectrom. 42:701–13 [Google Scholar]
  51. Hortal AR, Hurtado PM, Martínez-Haya B, Mullins OC. 51.  2007. Molecular weight distributions of coal and petroleum asphaltenes from laser desorption ionization experiments. Energy Fuels 21:2863–68 [Google Scholar]
  52. Pomerantz AE, Hammond MR, Morrow AL, Mullins OC, Zare RN. 52.  2008. Two-step laser mass spectrometry of asphaltenes. J. Am. Chem. Soc. 130:237216–17 [Google Scholar]
  53. Pomerantz AE, Hammond MR, Morrow AL, Mullins OC, Zare RN. 53.  2009. Asphaltene molecular weight distribution determined by two-step laser mass spectrometry. Energy Fuels 23:1162–68 [Google Scholar]
  54. Sabbah H, Morrow AL, Pomerantz AE, Zare RN. 54.  2011. Evidence for island structures as the dominant architecture of asphaltenes. Energy Fuels 25:1597–604 [Google Scholar]
  55. Wu Q, Pomerantz AE, Mullins OC, Zare RN. 55.  2013. Minimization of fragmentation and aggregation by laser desorption laser ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 24:71116–22 [Google Scholar]
  56. Pinkston DS, Duan P, Gallardo VA, Habicht SC, Tan X. 56.  et al. 2009. Analysis of asphaltenes and asphaltene model compounds by laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 23:5564–70 [Google Scholar]
  57. Borton D, Pinkston DS, Hurt MR, Tan X, Azyat K. 57.  et al. 2010. Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry. Energy Fuels 24:105548–59 [Google Scholar]
  58. Hurt MR, Borton DJ, Choi HJ, Kenttämaa HI. 58.  2013. Comparison of the structures of molecules in coal and petroleum asphaltenes by using mass spectrometry. Energy Fuels 27:73653–58 [Google Scholar]
  59. McKenna AM, Donald LJ, Fitzsimmons JE, Juyal P, Spicer V. 59.  et al. 2013. Heavy petroleum composition. 3. Asphaltene aggregation. Energy Fuels 27:31246–56 [Google Scholar]
  60. Wu Q, Pomerantz AE, Mullins OC, Zare RN. 60.  2014. Laser-based mass spectrometric determination of aggregation numbers for petroleum- and coal-derived asphaltenes. Energy Fuels 28:475–82 [Google Scholar]
  61. Andrews AB, Edwards JC, Mullins OC, Pomerantz AE. 61.  2011. A comparison of coal and petroleum asphaltenes by 13C nuclear magnetic resonance and DEPT. Energy Fuels 25:3068–76 [Google Scholar]
  62. Majumdar R, Gerken M, Mikula R, Hazendonk P. 62.  Dutta 2013. Validation of the Yen-Mullins model of Athabasca oil-sands asphaltenes using solution-state 1H NMR relaxation and 2D HSQC spectroscopy. Energy Fuels 27:116528–37 [Google Scholar]
  63. Bouhadda Y, Bormann D, Sheu EY, Bendedouch D, Krallafa A, Daaou M. 63.  2007. Characterization of Algerian Hassi-Messaoud asphaltene structure using Raman spectrometry and X-ray diffraction. Fuel 86:1855–64 [Google Scholar]
  64. Abdallah WA, Yang Y. 64.  2012. Raman spectra of asphaltenes. Energy Fuels 26:116888–96 [Google Scholar]
  65. Rane JP, Harbottle D, Pauchard V, Couzis A, Banerjee S. 65.  2012. Adsorption kinetics of asphaltenes at the oil-water interface and nanoaggregation in the bulk. Langmuir 28:269986–95 [Google Scholar]
  66. Rane JP, Pauchard V, Couzis A, Banerjee S. 66.  2013. Interfacial rheology of asphaltenes at oil-water interfaces and interpretation of the equation of state. Langmuir 29:154750–59 [Google Scholar]
  67. Andrews AB, McClelland A, Korkeila O, Demidov A, Krummel A. 66.  et al. 2011. Molecular orientation of asphaltenes and PAH model compounds in Langmuir-Blodgett films using sum frequency generation spectroscopy. Langmuir 27:6049–58 [Google Scholar]
  68. Zajac GW, Sethi NK, Joseph JT. 68.  2007. Molecular imaging of asphaltenes by scanning tunneling microscopy: verification of structure from 13C and proton NMR data. Scan. Microsc. 8:463 [Google Scholar]
  69. Sharma A, Groenzin H, Tomita A, Mullins OC. 69.  2002. Probing order in asphaltenes and aromatic ring systems by HRTEM. Energy Fuels 16:490–96 [Google Scholar]
  70. Sharma A, Mullins OC. 70.  2007. Insights into molecular and aggregate structures of asphaltenes using HRTEM. See Ref. 7, Chapter 8 [Google Scholar]
  71. Scotti R, Montanari L. 71.  2005. Molecular structure and intermolecular interaction of asphaltenes by FTIR, NMR and EPR. Structures and Dynamics of Asphaltenes OC Mullins, EY Sheu 79–114 New York: Plenum Press [Google Scholar]
  72. George GN, Gorbaty ML. 72.  1989. Sulfur K-edge x-ray absorption spectroscopy of petroleum asphaltenes and model compounds. J. Am. Chem. Soc. 111:3182–86 [Google Scholar]
  73. Waldo GS, Mullins OC, Penner-Hahn JE, Cramer SP. 73.  1992. Determination of the chemical environment of sulfur in petroleum asphaltenes by X-ray absorption spectroscopy. Fuel 71:53–57 [Google Scholar]
  74. Pomerantz AE, Siefert DJ, Bake KD, Craddock PR, Mullins OC. 74.  et al. 2013. Sulfur chemistry of asphaltenes from a highly compositionally graded oil column. Energy Fuels 27:4604–8 [Google Scholar]
  75. Mitra-Kirtley S, Mullins OC, Chen J, van Elp J, George SJ, Cramer SP. 75.  1993. Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. J. Am. Chem. Soc. 115:252–58 [Google Scholar]
  76. Mullins OC. 76.  2011. The asphaltenes. Annu. Rev. Anal. Chem. 4:393–418 [Google Scholar]
  77. Karimi A, Qian K, Olmstead WN, Freund H, Yung C, Gray MR. 77.  2011. Quantitative evidence for bridged structures in asphaltenes by thin film pyrolysis. Energy Fuels 25:83581–89 [Google Scholar]
  78. Alshareef AH, Scherer A, Tan X, Azyat K, Stryker JM. 78.  et al. 2011. Formation of archipelago structures during thermal cracking implicates a chemical mechanism for the formation of petroleum asphaltenes. Energy Fuels 25:52130–36 [Google Scholar]
  79. Goncalves S, Castillo J, Fernández A, Hung J. 79.  2004. Absorbance and fluorescence spectroscopy on the aggregation behavior of asphaltene-toluene solutions. Fuel 83:1823–28 [Google Scholar]
  80. Andreatta G, Bostrom N, Mullins OC. 80.  2005. High-Q ultrasonic determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants. Langmuir 21:2728–36 [Google Scholar]
  81. Andreatta G, Goncalves CC, Buffin G, Bostrom N, Quintella CM. 81.  et al. 2005. Nanoaggregates and structure-function relations in asphaltenes. Energy Fuels 19:1282–89 [Google Scholar]
  82. Friberg SE. 82.  2007. Micellization. See Ref. 7, Chapter 7
  83. Sheu EY, Long Y, Hamza H. 83.  2007. Asphaltene self-association and precipitation in solvents—AC conductivity measurements. See Ref. 7, Chapter 10
  84. Zeng H, Song YQ, Johnson DL, Mullins OC. 84.  2009. Critical nanoaggregate concentration of asphaltenes by low frequency conductivity. Energy Fuels 23:1201–8 [Google Scholar]
  85. Goual L. 85.  2009. Impedance spectroscopy of petroleum fluids at low frequency. Energy Fuels 23:2090–94 [Google Scholar]
  86. Goual L, Sedghi M, Zeng H, Mostowfi F, McFarlane R, Mullins OC. 86.  2011. On the formation and properties of asphaltene nanoaggregates and cluster by DC-conductivity and centrifugation. Fuel 90:2480–90 [Google Scholar]
  87. Mostowfi F, Indo K, Mullins OC, McFarlane R. 87.  2009. Asphaltene nanoaggregates and the critical nanoaggregate concentration from centrifugation. Energy Fuels 23:1194–200 [Google Scholar]
  88. Barre L, Jestin J, Morisset A, Palermo T, Simon S. 88.  2009. Relation between nanoscale structure of asphaltene aggregates and their macroscopic solution properties. Oil Gas Sci. Technol. 64:617–28 [Google Scholar]
  89. Eyssautier J, Levitz P, Espinat D, Jestin J, Gummel J. 89.  et al. 2011. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering. J. Phys. Chem. B 115:6827–37 [Google Scholar]
  90. Eyssautier J, Henńaut I, Levitz P, Espinat D, Barreé L. 90.  2012. Organization of asphaltenes in a vacuum residue: a small-angle X-ray scattering (SAXS)-viscosity approach at high temperatures. Energy Fuels 26:52696–704 [Google Scholar]
  91. Eyssautier J, Espinat D, Gummel J, Levitz P, Becerra M. 91.  et al. 2011. Mesoscale organization in a physically separated vacuum residue: comparison to asphaltenes in a simple solvent. Energy Fuels 26:52680–87 [Google Scholar]
  92. Hoepfner MP, Fogler HS. 92.  2013. Multiscale scattering investigations of asphaltene cluster breakup, nanoaggregate dissociation, and molecular ordering. Langmuir 2915423–32
  93. Anisimov MA, Yudin IK, Nikitin V, Nikolaenko G, Chernoutsan A. 93.  et al. 1995. Asphaltene aggregation in hydrocarbon solutions studied by photon correlation spectroscopy. J. Phys. Chem. 99:239576–80 [Google Scholar]
  94. Yudin IK, Anisimov MA. 94.  2007. Dynamic light scattering monitoring of asphaltene aggregation in crude oils and hydrocarbon solutions. See Ref. 7, Chapter 17
  95. van der Waals JD. 95.  1873. On the continuity of the gas and liquid state. PhD Diss., Leiden, Neth. [Google Scholar]
  96. Redlich O, Kwong JNS. 96.  1949. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44:1233–44 [Google Scholar]
  97. Soave G. 97.  1972. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27:61197–203 [Google Scholar]
  98. Peng D-Y, Robinson DB. 98.  1978. The characterization of the heptanes and heavier fractions for the PGA Peng-Robinson programs GPA Res. Rep. RR-28, Gas Proc. Assoc., Tulsa, OK [Google Scholar]
  99. Peneloux A, Rauzy E, Freze R. 99.  1982. A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilib. 8:7–23 [Google Scholar]
  100. Buckley JS, Wang X, Creek JL. 100.  2007. Solubility of the least soluble asphaltenes. See Ref. 7, Chapter 16
  101. Wang JX, Buckley JS. 101.  2001. A two-component model of the onset of asphaltene flocculation in crude oils. Energy Fuels 15:1004–12 [Google Scholar]
  102. Wang JX, Creek JL, Buckley JS. 102.  2006. Screening for potential asphaltene problems Paper SPE 103137. Presented at SPE Annu. Tech. Conf. Exhib., 24–27 Sept., San Antonio, TX [Google Scholar]
  103. Creek JL, Wang J, Buckley JS. 103.  2009. Verification of asphaltene-instability-trend (ASIST) predictions for low-molecular-weight alkanes. SPE Prod. Oper. 5:360–67 [Google Scholar]
  104. Vargas FM, Gonzalez DL, Creek JL, Wang JX, Buckley J. 104.  et al. 2009. Development of a general method for modeling asphaltene stability. Energy Fuels 23:1147–54 [Google Scholar]
  105. Zuo JY, Mullins OC, Freed D, Zhang D, Dong C, Zeng H. 105.  2011. Analysis of downhole asphaltene gradients in oil reservoirs with a new bimodal asphaltene distribution function. J. Chem. Eng. Data 56:41047–58 [Google Scholar]
  106. Zuo JY, Freed D, Mullins OC, Zhang D, Gisolf A. 106.  2010. Interpretation of DFA color gradients in oil columns using the Flory-Huggins solubility model. Paper SPE 130305. Presented at the CPS/SPE Int. Oil Gas Conf. Exhib. China, 8–10 June, Beijing, China [Google Scholar]
  107. Zuo JY, Freed D, Mullins OC, Zhang D. 107.  2010. DFA profiling of oil columns with asphaltene gradients. Paper SPE 133656. Presented at SPE Annu. Tech. Conf. Exhib., 19–22 Sept., Florence, Italy [Google Scholar]
  108. Betancourt SS, Dubost FX, Mullins OC, Cribbs ME, Creek JL, Mathews SG. 108.  2007. Predicting downhole fluid analysis logs to investigate reservoir connectivity Paper SPE IPTC 11488. Presented at IPTC, 4–6 Dec., Dubai, Unit. Arab Emir. [Google Scholar]
  109. Mullins OC, Betancourt SS, Cribbs ME, Creek JL, Dubost FX. 109.  et al. 2007. Asphaltene gravitational gradient in a deepwater reservoir as determined by downhole fluid analysis. Paper SPE 106375. Presented at SPE Int. Symp. Oilfield Chem., 28 Feb.–2 March, Houston, TX [Google Scholar]
  110. Mohammadi AH, Richon D. 110.  2007. A monodisperse thermodynamic model for estimating asphaltene precipitation. AIChE J. 53:112940–47 [Google Scholar]
  111. Ting PD, Hirasaki GJ, Chapman WG. 111.  2003. Modeling of asphaltene phase behavior with the SAFT equation of state. Pet. Sci. Technol. 21:647–61 [Google Scholar]
  112. Barton AFM. 112.  1991. CRC Handbook of Solubility Parameters and Other Cohesion Parameters Boca Raton, FL: CRC Press, 2nd ed.. [Google Scholar]
  113. Zuo JY, Zhang D, Dubost F, Dong C, Mullins OC. 113.  et al. 2011. EOS-based downhole fluid characterization. SPE J. 16:1115–24 [Google Scholar]
  114. Zuo JY, Zhang D. 114.  2000. Plus fraction characterization and PVT data regression for reservoir fluids near critical conditions Paper SPE 64520. Presented at SPE Asia Pacific Oil Gas Conf. Exhib., 16–18 Oct., Brisbane, Aust. [Google Scholar]
  115. Zuo JY, Mullins OC, Dong C, Zhang D, O'Keefe M. 115.  et al. 2009. Integration of fluid log predictions and downhole fluid analysis. Paper SPE 122562. Presented at SPE Asia Pacific Oil Gas Conf. Exhib., 4–6 August, Jakarta, Indones. [Google Scholar]
  116. Zuo JY, Mullins OC, Dong C, Betancourt SS, Dubost FX. 116.  et al. 2009. Investigation of formation connectivity using asphaltene gradient log predictions coupled with downhole fluid analysis Paper SPE 124264. Presented at SPE Annu. Tech. Conf. Exhib., 4–7 October, New Orleans, LA [Google Scholar]
  117. Zuo JY, Mullins OC, Freed D, Zhang D. 117.  2010. A simple relation between densities and solubility parameters for live reservoir fluids. J. Chem. Eng. Data 55:92964–69 [Google Scholar]
  118. Zuo JY, Elshahawi H, Mullins OC, Dong C, Zhang D. 118.  et al. 2012. Asphaltene gradients and tar mat formation in reservoirs under active gas charging. Fluid Phase Equilib. 315:91–98 [Google Scholar]
  119. Zuo JY, Mullins OC, Mishra V, Garcia G, Dong C, Zhang D. 119.  2012. Asphaltene grading and tar mats in oil reservoirs. Energy Fuels 26:31670–80 [Google Scholar]
  120. Mullins OC, Zuo JY, Seifert D, Zeybek M. 120.  2013. Clusters of asphaltene nanoaggregates observed in oil reservoirs. Energy Fuels 27:1752–61 [Google Scholar]
  121. Elshahawi H, Ramaswami S, Zuo JY, Dong C, Mullins OC. 121.  et al. 2013. Advanced reservoir evaluation using downhole fluid analysis and asphaltene Flory-Huggins-Zuo equation of state Presented at SPE N. Afr. Tech. Conf. Exhib., 15–17 April, Cairo, Egypt [Google Scholar]
  122. Gisolf A, Dubost FX, Zuo YJ, Williams S, Kristoffersen J. 122.  et al. 2009. Real time integration of reservoir modeling and formation testing Paper SPE 121275. Presented at EUROPEC/EAGE Annu. Conf. Exhib., 8–11 June, Amsterdam [Google Scholar]
  123. Dong C, Petro D, Pomerantz AE, Nelson RK, Latifzai AS. 123.  et al. 2014. New thermodynamic modeling of reservoir crude oil. Fuel 117:839–50 [Google Scholar]
  124. Pastor W, Garcia G, Zuo JY, Hulme R, Goddyn X, Mullins OC. 124.  2012. Measurement and EOS modeling of large compositional gradients in heavy oils. SPWLA Paper. Presented at SPWLA 53rd Annu. Symp. June 16–20, Cartagena, Colombia

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error