1932

Abstract

Suspensions filled with rigid particles at volume-loading levels that approach their maximum packing fraction are widely encountered, especially in the energetics, ceramics, pharmaceutical, magnetics, composites, food, and personal care industries. Highly filled suspensions, regardless of industrial application, exhibit a number of common rheological and processability traits, including viscoplasticity and wall slip, that necessitate special rheometers and appropriate characterization and numerical simulation methods. Furthermore, various factors, including the dispersion and distribution of the particles and their agglomerates, the entrainment of air, the filtration-based migration of the binder phase, and the shear-induced migration of particles, play important roles and must be considered in the design and optimization of manufacturing operations for processing of highly filled suspensions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060713-040211
2014-06-07
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/5/1/annurev-chembioeng-060713-040211.html?itemId=/content/journals/10.1146/annurev-chembioeng-060713-040211&mimeType=html&fmt=ahah

Literature Cited

  1. Krieger IM, Dougherty TJ. 1.  1959. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3:137–52 [Google Scholar]
  2. Quemada D. 2.  1978. Rheology of concentrated dispersed systems II. A model for non-Newtonian shear viscosity in steady flows. Rheol. Acta 17:632–42 [Google Scholar]
  3. Kitano T, Kataoka T, Shirota T. 3.  1981. An empirical-equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheol. Acta 20:207–9 [Google Scholar]
  4. Tsenoglou C. 4.  1989. Viscoplasticity of agglomerated suspensions. Rheol. Acta 28:311–14 [Google Scholar]
  5. Qi F, Tanner R. 5.  2012. Random close packing and relative viscosity of multimodal suspensions. Rheol. Acta 51:289–302 [Google Scholar]
  6. de Gennes PG. 6.  1979. Conjectures on the transition from Poiseuille to plug flow in suspensions. J. Phys. 40:783–87 [Google Scholar]
  7. Jeffrey DJ, Acrivos A. 7.  1976. The rheological properties of suspensions of rigid particles. AIChE J. 22:417–32 [Google Scholar]
  8. Mewis J, Spaull AJ. 8.  1976. Rheology of concentrated dispersions. Adv. Colloid Interface Sci. 6:173–200 [Google Scholar]
  9. Onogi S, Matsumoto T. 9.  1981. Rheological properties of polymer solutions and melts containing suspended particles. Polym. Eng. Rev. 1:45 [Google Scholar]
  10. Metzner AB. 10.  1985. Rheology of suspensions in polymeric liquids. J. Rheol. 29:739–75 [Google Scholar]
  11. Kamal MR, Mutel A. 11.  1985. Rheological properties of suspensions in Newtonian and non-Newtonian fluids. J. Polym. Eng. 5:293–382 [Google Scholar]
  12. Khan SA, Prud'homme RK. 12.  1987. Melt rheology of filled thermoplastics. Rev. Chem. Eng. 3:205–70 [Google Scholar]
  13. Denn MM, Morris JF. 13.  2014. Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Eng. 5:203–28 [Google Scholar]
  14. Ouchiyama N, Tanaka T. 14.  1984. Porosity of a mass of solid particles having a range of sizes. Ind. Eng. Chem. Fundam. 23:490 [Google Scholar]
  15. Fiske TJ, Railkar SB, Kalyon DM. 15.  1994. Effects of segregation on the packing of symmetric and asymmetric particles with multimodal particle size distributions. Powder Technol. 81:57–64 [Google Scholar]
  16. McGeary RK. 16.  1961. Mechanical packing of spherical particles. J. Am. Ceram. Soc. 44:513–22 [Google Scholar]
  17. Doi M, Edwards SF. 17.  1986. Theory of Polymer Dynamics New York: Oxford Univ. Press [Google Scholar]
  18. Larson R. 18.  1999. Structure and Rheology of Complex Fluids New York: Oxford Univ. Press [Google Scholar]
  19. Aral B, Kalyon DM. 19.  1997. Viscoelastic material functions of noncolloidal suspensions with spherical particles. J. Rheol. 41:599–620 [Google Scholar]
  20. Montes S, White JL, Nakajima N. 20.  1988. Rheological behavior of rubber carbon black compounds in various shear flow histories. J. Non-Newton. Fluid Mech. 28:183–212 [Google Scholar]
  21. Rong S, Chaffey CE. 21.  1988. Composite viscoelasticity in glassy, transitional and molten states. II. Dynamical mechanical behavior. Rheol. Acta 27:186–96 [Google Scholar]
  22. Matsumoto T. 22.  1989. Influence of ionic strength on rheological properties of concentrated aqueous silica colloids. J. Rheol. 33:371–79 [Google Scholar]
  23. Kanai H, Navarrete RC, Macosko CW, Scriven LE. 23.  1992. Fragile networks and rheology of concentrated suspensions. Rheol. Acta 31:333–44 [Google Scholar]
  24. Shikata T, Pearson DS. 24.  1994. Viscoelastic behavior of spherical suspensions. J. Rheol. 38:601–16 [Google Scholar]
  25. Kalyon DM, Yilmazer U. 25.  1990. Rheological behavior of highly filled suspensions which exhibit slip at the wall. Polymer Rheology and Processing A Collyer, L Utracki 241–75 London: Elsevier Appl. Sci. [Google Scholar]
  26. Yoshimura AS, Prud'homme RK. 26.  1987. Response of an elastic Bingham fluid to oscillatory shear. Rheol. Acta 26:428–36 [Google Scholar]
  27. De Rosa ME, Winter HH. 27.  1994. The effect of entanglements on the rheological behavior of polybutadiene critical gels. Rheol. Acta 33:220–37 [Google Scholar]
  28. Bird RB, Dai GC, Yarusso BJ. 28.  1983. The rheology and flow of viscoplastic materials. Rev. Chem. Eng. 1:1–70 [Google Scholar]
  29. White JL. 29.  1979. A plastic-viscoelastic constitutive equation to represent the rheological behavior of concentrated suspensions of small particles in polymer melts. J. Non-Newton. Fluid Mech. 5:177–90 [Google Scholar]
  30. Utracki L. 30.  1984. The shear and elongational flow of polymer melts containing anisometric filler particles; part I. Rubber Chem. Technol. 57:507 [Google Scholar]
  31. Kitano T, Kataoka T, Nishimura T, Sakai T. 31.  1980. Relative viscosities of polymer melts filled with inorganic fillers. Rheol. Acta 19:764–69 [Google Scholar]
  32. Tsenoglou C, Kalyon DM, Gogos C. 32.  1988. A viscoelastic constitutive relationship in flowing polymer suspensions and composites. Engineering Applications of New Composites S Paipetis, Omega Sci UK: Oxon [Google Scholar]
  33. Morris JF. 33.  2009. A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta 48:909–23 [Google Scholar]
  34. Brady JF, Bossis G. 34.  1988. Stokesian dynamics. Annu. Rev. Fluid Mech. 20:111–57 [Google Scholar]
  35. Sierou A, Brady JF. 35.  2002. Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol. 46:1031 [Google Scholar]
  36. Morris JF, Katyal B. 36.  2002. Microstructure from simulated Brownian suspension flows at large shear rate. Phys. Fluids 14:1920–37 [Google Scholar]
  37. Mall-Gleissle S, Gleissle S, McKinley G, Buggisch H. 37.  2002. The normal stress behaviour of suspensions with viscoelastic matrix fluids. Rheol. Acta 41:61–76 [Google Scholar]
  38. Onogi S, Matsumoto T, Warashina Y. 38.  1973. Rheological properties of dispersions of spherical particles in polymer solutions. Trans. Soc. Rheol. 17:175–90 [Google Scholar]
  39. Yang MC, Scriven LE, Macosko CW. 39.  1986. Some rheological measurements of magnetic iron oxide suspensions in silicone oil. J. Rheol. 30:1015–29 [Google Scholar]
  40. Boger D. 40.  2013. Rheology of slurries and environmental impacts in the mining industry. Annu. Rev. Chem. Biomol. Eng. 4:239–57 [Google Scholar]
  41. Aral B, Kalyon DM, Gokturk H. 41.  1992. The effects of air incorporation in concentrated suspension rheology. Soc. Plast. Eng. ANTEC Tech. Pap. 38:2448–51 [Google Scholar]
  42. Vand V. 42.  1948. Viscosity of solutions and suspensions. I. Theory. J. Phys. Chem. 52:277–99 [Google Scholar]
  43. Vand V. 43.  1948. Viscosity of solutions and suspensions. II. Experimental determination of the viscosity-concentration function of spherical suspensions. J. Phys. Chem. 52:300–14 [Google Scholar]
  44. Reiner M. 44.  1960. Deformation, Strain and Flow London: H.K. Lewis [Google Scholar]
  45. Cohen Y, Metzner AB. 45.  1985. Apparent slip flow of polymer solutions. J. Rheol. 29:67–102 [Google Scholar]
  46. Yilmazer U, Kalyon DM. 46.  1989. Slip effects in capillary and parallel disk torsional flows of highly filled suspensions. J. Rheol. 33:1197–212 [Google Scholar]
  47. Hartman Kok PJA, Kazarian SG, Lawrence CJ, Briscoe BJ. 47.  2002. Near-wall particle depletion in a flowing colloidal suspension. J. Rheol. 46:481–93 [Google Scholar]
  48. Tabuteau H, Baudez JC, Bertrand F, Coussot P. 48.  2004. Mechanical characteristics and origin of wall slip in pasty biosolids. Rheol. Acta 43:168–74 [Google Scholar]
  49. Kalyon D. 49.  2005. Apparent slip and viscoplasticity of concentrated suspensions. J. Rheol. 49:621–40 [Google Scholar]
  50. Ballesta P, Petekidis G, Isa L, Poon WCK, Besseling R. 50.  2012. Wall slip and flow of concentrated hard-sphere colloidal suspensions. J. Rheol. 56:1005–37 [Google Scholar]
  51. Jana S, Kapoor B, Acrivos A. 51.  1995. Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles. J. Rheol. 39:1123–32 [Google Scholar]
  52. Soltani F, Yilmazer U. 52.  1998. Slip velocity and slip layer thickness in flow of concentrated suspensions. J. Appl. Polym. Sci. 70:515–22 [Google Scholar]
  53. Aral B, Kalyon DM. 53.  1994. Effects of temperature and surface roughness on time-dependent development of wall slip in torsional flow of concentrated suspensions. J. Rheol. 38:957–72 [Google Scholar]
  54. Mooney M. 54.  1931. Explicit formulas for slip and fluidity. J. Rheol. 2:210–22 [Google Scholar]
  55. Aktas S, Kalyon DM, Marín-Santibáñez BM, Pérez-González J. 55.  2014. Shear viscosity and wall slip behavior of a viscoplastic hydrogel. J. Rheol. 582513–35 [Google Scholar]
  56. Ramamurthy AV. 56.  1986. Wall slip in viscous fluids and influence of materials of construction. J. Rheol. 30:337–57 [Google Scholar]
  57. Kalika DS, Denn MM. 57.  1987. Wall slip and extrudate distortion in linear low-density polyethylene. J. Rheol. 31:815–34 [Google Scholar]
  58. Hatzikiriakos SG, Dealy JM. 58.  1991. Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J. Rheol. 35:497–523 [Google Scholar]
  59. Hatzikiriakos SG, Dealy JM. 59.  1992. Wall slip of molten high density polyethylenes. II. Capillary rheometer studies. J. Rheol. 36:703–41 [Google Scholar]
  60. Migler KB, Hervet H, Leger L. 60.  1993. Slip transition of a polymer melt under shear stress. Phys. Rev. Lett. 70:287–90 [Google Scholar]
  61. Chen Y, Kalyon DM, Bayramli E. 61.  1993. Effects of surface roughness and the chemical structure of materials of construction on wall slip behavior of linear low density polyethylene in capillary flow. J. Appl. Polym. Sci. 50:1169–77 [Google Scholar]
  62. Denn MM. 62.  2001. Extrusion instabilities and wall slip. Annu. Rev. Fluid Mech. 33:265–87 [Google Scholar]
  63. Gevgilili H, Kalyon DM. 63.  2001. Step strain flow: wall slip and other error sources. J. Rheol. 45:467–75 [Google Scholar]
  64. Denn MM. 64.  2008. Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer New York: Cambridge Univ. Press [Google Scholar]
  65. Brochard F, De Gennes PG. 65.  1992. Shear dependent slippage at polymer/solid interface. Langmuir 8:3033–37 [Google Scholar]
  66. Léger L, Hervet H, Massey G. 66.  1997. The role of attached polymer molecules in wall slip. Trends Polym. Sci. 5:40–45 [Google Scholar]
  67. Kalyon D, Gevgilili H. 67.  2003. Wall slip and extrudate distortion of three polymer melts. J. Rheol. 47:683–99 [Google Scholar]
  68. Kissi NE, Piau JM. 68.  1990. The different capillary flow regimes of entangled polydimethylsiloxane polymers: macroscopic slip at the wall, hysteresis and cork flow. J. Non-Newton. Fluid Mech. 37:55–94 [Google Scholar]
  69. Kalyon D, Gevgilili H, Shah A. 69.  2004. Detachment of the polymer melt from the roll surface: data from a shear roll extruder. Int. Polym. Process. 19:129–38 [Google Scholar]
  70. Tang HS, Kalyon DM. 70.  2004. Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers. Rheol. Acta 43:80–88 [Google Scholar]
  71. Tang HS, Kalyon DM. 71.  2008. Unsteady circular tube flow of compressible polymeric liquids subject to pressure-dependent wall slip. J. Rheol. 52:507–26 [Google Scholar]
  72. Tang HS, Kalyon DM. 72.  2008. Time-dependent tube flow of compressible suspensions subject to pressure dependent wall slip: ramifications on development of flow instabilities. J. Rheol. 52:1069–90 [Google Scholar]
  73. Fujiyama M, Inata H. 73.  2002. Melt fracture behavior of polypropylene-type resins with narrow molecular weight distribution: II. Suppression of sharkskin by addition of adhesive resins. J. Appl. Polym. Sci. 84:2120–27 [Google Scholar]
  74. Vinogradov GV, Ivanova LI. 74.  1967. Viscous properties of polymer melts and elastomers exemplified by ethylene-propylene copolymer. Rheol. Acta 6:209–22 [Google Scholar]
  75. Person TJ, Denn MM. 75.  1997. The effect of die materials and pressure-dependent slip on the extrusion of linear low-density polyethylene. J. Rheol. 41:249–65 [Google Scholar]
  76. Kumar A, Graham M. 76.  1998. Effect of pressure-dependent slip on flow curve multiplicity. Rheol. Acta 37:245–55 [Google Scholar]
  77. Bolton B, Middleman S. 77.  1980. Air entrainment in a roll coating system. Chem. Eng. Sci. 35:597–601 [Google Scholar]
  78. Canedo EL. 78.  1985. Flow and mass transfer in driven cavities with a free surface PhD Thesis, Univ. Del. [Google Scholar]
  79. Kalyon DM, Yazici R, Jacob C, Aral B, Sinton S. 79.  1991. Effects of air entrainment on the rheology of concentrated suspensions during continuous processing. Polym. Eng. Sci. 31:1386–92 [Google Scholar]
  80. Kalyon DM, Jacob C, Yaras P. 80.  1991. An experimental study of the degree of fill and melt densification in fully-intermeshing, co-rotating twin screw extruders. Plast. Rubber Comp. Proc. Appl. 16:193–200 [Google Scholar]
  81. Kalyon DM, Gokturk H, Yaras P, Aral B. 81.  1995. Motion analysis of development of wall slip during die flow of concentrated suspensions. Soc. Plast. Eng. ANTEC Tech. Pap. 41:1130–34 [Google Scholar]
  82. Aral B, Kalyon DM. 82.  1994. Rheology and extrudability of very concentrated suspensions: effects of vacuum imposition. Plast. Rubber Comp. Proc. Appl. 24:201–10 [Google Scholar]
  83. Abbott JR, Tetlow N, Graham AL, Altobelli SA, Fukushima E. 83.  et al. 1991. Experimental observations of particle migration in concentrated suspensions. Couette flow. J. Rheol. 35:773–96 [Google Scholar]
  84. Sinton SW, Chow AW. 84.  1991. NMR flow imaging of fluids and solid suspensions in Poiseuille flow. J. Rheol. 35:735–72 [Google Scholar]
  85. Maneval J, McCarthy K, McCarthy M, Powell R. 85.  1996. Nuclear magnetic resonance imaging rheometer. US Patent No. 5532593
  86. Altobelli SA, Fukushima E, Mondy LA. 86.  1997. Nuclear magnetic resonance imaging of particle migration in suspensions undergoing extrusion. J. Rheol. 41:1105–16 [Google Scholar]
  87. Arola DF, Barrall GA, Powell RL, McCarthy KL, McCarthy MJ. 87.  1997. Use of nuclear magnetic resonance imaging as a viscometer for process monitoring. Chem. Eng. Sci. 52:2049–57 [Google Scholar]
  88. Raynaud JS, Moucheront P, Bertrand F, Guilbaud JP, Coussot P. 88.  2002. Direct determination by nuclear magnetic resonance of the thixotropic and yielding behavior of suspensions. J. Rheol. 46:709–32 [Google Scholar]
  89. Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP. 89.  et al. 2002. Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys. Rev. Lett. 88:218301 [Google Scholar]
  90. Moraczewski T, Tang H, Shapley NC. 90.  2005. Flow of a concentrated suspension through an abrupt axisymmetric expansion measured by nuclear magnetic resonance imaging. J. Rheol. 49:1409–28 [Google Scholar]
  91. Bonn D, Rodts S, Groenink M, Rafaï S, Shahidzadeh-Bonn N, Coussot P. 91.  2008. Some applications of magnetic resonance imaging in fluid mechanics: complex flows and complex fluids. Annu. Rev. Fluid Mech. 40:209–33 [Google Scholar]
  92. Pérez-González J, López-Durán JJ, Marín-Santibáñez BM, Rodríguez-González F. 92.  2012. Rheo-PIV of a yield-stress fluid in a capillary with slip at the wall. Rheol. Acta 51:937–46 [Google Scholar]
  93. Kalyon DM, Yaras P, Aral B, Yilmazer UY. 93.  1993. Rheological behavior of a concentrated suspension: a solid rocket fuel simulant. J. Rheol. 37:35–53 [Google Scholar]
  94. Wang Z, Lam YC, Chen X, Joshi SC. 94.  2010. Viscosity corrections for concentrated suspension in capillary flow with wall slip. AIChE J. 56:1447–55 [Google Scholar]
  95. Kalyon DM, Gokturk HS. 95.  1994. Adjustable gap rheometer. US Patent No. 5,277,058
  96. Kalyon DM, Gokturk HS, Boz I. 96.  1997. An adjustable gap in-line rheometer. Soc. Plast. Eng. ANTEC Tech. Pap. 43:2283–88 [Google Scholar]
  97. Kalyon D, Gevgilili H, Kowalczyk J, Prickett S, Murphy C. 97.  2006. Use of adjustable-gap on-line and off-line slit rheometers for the characterization of the wall slip and shear viscosity behavior of energetic formulations. J. Energ. Mater. 24:175–93 [Google Scholar]
  98. Baek S. 98.  2007. Micro slit viscometer with monolithically integrated pressure sensors. US Patent No. 7290441
  99. Windhab E, Gleissle W. 99.  1984. The flow behavior of highly concentrated suspensions determined with a new shear- and slip flow separating method. Proc. IX Congr. Rheol. Acapulco, Mex: Univ. Nac. Auton. Mex. [Google Scholar]
  100. O'Donovan EJ, Tanner RI. 100.  1984. Numerical study of the Bingham squeeze film problem. J. Non-Newton. Fluid Mech. 15:75–83 [Google Scholar]
  101. Kalyon DM, Tang H. 101.  2007. Inverse problem solution of squeeze flow for parameters of generalized Newtonian fluid and wall slip. J. Non-Newton. Fluid Mech. 143:133–40 [Google Scholar]
  102. Lipscomb GG, Denn MM. 102.  1984. Flow of Bingham fluids in complex geometries. J. Non-Newton. Fluid Mech. 15:337–46 [Google Scholar]
  103. Silliman WJ, Scriven LE. 103.  1980. Separating flow near a static contact line: slip at a wall and shape of free surface. J. Comput. Phys. 34:287 [Google Scholar]
  104. Ji Z, Gotsis A, Kalyon DM. 104.  1990. Single screw extrusion processing of highly filled suspensions including wall slip. Soc. Plast. Eng. ANTEC Tech. Pap. 36:160–63 [Google Scholar]
  105. Lawal A, Kalyon DM. 105.  1994. A non-isothermal model of single screw extrusion of generalized Newtonian fluids. Numer. Heat Transf. 26:103–21 [Google Scholar]
  106. Lawal A, Railkar S, Kalyon DM. 106.  2000. Mathematical modeling of three-dimensional die flows of viscoplastic fluids with wall slip. J. Reinf. Plast. Compos. 19:1483–92 [Google Scholar]
  107. White JL, Han MH, Nakajima N, Brzoskowski R. 107.  1991. The influence of materials of construction on biconical rotor and capillary measurements of shear viscosity of rubber and its compounds and considerations of slippage. J. Rheol. 35:167–89 [Google Scholar]
  108. Lawal A, Kalyon DM, Yilmazer U. 108.  1993. Extrusion and lubrication flows of viscoplastic fluids with wall slip. Chem. Eng. Commun. 122:127 [Google Scholar]
  109. Ferrás LI, Nóbrega JM, Pinto FT. 109.  2012. Analytical solutions for Newtonian and inelastic non-Newtonian flows with wall slip. J. Non-Newton. Fluid Mech. 175–76:76–88 [Google Scholar]
  110. Lawal A, Kalyon DM. 110.  1998. Squeezing flow of viscoplastic fluids subject to wall slip. Polym. Eng. Sci. 38:1793–804 [Google Scholar]
  111. Lawal A, Kalyon DM. 111.  2000. Compressive squeeze flow of viscoplastic fluids with apparent wall slip. Int. Polym. Process. 15:63–71 [Google Scholar]
  112. Lawal A, Kalyon DM. 112.  1999. Analysis of nonisothermal screw extrusion processing of viscoplastic fluids with significant backflow. Chem. Eng. Sci. 54:999–1013 [Google Scholar]
  113. Lawal A, Kalyon DM. 113.  1997. Viscous heating in nonisothermal die flows of viscoplastic fluids with wall slip. Chem. Eng. Sci. 52:1323–37 [Google Scholar]
  114. Kalyon D. 114.  2010. An analytical model for steady coextrusion of viscoplastic fluids in thin slit dies with wall slip. Polym. Eng. Sci. 50:652–64 [Google Scholar]
  115. Kalyon D, Malik M. 115.  2012. Axial laminar flow of viscoplastic fluids in a concentric annulus subject to wall slip. Rheol. Acta 51:805–20 [Google Scholar]
  116. Tang HS. 116.  2012. Analysis on creeping channel flows of compressible fluids subject to wall slip. Rheol. Acta 51:421–39 [Google Scholar]
  117. Damianou Y, Georgiou GC, Moulitsas I. 117.  2013. Combined effects of compressibility and slip in flows of a Herschel-Bulkley fluid. J. Non-Newton. Fluid Mech. 193:89–102 [Google Scholar]
  118. Bercovier M, Engelman M. 118.  1980. A finite element method for incompressible non-Newtonian flows. J. Comput. Phys. 36:313–26 [Google Scholar]
  119. Papanastasiou TC. 119.  1987. Flow of materials with yield. J. Rheol. 31:385–404 [Google Scholar]
  120. Burgos G, Alexandrou A, Antov V. 120.  1999. On the determination of yield surfaces in Herschel–Bulkley fluids. J. Rheol. 43:463–83 [Google Scholar]
  121. Denn MM, Bonn D. 121.  2011. Issues in the flow of yield-stress liquids. Rheol. Acta 50:307–15 [Google Scholar]
  122. Chatzimina M, Georgios CG, Argyropaidas I, Mitsoulis E, Huilgol RR. 122.  2005. Cessation of Couette and Poiseuille flows of a Bingham plastic and finite stopping time. J. Non-Newton. Fluid Mech. 129:117–27 [Google Scholar]
  123. Kalyon DM, Lawal A, Yazici R, Yaras P, Railkar S. 123.  1999. Mathematical modeling and experimental studies of twin screw extrusion of filled polymers. Polym. Eng. Sci. 39:1139–51 [Google Scholar]
  124. Malik M, Kalyon DM, Golba JC Jr. 124.  2014. Simulation of co-rotating twin screw extrusion process subject to pressure-dependent wall slip at barrel and screw surfaces: 3D FEM analysis for combinations of forward- and revers-conveying screw elements. Int. Polym. Proc. 29:51–62 [Google Scholar]
  125. Huilgol RR, Menab B, Piau JM. 125.  2002. Finite stopping time problems and rheometry of Bingham fluids. J. Non-Newton. Fluid Mech. 102:97–107 [Google Scholar]
  126. Vola D, Boscardin L, Latché JC. 126.  2003. Laminar unsteady flows of Bingham fluids: a numerical strategy and some benchmark results. J. Comput. Phys. 187:441–56 [Google Scholar]
  127. Muravleva L, Muravleva E, Georgiou GC, Mitsoulis E. 127.  2010. Numerical simulations of cessation flows of a Bingham plastic with the augmented Lagrangian method. J. Non-Newton. Fluid Mech. 165:544–50 [Google Scholar]
  128. Tadmor Z, Gogos CG. 128.  1979. Principles of Polymer Processing New York: John Wiley & Sons [Google Scholar]
  129. Kalyon D, Birinci E, Yazici R, Karuv B, Walsh S. 129.  2002. Electrical properties of composites as affected by the degree of mixedness of the conductive filler in the polymer matrix. Polym. Eng. Sci. 42:1609–17 [Google Scholar]
  130. Kalyon DM, Dalwadi D, Erol M, Birinci E, Tsenoglou C. 130.  2006. Rheological behavior of concentrated suspensions as affected by the dynamics of the mixing process. Rheol. Acta 45:641–58 [Google Scholar]
  131. Erol M, Kalyon D. 131.  2005. Assessment of the degree of mixedness of filled polymers: effects of processing histories in batch mixer and co-rotating and counter-rotating twin screw extruders. Int. Polym. Proc. 20:228–37 [Google Scholar]
  132. Eckstein E, Bailey D, Shapiro A. 132.  1997. Self-diffusion of particles in shear flow of a suspension. J. Fluid Mech. 79:191–208 [Google Scholar]
  133. Gadala-Maria F, Acrivos A. 133.  1980. Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24:799–814 [Google Scholar]
  134. Leighton D, Acrivos A. 134.  1987. Measurements of shear-induced self-diffusion in concentrated suspensions of spheres. J. Fluid Mech. 177:109–31 [Google Scholar]
  135. Leighton D, Acrivos A. 135.  1987. The shear-induced migration of particles in concentrated suspensions of spheres. J. Fluid Mech. 181:415–30 [Google Scholar]
  136. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR. 136.  1992. A constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys. Fluids A 4:30–40 [Google Scholar]
  137. Allende M, Kalyon D. 137.  2000. Assessment of particle-migration effects in pressure-driven viscometric flows. J. Rheol. 44:79–90 [Google Scholar]
  138. Yilmazer U, Gogos CG, Kalyon DM. 138.  1989. Mat formation and unstable flows of highly filled suspensions in capillaries and continuous processors. Polym. Compos. 10:242–48 [Google Scholar]
  139. Yaras P, Kalyon DM, Yilmazer U. 139.  1994. Flow instabilities in capillary flow of concentrated suspensions. Rheol. Acta 33:48–59 [Google Scholar]
  140. Delhaye N, Poitou A, Chaouche M. 140.  2000. Squeeze flow of highly concentrated suspensions of spheres. J. Non-Newton. Fluid Mech. 94:67–74 [Google Scholar]
  141. Kaci A, Ouari N, Racineux G, Chaouchea M. 141.  2011. Flow and blockage of highly concentrated granular suspensions in non-Newtonian fluid. Eur. J. Mech. B Fluids 30:129–34 [Google Scholar]
  142. Bi D, Zhang J, Chakraborty B, Behringer R. 142.  2011. Jamming by shear. Nature 480:355–58 [Google Scholar]
  143. Yazici R, Kalyon DM. 143.  2004. Method and apparatus for x-ray analysis of particle size. US Patent No. 6,751,287
  144. Kalyon D. 144.  2006. An overview of the rheological behavior and characterization of energetic formulations: ramifications on safety and product quality. J. Energ. Mat. 24:213–45 [Google Scholar]
  145. Kalyon D, Gevgilili H, Kowalczyk J, Prickett S, Murphy C. 145.  2006. Use of adjustable-gap on-line and off-line slit rheometers for the characterization of the wall slip and shear viscosity behavior of energetic formulations. J. Energ. Mat. 24:175–93 [Google Scholar]
  146. Kalyon D, Tang H, Karuv B. 146.  2006. Squeeze flow rheometry for rheological characterization of energetic formulations. J. Energ. Mat. 24:195–202 [Google Scholar]
  147. Kowalczyk J, Malik M, Kalyon D, Gevgilili H, Fair D. 147.  et al. 2007. Safety in design and manufacturing of extruders used for the continuous processing of energetic formulations. J. Energ. Mat. 25:247–71 [Google Scholar]
  148. Aktas S, Gevgilili H, Kucuk I, Sunol A, Kalyon D. 148.  2013. Extrusion of poly(ether imide) foams using pressurized CO2: effects of imposition of supercritical conditions and nanosilica modifiers. Polym. Eng. Sci. In press. doi:10.1002/pen.23753 [Google Scholar]
  149. Kazarian S. 149.  2000. Polymer processing with supercritical fluids. Polym. Sci. C 42:78–101 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060713-040211
Loading
/content/journals/10.1146/annurev-chembioeng-060713-040211
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error