Many household and industrially important soft colloidal materials, such as pastes, concentrated suspensions and emulsions, foams, slurries, inks, and paints, are very viscous and do not flow over practical timescales until sufficient stress is applied. This behavior originates from restricted mobility of the constituents arrested in disordered structures of varying length scales, termed colloidal glasses and gels. Usually these materials are thermodynamically out of equilibrium, which induces a time-dependent evolution of the structure and the properties. This review presents an overview of the rheological behavior of this class of materials. We discuss the experimental observations and theoretical developments regarding the microstructure of these materials, emphasizing the complex coupling between the deformation field and nonequilibrium structures in colloidal glasses and gels, which leads to a rich array of rheological behaviors with profound implications for various industrial processes and products.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Israelachvili JN. 1.  2010. Intermolecular and Surface Forces London: Academic [Google Scholar]
  2. Hunter GL, Weeks ER. 2.  2012. The physics of the colloidal glass transition. Rep. Prog. Phys. 75:066501 [Google Scholar]
  3. Coussot P. 3.  2007. Rheophysics of pastes: a review of microscopic modelling approaches. Soft Matter 3:528–40 [Google Scholar]
  4. Bandyopadhyay R, Liang D, Harden JL, Leheny RL. 4.  2006. Slow dynamics, aging, and glassy rheology in soft and living matter. Solid State Commun. 139:589–98 [Google Scholar]
  5. Fielding SM, Sollich P, Cates ME. 5.  2000. Aging and rheology in soft materials. J. Rheol. 44:323–69 [Google Scholar]
  6. Struik LCE. 6.  1978. Physical Aging in Amorphous Polymers and Other Materials Houston: Elsevier [Google Scholar]
  7. McKenna GB, Narita T, Lequeux F. 7.  2009. Soft colloidal matter: a phenomenological comparison of the aging and mechanical responses with those of molecular glasses. J. Rheol. 53:489–516 [Google Scholar]
  8. Di X, Win KZ, McKenna GB, Narita T, Lequeux F. 8.  et al. 2011. Signatures of structural recovery in colloidal glasses. Phys. Rev. Lett. 106:095701 [Google Scholar]
  9. Saha D, Joshi YM, Bandyopadhyay R. 9.  2014. Investigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids. Soft Matter. In press. doi:10.1039/C4SM00187G [Google Scholar]
  10. Coussot P. 10.  2005. Rheometry of Pastes, Suspensions and Granular Materials: Application in Industry and Environment Hoboken: Wiley [Google Scholar]
  11. Mewis J, Wagner NJ. 11.  2012. Colloidal Suspension Rheology Cambridge: Cambridge Univ. Press [Google Scholar]
  12. Faraday Discuss 2003. General discussion. Faraday Discuss. 123:75–97 [Google Scholar]
  13. Jones RAL. 13.  2002. Soft Condensed Matter Oxford: Oxford Univ. Press [Google Scholar]
  14. Larson RG. 14.  1999. The Structure and Rheology of Complex Fluids Oxford: Clarendon Press [Google Scholar]
  15. Pusey PN, van Megen W. 15.  1987. Observation of a glass transition in suspensions of spherical colloidal particles. Phys. Rev. Lett. 59:2083–86 [Google Scholar]
  16. Russel WB, Saville DA, Schowalter WR. 16.  1989. Colloidal Dispersions Cambridge: Cambridge Univ. Press [Google Scholar]
  17. Agarwal P, Qi H, Archer LA. 17.  2009. The ages in a self-suspended nanoparticle liquid. Nano Lett. 10:111–15 [Google Scholar]
  18. Vlassopoulos D, Fytas G. 18.  2010. From polymers to colloids: engineering the dynamic properties of hairy particles. Adv. Polym. Sci. 236:1–54 [Google Scholar]
  19. Solomon MJ, Spicer PT. 19.  2010. Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6:1391–400 [Google Scholar]
  20. Prasher R, Phelan PE, Bhattacharya P. 20.  2006. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 6:1529–34 [Google Scholar]
  21. Poon WCK, Haw MD. 21.  1997. Mesoscopic structure formation in colloidal aggregation and gelation. Adv. Colloid Interface Sci. 73:71–126 [Google Scholar]
  22. Lu PJ, Weitz DA. 22.  2013. Colloidal particles: crystals, glasses, and gels. Annu. Rev. Condens. Matter Phys. 4:217–33 [Google Scholar]
  23. Zaccarelli E, Poon WCK. 23.  2009. Colloidal glasses and gels: the interplay of bonding and caging. Proc. Natl. Acad. Sci. USA 106:15203–8 [Google Scholar]
  24. Tanaka H, Meunier J, Bonn D. 24.  2004. Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels. Phys. Rev. E 69:031404 [Google Scholar]
  25. Liu AJ, Nagel SR. 25.  1998. Jamming is not just cool any more. Nature 396:21–22 [Google Scholar]
  26. Trappe V, Prasad V, Cipelletti L, Segre PN, Weitz DA. 26.  2001. Jamming phase diagram for attractive particles. Nature 411:772–75 [Google Scholar]
  27. Meeker SP, Bonnecaze RT, Cloitre M. 27.  2004. Slip and flow in pastes of soft particles: direct observation and rheology. J. Rheol. 48:1295–320 [Google Scholar]
  28. Höhler R, Cohen-Addad S. 28.  2005. Rheology of liquid foam. J. Phys. Condens. Matter 17:R1041 [Google Scholar]
  29. Mason TG, Lacasse M-D, Grest GS, Levine D, Bibette J, Weitz DA. 29.  1997. Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys. Rev. E 56:3150–66 [Google Scholar]
  30. Joshi YM. 30.  2007. Model for cage formation in colloidal suspension of laponite. J. Chem. Phys. 127:081102 [Google Scholar]
  31. Ruzicka B, Zaccarelli E. 31.  2011. A fresh look at Laponite phase diagram. Soft Matter 7:1268–86 [Google Scholar]
  32. Shahin A, Joshi YM. 32.  2012. Physicochemical effects in aging aqueous Laponite suspensions. Langmuir 28:15674–86 [Google Scholar]
  33. Shalkevich A, Stradner A, Bhat SK, Muller F, Schurtenberger P. 33.  2007. Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions. Langmuir 23:3570–80 [Google Scholar]
  34. Utracki LA. 34.  2004. Clay-Containing Polymeric Nanocomposites Volume 1 Shawbury, UK: Rapra Technol. [Google Scholar]
  35. Ren J, Casanueva BF, Mitchell CA, Krishnamoorti R. 35.  2003. Disorientation kinetics of aligned polymer layered silicate nanocomposites. Macromolecules 36:4188–94 [Google Scholar]
  36. Shah SN, Ogugbue CC. 36.  2010. Future challenges of drilling fluids and their rheological measurements Presented at Am. Assoc. Drill. Eng. (AADE) Conf. Exhib., Houston TX [Google Scholar]
  37. Brummer R. 37.  2006. Rheology Essentials of Cosmetic and Food Emulsions Berlin: Springer [Google Scholar]
  38. McKeown SA, Mackley MR, Moggridge GD. 38.  2003. Shear-induced structural changes in a commercial surfactant-based system. Chem. Eng. Res. Des. 81:649–64 [Google Scholar]
  39. Baldewa B, Joshi YM. 39.  2011. Thixotropy and physical aging in acrylic emulsion paint. Polym. Eng. Sci. 51:2084–91 [Google Scholar]
  40. Food Agric. Organ./World Health Organ 2010. Manual on Development and Use of FAO and WHO Specifications for Pesticides Rome: World Health Organ./Food Agric. Organ. [Google Scholar]
  41. Jarny S, Roussel N, Rodts S, Bertrand F, Le Roy R, Coussot P. 41.  2005. Rheological behavior of cement pastes from MRI velocimetry. Cem. Concr. Res. 35:1873–81 [Google Scholar]
  42. Boger DV. 42.  2013. Rheology of slurries and environmental impacts in the mining industry. Annu. Rev. Chem. Biomol. Eng. 4:239–57 [Google Scholar]
  43. Cipelletti L, Ramos L. 43.  2005. Slow dynamics in glassy soft matter. J. Phys. Cond. Mat. 17:R253–R85 [Google Scholar]
  44. Viasnoff V, Jurine S, Lequeux F. 44.  2003. How are colloidal suspensions that age rejuvenated by strain application?. Faraday Discuss. 123:253–66 [Google Scholar]
  45. Viasnoff V, Lequeux F. 45.  2002. Rejuvenation and overaging in a colloidal glass under shear. Phys. Rev. Lett. 89:065701 [Google Scholar]
  46. Shahin A, Joshi YM. 46.  2012. Hyper-aging dynamics of nanoclay suspension. Langmuir 28:5826–33 [Google Scholar]
  47. Bandyopadhyay R, Liang D, Yardimci H, Sessoms DA, Borthwick MA. 47.  et al. 2004. Evolution of particle-scale dynamics in an aging clay suspension. Phys. Rev. Lett. 93:228302 [Google Scholar]
  48. Shahin A, Joshi YM. 48.  2011. Prediction of long and short time rheological behavior in soft glassy materials. Phys. Rev. Lett. 106:038302 [Google Scholar]
  49. Derec C, Ducouret G, Ajdari A, Lequeux F. 49.  2003. Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles. Phys. Rev. E 67:061403 [Google Scholar]
  50. Negi AS, Osuji CO. 50.  2009. Dynamics of internal stresses and scaling of strain recovery in an aging colloidal gel. Phys. Rev. E 80:010404 [Google Scholar]
  51. Bissig H, Romer S, Cipelletti L, Trappe V, Schurtenberger P. 51.  2003. Intermittent dynamics and hyper-aging in dense colloidal gels. Phys. Chem. Comm. 6:21–23 [Google Scholar]
  52. Coussot P, Tabuteau H, Chateau X, Tocquer L, Ovarlez G. 52.  2006. Aging and solid or liquid behavior in pastes. J. Rheol. 50:975–94 [Google Scholar]
  53. Awasthi V, Joshi YM. 53.  2009. Effect of temperature on aging and time-temperature superposition in nonergodic Laponite suspensions. Soft Matter 5:4991–96 [Google Scholar]
  54. Baldewa B, Joshi YM. 54.  2012. Delayed yielding in creep, time-stress superposition and effective time theory for a soft glass. Soft Matter 8:789–96 [Google Scholar]
  55. Kaushal M, Joshi YM. 55.  2014. Linear viscoelasticity of soft glassy materials. Soft Matter 12:1891–94 [Google Scholar]
  56. Zargar R, Nienhuis B, Schall P, Bonn D. 56.  2013. Direct measurement of the free energy of aging hard sphere colloidal glasses. Phys. Rev. Lett. 110:258301 [Google Scholar]
  57. Stiakakis E, Wilk A, Kohlbrecher J, Vlassopoulos D, Petekidis G. 57.  2010. Slow dynamics, aging, and crystallization of multiarm star glasses. Phys. Rev. E 81:020402 [Google Scholar]
  58. Manley S, Davidovitch B, Davies NR, Cipelletti L, Bailey AE. 58.  et al. 2005. Time-dependent strength of colloidal gels. Phys. Rev. Lett. 95:048302 [Google Scholar]
  59. Malkin AY, Isayev AI. 59.  2006. Rheology: Concepts, Methods, and Applications Toronto: Chemtec Publ. [Google Scholar]
  60. Ovarlez G, Coussot P. 60.  2007. Physical age of soft-jammed systems. Phys. Rev. E 76:011406 [Google Scholar]
  61. Gupta R, Baldewa B, Joshi YM. 61.  2012. Time temperature superposition in soft glassy materials. Soft Matter 8:4171–76 [Google Scholar]
  62. Dhavale TP, Jatav S, Joshi YM. 62.  2013. Thermally activated asymmetric structural recovery in a soft glassy nano-clay suspension. Soft Matter 9:7751–56 [Google Scholar]
  63. Agarwal P, Srivastava S, Archer LA. 63.  2011. Thermal jamming of a colloidal glass. Phys. Rev. Lett. 107:268302 [Google Scholar]
  64. Ovarlez G, Barral Q, Coussot P. 64.  2010. Three-dimensional jamming and flows of soft glassy materials. Nat. Mater. 9:115–19 [Google Scholar]
  65. Shaukat A, Kaushal M, Sharma A, Joshi YM. 65.  2012. Shear mediated elongational flow and yielding in soft glassy materials. Soft Matter 8:10107–14 [Google Scholar]
  66. Negi A, Osuji C. 66.  2010. Dynamics of a colloidal glass during stress-mediated structural arrest. Europhys. Lett. 90:28003 [Google Scholar]
  67. Manneville S. 67.  2008. Recent experimental probes of shear banding. Rheol. Acta 47:301–18 [Google Scholar]
  68. Isa L, Besseling R, Schofield AB, Poon WCK. 68.  2010. Quantitative imaging of concentrated suspensions under flow. Adv. Polym. Sci. 236:163–202 [Google Scholar]
  69. Pignon F, Magnin A, Piau J-M. 69.  1997. Butterfly light scattering pattern and rheology of a sheared thixotropic clay gel. Phys. Rev. Lett. 79:4689–92 [Google Scholar]
  70. Philippe AM, Baravian C, Imperor-Clerc M, Silva JD, Paineau E. 70.  et al. 2011. Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions. J. Phys. Condens. Matter 23:194112 [Google Scholar]
  71. Stellbrink J, Lonetti B, Rother G, Willner L, Richter D. 71.  2008. Shear induced structures of soft colloids: Rheo-SANS experiments on kinetically frozen PEP–PEO diblock copolymer micelles. J. Phys. Condens. Matter 20:404206 [Google Scholar]
  72. Cicuta P, Donald AM. 72.  2007. Microrheology: a review of the method and applications. Soft Matter 3:1449–55 [Google Scholar]
  73. Squires TM, Mason TG. 73.  2010. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42:413–38 [Google Scholar]
  74. Oppong FK, Coussot P, de Bruyn JR. 74.  2008. Gelation on the microscopic scale. Phys. Rev. E 78:021405 [Google Scholar]
  75. Rich JP, McKinley GH, Doyle PS. 75.  2011. Size dependence of microprobe dynamics during gelation of a discotic colloidal clay. J. Rheol. 55:273–99 [Google Scholar]
  76. Trappe V, Weitz DA. 76.  2000. Scaling of the viscoelasticity of weakly attractive particles. Phys. Rev. Lett. 85:449–52 [Google Scholar]
  77. Mason TG, Weitz DA. 77.  1995. Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys. Rev. Lett. 75:2770–73 [Google Scholar]
  78. Winter HH. 78.  2013. Glass transition as the rheological inverse of gelation. Macromolecules 46:2425–32 [Google Scholar]
  79. Ikeda A, Berthier L, Sollich P. 79.  2013. Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter 9:7669–83 [Google Scholar]
  80. Cloitre M, Borrega R, Leibler L. 80.  2000. Rheological aging and rejuvenation in microgel pastes. Phys. Rev. Lett. 85:4819–22 [Google Scholar]
  81. Joshi YM, Reddy GRK. 81.  2008. Aging in a colloidal glass in creep flow: time-stress superposition. Phys. Rev. E 77:021501 [Google Scholar]
  82. Joshi YM, Reddy GRK, Kulkarni AL, Kumar N, Chhabra RP. 82.  2008. Rheological behavior of aqueous suspensions of laponite: new insights into the ageing phenomena. Proc. R. Soc. A 464:469–89 [Google Scholar]
  83. Barnes HA. 83.  1997. Thixotropy—a review. J. Non-Newton. Fluid Mech. 70:1–33 [Google Scholar]
  84. Negi AS, Osuji CO. 84.  2010. Time-resolved viscoelastic properties during structural arrest and aging of a colloidal glass. Phys. Rev. E 82:031404 [Google Scholar]
  85. Moller P, Fall A, Chikkadi V, Derks D, Bonn D. 85.  2009. An attempt to categorize yield stress fluid behaviour. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367:5139–55 [Google Scholar]
  86. Boujlel J, Coussot P. 86.  2013. Measuring the surface tension of yield stress fluids. Soft Matter 9:5898–908 [Google Scholar]
  87. Kamble S, Pandey A, Rastogi S, Lele A. 87.  2013. Ascertaining universal features of yielding of soft materials. Rheol. Acta 52:859–65 [Google Scholar]
  88. Barnes HA. 88.  1999. The yield stress—a review or ‘παντα ρει’—everything flows?. J. Non-Newton. Fluid Mech. 81:133–78 [Google Scholar]
  89. Hill R. 89.  1950. The Mathematical Theory of Plasticity New York: Oxford Univ. Press [Google Scholar]
  90. Koumakis N, Petekidis G. 90.  2011. Two step yielding in attractive colloids: transition from gels to attractive glasses. Soft Matter 7:2456–70 [Google Scholar]
  91. Shao Z, Negi AS, Osuji CO. 91.  2013. Role of interparticle attraction in the yielding response of microgel suspensions. Soft Matter 9:5492–500 [Google Scholar]
  92. Pham KN, Petekidis G, Vlassopoulos D, Egelhaaf SU, Pusey PN, Poon WCK. 92.  2006. Yielding of colloidal glasses. Europhys. Lett. 75:624–30 [Google Scholar]
  93. Kramb RC, Zukoski CF. 93.  2011. Yielding in dense suspensions: cage, bond, and rotational confinements. J. Phys. Condens. Matter 23:035102 [Google Scholar]
  94. Sentjabrskaja T, Babaliari E, Hendricks J, Laurati M, Petekidis G, Egelhaaf SU. 94.  2013. Yielding of binary colloidal glasses. Soft Matter 9:4524–33 [Google Scholar]
  95. Kramb RC, Zukoski CF. 95.  2011. Nonlinear rheology and yielding in dense suspensions of hard anisotropic colloids. J. Rheol. 55:1069–84 [Google Scholar]
  96. Eyring H. 96.  1936. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4:283–91 [Google Scholar]
  97. Sollich P, Lequeux F, Hebraud P, Cates ME. 97.  1997. Rheology of soft glassy materials. Phys. Rev. Lett. 78:2020–23 [Google Scholar]
  98. Petekidis G, Vlassopoulos D, Pusey PN. 98.  2004. Yielding and flow of sheared colloidal glasses. J. Phys. Condens. Matter 16:S3955–63 [Google Scholar]
  99. Bandyopadhyay R, Mohan H, Joshi YM. 99.  2010. Stress relaxation in aging soft colloidal glasses. Soft Matter 6:1462–68 [Google Scholar]
  100. Wallace ML, Joós B. 100.  2006. Shear-induced overaging in a polymer glass. Phys. Rev. Lett. 96:025501 [Google Scholar]
  101. Kaushal M, Joshi YM. 101.  2013. Tailoring relaxation time spectrum in soft glassy materials. J. Chem. Phys. 139:024904 [Google Scholar]
  102. Coussot P, Nguyen QD, Huynh HT, Bonn D. 102.  2002. Viscosity bifurcation in thixotropic, yielding fluids. J. Rheol. 46:573–89 [Google Scholar]
  103. Sprakel J, Lindström SB, Kodger TE, Weitz DA. 103.  2011. Stress enhancement in the delayed yielding of colloidal gels. Phys. Rev. Lett. 106:248303 [Google Scholar]
  104. Gopalakrishnan V, Zukoski CF. 104.  2007. Delayed flow in thermo-reversible colloidal gels. J. Rheol. 51:623–44 [Google Scholar]
  105. Shukla A, Joshi YM. 105.  2009. Ageing under oscillatory stress: role of energy barrier distribution in soft glassy materials. Chem. Eng. Sci. 64:4668–74 [Google Scholar]
  106. Joshi YM, Shahin A, Cates ME. 106.  2012. Delayed solidification of soft glasses: new experiments, and a theoretical challenge. Faraday Discuss. 158:313–24 [Google Scholar]
  107. Bird RB, Armstrong RC, Hassager O. 107.  1987. Dynamics of Polymeric Liquids, Volume 1. Fluid Mechanics New York: Wiley-Intersci. [Google Scholar]
  108. Ovarlez G, Rodts S, Chateau X, Coussot P. 108.  2009. Phenomenology and physical origin of shear localization and shear banding in complex fluids. Rheol. Acta 48:831–44 [Google Scholar]
  109. Paredes J, Shahidzadeh-Bonn N, Bonn D. 109.  2011. Shear banding in thixotropic and normal emulsions. J. Phys. Condens. Matter 23:284116 [Google Scholar]
  110. Gibaud T, Frelat D, Manneville S. 110.  2010. Heterogeneous yielding dynamics in a colloidal gel. Soft Matter 6:3482–88 [Google Scholar]
  111. Moorcroft RL, Cates ME, Fielding SM. 111.  2011. Age-dependent transient shear banding in soft glasses. Phys. Rev. Lett. 106:055502 [Google Scholar]
  112. Divoux T, Tamarii D, Barentin C, Manneville S. 112.  2010. Transient shear banding in a simple yield stress fluid. Phys. Rev. Lett. 104:208301 [Google Scholar]
  113. Martin JD, Hu YT. 113.  2012. Transient and steady-state shear banding in aging soft glassy materials. Soft Matter 8:6940–49 [Google Scholar]
  114. Gibaud T, Barentin C, Taberlet N, Manneville S. 114.  2009. Shear-induced fragmentation of Laponite suspensions. Soft Matter 5:3026–37 [Google Scholar]
  115. Rodts S, Baudez JC, Coussot P. 115.  2005. From “discrete” to “continuum” flow in foams. Europhys. Lett. 69:636 [Google Scholar]
  116. Vasu KS, Krishnaswamy R, Sampath S, Sood AK. 116.  2013. Yield stress, thixotropy and shear banding in a dilute aqueous suspension of few layer graphene oxide platelets. Soft Matter 9:5874–82 [Google Scholar]
  117. Besseling R, Isa L, Ballesta P, Petekidis G, Cates ME, Poon WCK. 117.  2010. Shear banding and flow-concentration coupling in colloidal glasses. Phys. Rev. Lett. 105:268301 [Google Scholar]
  118. Aral BK, Kalyon DM. 118.  1994. Effects of temperature and surface roughness on time-dependent development of wall slip in steady torsional flow of concentrated suspensions. J. Rheol. 38:957–72 [Google Scholar]
  119. Ballesta P, Petekidis G, Isa L, Poon WCK, Besseling R. 119.  2012. Wall slip and flow of concentrated hard-sphere colloidal suspensions. J. Rheol. 56:1005–37 [Google Scholar]
  120. Ballesta P, Koumakis N, Besseling R, Poon WCK, Petekidis G. 120.  2013. Slip of gels in colloid-polymer mixtures under shear. Soft Matter 9:3237–45 [Google Scholar]
  121. Persello J, Magnin A, Chang J, Piau JM, Cabane B. 121.  1994. Flow of colloidal aqueous silica dispersions. J. Rheol. 38:1845–69 [Google Scholar]
  122. Egger H, McGrath KM. 122.  2006. Estimating depletion layer thickness in colloidal systems: correlation with oil-in-water emulsion composition. Colloids Surf. A Physicochem. Eng. Asp. 275:107–13 [Google Scholar]
  123. Plucinski J, Gupta RK, Chakrabarti S. 123.  1998. Wall slip of mayonnaises in viscometers. Rheol. Acta 37:256–69 [Google Scholar]
  124. Denkov ND, Subramanian V, Gurovich D, Lips A. 124.  2005. Wall slip and viscous dissipation in sheared foams: effect of surface mobility. Colloids Surf. A Physicochem. Eng. Aspects 263:129–45 [Google Scholar]
  125. Bertola V, Bertrand F, Tabuteau H, Bonn D, Coussot P. 125.  2003. Wall slip and yielding in pasty materials. J. Rheol. 47:1211–26 [Google Scholar]
  126. Seth JR, Cloitre M, Bonnecaze RT. 126.  2008. Influence of short-range forces on wall-slip in microgel pastes. J. Rheol. 52:1241–68 [Google Scholar]
  127. Pignon F, Magnin A, Piau JM. 127.  1996. Thixotropic colloidal suspensions and flow curves with minimum: identification of flow regimes and rheometric consequences. J. Rheol. 40:573–87 [Google Scholar]
  128. Shaukat A, Sharma A, Joshi YM. 128.  2012. Squeeze flow behavior of (soft glassy) thixotropic material. J. Non-Newton. Fluid Mech. 167–68:9–17 [Google Scholar]
  129. Seth JR, Locatelli-Champagne C, Monti F, Bonnecaze RT, Cloitre M. 129.  2012. How do soft particle glasses yield and flow near solid surfaces?. Soft Matter 8:140–48 [Google Scholar]
  130. Wagner NJ, Brady JF. 130.  2009. Shear thickening in colloidal dispersions. Phys. Today 62:27–32 [Google Scholar]
  131. Brown E, Jaeger HM. 131.  2014. Shear thickening in concentrated suspensions: phenomenology, mechanisms, and relations to jamming. Soft Condens. Matter. In press. arXiv:1307.0269 [Google Scholar]
  132. Fagan ME, Zukoski CF. 132.  1997. The rheology of charge stabilized silica suspensions. J. Rheol. 41:373–97 [Google Scholar]
  133. Hoffman RL. 133.  1972. Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. Trans. Soc. Rheol. 16:155–73 [Google Scholar]
  134. Holmes CB, Cates ME, Fuchs M, Sollich P. 134.  2005. Glass transitions and shear thickening suspension rheology. J. Rheol. 49:237–69 [Google Scholar]
  135. Seto R, Mari R, Morris JF, Denn MM. 135.  2013. Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111:218301 [Google Scholar]
  136. Head DA, Ajdari A, Cates ME. 136.  2001. Jamming, hysteresis, and oscillation in scalar models for shear thickening. Phys. Rev. E 64:061509 [Google Scholar]
  137. Cates ME. 137.  2006. Yielding and jamming of dense suspensions. Jamming, Yielding, and Irreversible Deformation in Condensed Matter MC Miguel, M Rubi 3–21 Berlin: Springer-Verlag [Google Scholar]
  138. Denn MM. 138.  1998. Are plug-flow regions possible in fluids exhibiting a yield stress?. Dynamics of Complex Fluids MJ Adams, RA Mashelkar, JRA Pearson, AR Rennie 372–78 London: Imp. Coll. Press [Google Scholar]
  139. Mewis J, Wagner NJ. 139.  2009. Thixotropy. Adv. Colloid Interface Sci. 147–48:214–27 [Google Scholar]
  140. Beris AN, Stiakakis E, Vlassopoulos D. 140.  2008. A thermodynamically consistent model for the thixotropic behavior of concentrated star polymer suspensions. J. Non-Newton. Fluid Mech. 152:76–85 [Google Scholar]
  141. Sollich P. 141.  1998. Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58:738–59 [Google Scholar]
  142. Bouchaud JP. 142.  1992. Weak ergodicity breaking and aging in disordered systems. J. Phys. I 2:1705–13 [Google Scholar]
  143. Fielding SM, Cates ME, Sollich P. 143.  2009. Shear banding, aging and noise dynamics in soft glassy materials. Soft Matter 5:2378–82 [Google Scholar]
  144. Gotze W, Sjogren L. 144.  1992. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 55:241 [Google Scholar]
  145. Siebenbürger M, Fuchs M, Winter H, Ballauff M. 145.  2009. Viscoelasticity and shear flow of concentrated, noncrystallizing colloidal suspensions: comparison with mode-coupling theory. J. Rheol. 53:707–26 [Google Scholar]
  146. Kroy K, Cates ME, Poon WCK. 146.  2004. Cluster mode-coupling approach to weak gelation in attractive colloids. Phys. Rev. Lett. 92:148302 [Google Scholar]
  147. Brader JM, Voigtmann T, Fuchs M, Larson RG, Cates ME. 147.  2009. Glass rheology: from mode-coupling theory to a dynamical yield criterion. Proc. Natl. Acad. Sci. USA 106:15186–91 [Google Scholar]
  148. Schweizer KS. 148.  2007. Dynamical fluctuation effects in glassy colloidal suspensions. Curr. Opin. Colloid Interface Sci. 12:297–306 [Google Scholar]
  149. Fuchs M, Cates ME. 149.  2009. A mode coupling theory for Brownian particles in homogeneous steady shear flow. J. Rheol. 53:957–1000 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error