Stimuli-responsive gels are vital components in the next generation of smart devices, which can sense and dynamically respond to changes in the local environment and thereby exhibit more autonomous functionality. We describe recently developed computational methods for simulating the properties of such stimuli-responsive gels in the presence of optical, chemical, and thermal gradients. Using these models, we determine how to harness light to drive shape changes and directed motion in spirobenzopyran-containing gels. Focusing on oscillating gels undergoing the Belousov-Zhabotinksy reaction, we demonstrate that these materials can spontaneously form self-rotating assemblies, or pinwheels. Finally, we model temperature-sensitive gels that encompass chemically reactive filaments to optimize the performance of this system as a homeostatic device for regulating temperature. These studies could facilitate the development of soft robots that autonomously interconvert chemical and mechanical energy and thus perform vital functions without the continuous need of external power sources.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C. 1.  et al. 2010. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9:101–13 [Google Scholar]
  2. Geryak R, Tsukruk VV. 2.  2014. Reconfigurable and actuating structures from soft materials. Soft Matter 101246–63 [Google Scholar]
  3. He XM, Aizenberg M, Kuksenok O, Zarzar LD, Shastri A. 3.  et al. 2012. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487:214–18 [Google Scholar]
  4. Yoshida R. 4.  2008. Self-oscillating polymer and gels as novel biomimetic materials. Bull. Chem. Soc. Jpn. 81:676–88 [Google Scholar]
  5. Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S. 5.  2007. Self-walking gel. Adv. Mater. 19:3480–84 [Google Scholar]
  6. Yashin VV, Balazs AC. 6.  2006. Pattern formation and shape changes in self-oscillating polymer gels. Science 314:798–801 [Google Scholar]
  7. Yashin VV, Balazs AC. 7.  2007. Theoretical and computational modeling of self-oscillating polymer gels. J. Chem. Phys. 126:124707 [Google Scholar]
  8. Yashin VV, Kuksenok O, Balazs AC. 8.  2010. Modeling autonomously oscillating chemo-responsive gels. Prog. Polym. Sci. 35:155–73 [Google Scholar]
  9. Kuksenok O, Yashin VV, Balazs AC. 9.  2008. Three-dimensional model for chemoresponsive polymer gels undergoing the Belousov-Zhabotinsky reaction. Phys. Rev. E 78:041406 [Google Scholar]
  10. Szilagyi A, Sumaru K, Sugiura S, Takagi T, Shinbo T. 10.  et al. 2007. Rewritable microrelief formation on photoresponsive hydrogel layers. Chem. Mater. 19:2730–32 [Google Scholar]
  11. Satoh T, Sumaru K, Takagi T, Kanamori T. 11.  2011. Fast-reversible light-driven hydrogels consisting of spirobenzopyran-functionalized poly(N-isopropylacrylamide). Soft Matter 7:8030–34 [Google Scholar]
  12. Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. 12.  1996. Self-oscillating gel. J. Am. Chem. Soc. 118:5134–35 [Google Scholar]
  13. Dayal P, Kuksenok O, Balazs AC. 13.  2013. Reconfigurable assemblies of active, autochemotactic gels. Proc. Natl. Acad. Sci. USA 110:431–36 [Google Scholar]
  14. Hill TL. 14.  1960. An Introduction to Statistical Thermodynamics Reading, MA: Addison-Weley [Google Scholar]
  15. Hirotsu S. 15.  1991. Softening of bulk modulus and negative Poisson's ratio near the volume phase transition of polymer gels. J. Chem. Phys. 94:3949–57 [Google Scholar]
  16. Atkin RJ, Fox N. 16.  1980. An Introduction to the Theory of Elasticity New York: Longman [Google Scholar]
  17. Onuki A. 17.  1993. Theory of phase transition in polymer gels. Adv. Polym. Sci. 109:63–121 [Google Scholar]
  18. Barriere B, Leibler L. 18.  2003. Kinetics of solvent absorption and permeation through a highly swellable elastomeric network. J. Polym. Sci. B 41:166–82 [Google Scholar]
  19. Doi M. 19.  2009. Gel dynamics. J. Phys. Soc. Jpn. 78:052001 [Google Scholar]
  20. Boissonade J. 20.  2005. Self-oscillations in chemoresponsive gels: a theoretical approach. Chaos 15:023703 [Google Scholar]
  21. Roose T, Fowler AC. 21.  2008. Network development in biological gels: role in lymphatic vessel development. Bull. Math. Biol. 70:1772–89 [Google Scholar]
  22. Satoh T, Sumaru K, Takagi T, Takai K, Kanamori T. 22.  2011. Isomerization of spirobenzopyrans bearing electron-donating and electron-withdrawing groups in acidic aqueous solutions. Phys. Chem. Chem. Phys. 13:7322–29 [Google Scholar]
  23. Kuksenok O, Balazs AC. 23.  2013. Modeling the photoinduced reconfiguration and directed motion of polymer gels. Adv. Funct. Mater. 23:4601–10 [Google Scholar]
  24. Suzuki A, Tanaka T. 24.  1990. Phase transition in polymer gels induced by visible light. Nature 346:345–47 [Google Scholar]
  25. Suzuki A. 25.  1993. Phase transition in gels of submillimeter size induced by interaction with stimuli. Adv. Polym. Sci. 110:199–240 [Google Scholar]
  26. Yoshida R, Kokufuta E, Yamaguchi T. 26.  1999. Beating polymer gels coupled with a nonlinear chemical reaction. Chaos 9:260–66 [Google Scholar]
  27. Yoshida R, Onodera S, Yamaguchi T, Kokufuta E. 27.  1999. Aspects of the Belousov-Zhabotinsky reaction in polymer gels. J. Phys. Chem. A 103:8573–78 [Google Scholar]
  28. Sakai T, Yoshida R. 28.  2004. Self-oscillating nanogel particles. Langmuir 20:1036–38 [Google Scholar]
  29. Yoshida R, Tanaka M, Onodera S, Yamaguchi T, Kokufuta E. 29.  2000. In-phase synchronization of chemical and mechanical oscillations in self-oscillating gels. J. Phys. Chem. A 104:7549–55 [Google Scholar]
  30. Yoshida R. 30.  2005. Design of functional polymer gels and their application to biomimetic materials. Curr. Org. Chem. 9:1617–41 [Google Scholar]
  31. Murase Y, Maeda S, Hashimoto S, Yoshida R. 31.  2009. Design of a mass transport surface utilizing peristaltic motion of a self-oscillating gel. Langmuir 25:483–89 [Google Scholar]
  32. Shinohara S, Seki T, Sakai T, Yoshida R, Takeoka Y. 32.  2008. Photoregulated wormlike motion of a gel. Angew. Chem. Int. Ed. 47:9039–43 [Google Scholar]
  33. Shen J, Pullela S, Marquez M, Cheng ZD. 33.  2007. Ternary phase diagram for the Belousov-Zhabotinsky reaction-induced mechanical oscillation of intelligent PNIPAM colloids. J. Phys. Chem. A 111:12081–85 [Google Scholar]
  34. Tateyama S, Shibuta Y, Yoshida R. 34.  2008. Direction control of chemical wave propagation in self-oscillating gel array. J. Phys. Chem. B 112:1777–82 [Google Scholar]
  35. Maeda S, Hara Y, Yoshida R, Hashimoto S. 35.  2008. Peristaltic motion of polymer gels. Angew. Chem. Int. Ed. 47:6690–93 [Google Scholar]
  36. Maeda S, Hara Y, Yoshida R, Hashimoto S. 36.  2008. Control of the dynamic motion of a gel actuator driven by the Belousov-Zhabotinsky reaction. Macromol. Rapid Commun. 29:401–5 [Google Scholar]
  37. Suzuki D, Yoshida R. 37.  2008. Temporal control of self-oscillation for microgels by cross-linking network structure. Macromolecules 41:5830–38 [Google Scholar]
  38. Suzuki D, Yoshida R. 38.  2008. Effect of initial substrate concentration of the Belousov-Zhabotinsky reaction on self-oscillation for microgel system. J. Phys. Chem. B 112:12618–24 [Google Scholar]
  39. Sasaki S, Koga S, Yoshida R, Yamaguchi T. 39.  2003. Mechanical oscillation coupled with the Belousov-Zhabotinsky reaction in gel. Langmuir 19:5595–600 [Google Scholar]
  40. Miyakawa K, Sakamoto F, Yoshida R, Kokufuta E, Yamaguchi T. 40.  2000. Chemical waves in self-oscillating gels. Phys. Rev. E 62:793–98 [Google Scholar]
  41. Belousov BP. 41.  1959. Collection of Short Papers on Radiation Medicine Moscow: Medgiz [Google Scholar]
  42. Zaikin AN, Zhabotinsky AM. 42.  1970. Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225:535–37 [Google Scholar]
  43. Smith ML, Heitfeld K, Slone C, Vaia RA. 43.  2012. Autonomic hydrogels through postfunctionalization of gelatin. Chem. Mater. 24:3074–80 [Google Scholar]
  44. Kramb RC, Buskohl PR, Slone C, Smith ML, Vaia RA. 44.  2014. Autonomic composite hydrogels by reactive printing: materials and oscillatory response. Soft Matter 91329–36 [Google Scholar]
  45. Konotop IY, Nasimova IR, Rambidi NG, Khokhlov AR. 45.  2011. Chemomechanical oscillations in polymer gels: effect of the size of samples. Polym. Sci. Ser. B 53:26–30 [Google Scholar]
  46. Konotop IY, Nasimova IR, Rambidi NG, Khokhlov AR. 46.  2009. Self-oscillatory systems based on polymer gels. Polym. Sci. Ser. B 51:383–88 [Google Scholar]
  47. Yuan P, Kuksenok O, Gross DE, Balazs AC, Moore JS, Nuzzo RG. 47.  2013. UV patternable thin film chemistry for shape and functionally versatile self-oscillating gels. Soft Matter 9:1231–43 [Google Scholar]
  48. Tyson JJ, Fife PC. 48.  1980. Target patterns in a realistic model of the Belousov–Zhabotinskii reaction. J. Chem. Phys. 73:2224–37 [Google Scholar]
  49. Tyson JJ. 49.  1985. A quantitative account of oscillations, bistability, and traveling waves in the Belousov-Zhabotinksii reaction. Oscillations and Traveling Waves in Chemical Systems RJ Field, M Burger 93–144 New York: Wiley [Google Scholar]
  50. Krug HJ, Pohlmann L, Kuhnert L. 50.  1990. Analysis of the modified complete Oregonator accounting for oxygen sensitivity and photosensitivity of Belousov-Zhabotinsky systems. J. Phys. Chem. 94:4862–66 [Google Scholar]
  51. Steinbock O, Zykov V, Müller SC. 51.  1993. Control of spiral-wave dynamics in active media by periodic modulation of excitability. Nature 366:322–24 [Google Scholar]
  52. Zykov VS, Steinbock O, Müller SC. 52.  1994. External forcing of spiral waves. Chaos 4:509–18 [Google Scholar]
  53. Zykov VS, Bordiougov G, Brandtstadter H, Gerdes I, Engel H. 53.  2004. Global control of spiral wave dynamics in an excitable domain of circular and elliptical shape. Phys. Rev. Lett. 92:018304 [Google Scholar]
  54. Costello B, Adamatzky A, Jahan I, Zhang LA. 54.  2011. Towards constructing one-bit binary adder in excitable chemical medium. Chem. Phys. 381:88–99 [Google Scholar]
  55. Dayal P, Kuksenok O, Balazs AC. 55.  2010. Designing autonomously motile gels that follow complex paths. Soft Matter 6:768–73 [Google Scholar]
  56. Dayal P, Kuksenok O, Balazs AC. 56.  2009. Using light to guide the self-sustained motion of active gels. Langmuir 25:4298–301 [Google Scholar]
  57. Yashin VV, Suzuki S, Yoshida R, Balazs AC. 57.  2012. Controlling the dynamic behavior of heterogeneous self-oscillating gels. J. Mater. Chem. 22:13625–36 [Google Scholar]
  58. Smith IM, Griffiths DV. 58.  2004. Programming the Finite Element Method Chichester, UK: Wiley [Google Scholar]
  59. Zienkiewicz OC, Taylor RL. 59.  2000. The Finite Element Method Oxford, UK: Butterworth-Heinemann [Google Scholar]
  60. Chen IC, Kuksenok O, Yashin VV, Moslin RM, Balazs AC, Van Vliet KJ. 60.  2011. Shape- and size-dependent patterns in self-oscillating polymer gels. Soft Matter 7:3141–46 [Google Scholar]
  61. Kuksenok O, Yashin VV, Kinoshita M, Sakai T, Yoshida R, Balazs AC. 61.  2011. Exploiting gradients in cross-link density to control the bending and self-propelled motion of active gels. J. Mater. Chem. 21:8360–71 [Google Scholar]
  62. Marrink SJ, de Vries AH, Mark AE. 62.  2004. Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108:750–60 [Google Scholar]
  63. Guenther M, Gerlach G, Wallmersperger T. 63.  2009. Non-linear effects in hydrogel-based chemical sensors: experiment and modeling. J. Intell. Mater. Syst. Struct. 20:949–61 [Google Scholar]
  64. Dayal P, Kuksenok O, Bhattacharya A, Balazs AC. 64.  2012. Chemically-mediated communication in self-oscillating, biomimetic cilia. J. Mater. Chem. 22:241–50 [Google Scholar]
  65. Deb D, Kuksenok O, Dayal P, Balazs AC. 65.  2014. Forming self-rotating pinwheels from assemblies of oscillating polymer gels. Mater. Horiz. 1:125–32 [Google Scholar]
  66. Leroux JC, Siegel RA. 66.  1999. Autonomous gel enzyme oscillator fueled by glucose: preliminary evidence for oscillations. Chaos 9:267–75 [Google Scholar]
  67. Siegel RA. 67.  2009. Autonomous rhythmic drug delivery systems based on chemical and biochemomechanical oscillators. Chemomechanical Instabilities in Responsive Materials P Borckmans, P De Kepper, AR Khokhlov, S Métens 175–201 Dordrecht, Neth.: Springer [Google Scholar]
  68. Boissonade J. 68.  2003. Simple chemomechanical process for self-generation of rhythms and forms. Phys. Rev. Lett. 90:188302 [Google Scholar]
  69. Horvath J, Szalai I, Boissonade J, De Kepper P. 69.  2011. Oscillatory dynamics induced in a responsive gel by a non-oscillatory chemical reaction: experimental evidence. Soft Matter 7:8462–72 [Google Scholar]
  70. Mikhailov AS, Engel A. 70.  1986. Multiple target pattern creation and synchronization phenomena. Phys. Lett. A 117:257–60 [Google Scholar]
  71. Kheowan OU, Mihaliuk E, Blasius B, Sendina-Nadal I, Showalter K. 71.  2007. Wave mediated synchronization of nonuniform oscillatory media. Phys. Rev. Lett. 98:074101 [Google Scholar]
  72. Kuksenok O, Dayal P, Bhattacharya A, Yashin VV, Deb D. 72.  et al. 2013. Chemo-responsive, self-oscillating gels that undergo biomimetic communication. Chem. Soc. Rev. 42:7257–77 [Google Scholar]
  73. Epstein IR, Vanag VK, Balazs AC, Kuksenok O, Dayal P, Bhattacharya A. 73.  2012. Chemical oscillators in structured media. Acc. Chem. Res. 45:2160–68 [Google Scholar]
  74. Lu X, Ren L, Gao Q, Zhao Y, Wang S. 74.  et al. 2013. Photophobic and phototropic movement of a self-oscillating gel. Chem. Commun. 49:7690–92 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error