A nature-inspired solution (NIS) methodology is proposed as a systematic platform for innovation and to inform transformative technology required to address Grand Challenges, including sustainable development. Scalability, efficiency, and resilience are essential to nature, as they are to engineering processes. They are achieved through underpinning fundamental mechanisms, which are grouped as recurring themes in the NIS approach: hierarchical transport networks, force balancing, dynamic self-organization, and ecosystem properties. To leverage these universal mechanisms, and incorporate them effectively into engineering design, adaptations may be needed to accommodate the different contexts of nature and engineering applications. Nature-inspired chemical engineering takes advantage of the NIS methodology for process intensification, as demonstrated here in fluidization, catalysis, fuel cell engineering, and membrane separations, where much higher performance is achieved by rigorously employing concepts optimized in nature. The same approach lends itself to other applications, from biomedical engineering to information technology and architecture.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. 1. 
    Gani R, Baldyga J, Biscans B, Brunazzi E, Charpentier JC et al. 2020. A multi-layered view of chemical and biochemical engineering. Chem. Eng. Res. Des. 155:133–45
    [Google Scholar]
  2. 2. 
    Natl. Acad. Eng 2021. NAE Grand Challenges For Engineering. http://www.engineeringchallenges.org/challenges.aspx
  3. 3. 
    United Nations 2021. The 17 goals. https://sdgs.un.org/goals
  4. 4. 
    Coppens M-O. 2002. Nature inspired chemical engineering Inaug. Lect., Oct. 11 Delft Univ. Technol. Delft, Neth:.
  5. 5. 
    Stankiewicz AI, Moulijn JA. 2000. Process intensification: transforming chemical engineering. Chem. Eng. Prog. 96:22–33
    [Google Scholar]
  6. 6. 
    Van Gerven T, Stankiewicz A. 2009. Structure, energy, synergy, time—the fundamentals of process intensification. Ind. Eng. Chem. Res. 48:2465–74
    [Google Scholar]
  7. 7. 
    Stankiewicz AI, Yan P 2019. The missing link unearthed: materials and process intensification. Ind. Eng. Chem. Res. 58:9212–22
    [Google Scholar]
  8. 8. 
    Górak A, Stankiewicz A. 2011. Intensified reaction and separation systems. Annu. Rev. Chem. Biomol. Eng. 2:431–51
    [Google Scholar]
  9. 9. 
    Bielenberg J, Palou-Rivera I. 2019. The RAPID Manufacturing Institute—reenergizing US efforts in process intensification and modular chemical processing. Chem. Eng. Proc. 138:49–54
    [Google Scholar]
  10. 10. 
    Garg N, Kontogeorgis GM, Gani R, Woodley JM. 2020. A process synthesis-intensification method for generation of novel and intensified solutions. Chem. Eng. Proc. 156:108103
    [Google Scholar]
  11. 11. 
    Zhang J, Wang K, Teixeira AR, Jensen KF, Luo G. 2017. Design and scaling up of microchemical systems: a review. Annu. Rev. Chem. Biomol. Eng. 8:285–305
    [Google Scholar]
  12. 12. 
    Al-Rifai N, Cao E, Dua V, Gavriilidis A. 2013. Microreaction technology aided catalytic process design. Curr. Opin. Chem. Eng. 2:338–45
    [Google Scholar]
  13. 13. 
    Harmsen GJ. 2007. Reactive distillation: the front-runner of industrial process intensification: a full review of commercial applications, research, scale-up, design and operation. Chem. Eng. Proc. 46:774–80
    [Google Scholar]
  14. 14. 
    Sanchez Marcano JG, Tsotsis TT. 2002. Catalytic Membranes and Membrane Reactors Weinheim, Ger: Wiley
  15. 15. 
    Brunetti A, Zito PF, Giorno L, Drioli E, Barbieri G. 2018. Membrane reactors for low temperature applications: an overview. Chem. Eng. Proc. 124:282–307
    [Google Scholar]
  16. 16. 
    Houben C, Lapkin AA. 2015. Automatic discovery and optimization of chemical processes. Curr. Opin. Chem. Eng. 9:1–7
    [Google Scholar]
  17. 17. 
    Schopenhauer A 1851. Parerga und Paralipomena: Kleine Philosophische Schriften 2 Berlin: A.W. Hayn
  18. 18. 
    Szeng-Györgyi A. 1957. Bioenergetics New York: Academic
  19. 19. 
    Haeckel E. 1904. Kunstformen der Natur [Art Forms in Nature] Leipzig/Wien, Ger: Verlag Bibliogr. Inst.
  20. 20. 
    d'Arcy Thompson W 1917. On Growth and Form Cambridge, UK: Cambridge Univ. Press
  21. 21. 
    May RM. 1976. Simple mathematical models with very complicated dynamics. Nature 261:459–67
    [Google Scholar]
  22. 22. 
    Lane N. 2009. Life Ascending: The Ten Great Inventions of Evolution London: Profile Books
  23. 23. 
    Mandelbrot BB. 1983. The Fractal Geometry of Nature San Francisco: Freeman
  24. 24. 
    Coppens M-O. 2012. A nature-inspired approach to reactor and catalysis engineering. Curr. Opin. Chem. Eng. 1:281–89
    [Google Scholar]
  25. 25. 
    Tajkhorshid E, Nollert P, Jensen MO, Miercke LJ, O'Connell J et al. 2002. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–30
    [Google Scholar]
  26. 26. 
    Goldfield EC, Coppens M-O. 2020. Developmental bioengineering: recapitulating development for repair. Mol. Syst. Design Eng. 5:1219–29
    [Google Scholar]
  27. 27. 
    López-Pérez D. 2020. R. Buckminster Fuller Pattern-Thinking. Zürich, Switz: Lars Müller Publ.
  28. 28. 
    Ingber DE. 2009. Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol. 97:163–79
    [Google Scholar]
  29. 29. 
    Whitesides GM, Grzybowski B. 2002. Self-assembly at all scales. Science 295:2418–21
    [Google Scholar]
  30. 30. 
    Ben-Jacob E, Shochet O, Tenenbaum A, Cohen I, Czirók A, Vicsek T. 1994. Communication, regulation and control during complex patterning of bacterial colonies. Fractals 2:15–44
    [Google Scholar]
  31. 31. 
    Turing A. 1953. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237:37–72
    [Google Scholar]
  32. 32. 
    Sheintuch M, Schmitz HA. 1977. Oscillations in catalytic reactors. Catal. Rev. Sci. Eng. 15:107–72
    [Google Scholar]
  33. 33. 
    Imbihl R, Ertl G. 1995. Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95:697–733
    [Google Scholar]
  34. 34. 
    Katare S, West DH. 2006. Optimal complex networks spontaneously emerge when information transfer is maximized at least expense: a design perspective. Complexity 11:26–35
    [Google Scholar]
  35. 35. 
    Lotka AJ. 1920. Analytical note on certain rhythmic relations in organic systems. PNAS 6:410–15
    [Google Scholar]
  36. 36. 
    Volterra V. 1926. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Mem. Acad. Lincei Roma 2:31–113
    [Google Scholar]
  37. 37. 
    Haldane AG, May RM. 2011. Systemic risk in banking ecosystems. Nature 469:351–55
    [Google Scholar]
  38. 38. 
    Kauffman SA. 1993. The Origins of Order: Self-Organization and Selection in Evolution Oxford, UK: Oxford Univ. Press
  39. 39. 
    Watts DJ, Strogatz SH. 1998. Collective dynamics of ‘small-world’ networks. Nature 393:440–42
    [Google Scholar]
  40. 40. 
    Barabási A-L. 2002. Linked: The New Science of Networks Cambridge, UK: Perseus Publ.
  41. 41. 
    Ottino JM. 2003. Complex systems. AIChE J 49:292–99
    [Google Scholar]
  42. 42. 
    Deem MW. 2013. Statistical mechanics of modularity and horizontal gene transfer. Annu. Rev. Condens. Matter Phys. 4:287–311
    [Google Scholar]
  43. 43. 
    Sun J, Deem MW. 2007. Spontaneous emergence of modularity in a model of evolving individuals. Phys. Rev. Lett. 99:228107
    [Google Scholar]
  44. 44. 
    Coppens M-O, van Ommen JR. 2003. Structuring chaotic fluidized beds. Chem. Eng. J. 96:117–24
    [Google Scholar]
  45. 45. 
    Coppens M-O. 2005. Scaling up and down in a nature inspired way. Ind. Eng. Chem. Res. 44:5011–19
    [Google Scholar]
  46. 46. 
    Coppens M-O. 2001. Method for operating a chemical and/or physical process by means of a hierarchical fluid injection system US Patent 6,333,019
  47. 47. 
    Christensen D, Nijenhuis J, van Ommen JR, Coppens M-O. 2008. The influence of distributed secondary gas injection on the performance of a bubbling fluidized bed reactor. Ind. Eng. Chem. Res. 47:3601–18
    [Google Scholar]
  48. 47a. 
    Jiang S, Wang J, Feng L-F, Coppens M-O 2021. Fractal injectors to intensify liquid-phase processes by controlling the turbulent flow field. Chem. Eng. Sci. 238:116616
    [Google Scholar]
  49. 48. 
    Prausnitz JM. 2001. Chemical engineering and the postmodern world. Chem. Eng. Sci. 56:3627–39
    [Google Scholar]
  50. 49. 
    Coppens M-O, Ye G 2018. Nature inspired optimization of transport in porous media. Diffusive Spreading in Nature, Technology and Society A Bunde, J Caro, J Kärger, G Vogl 203–32 Cham, Switz: Springer
    [Google Scholar]
  51. 50. 
    Trogadas P, Nigra M, Coppens M-O. 2016. Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. New J. Chem. 40:4016–26
    [Google Scholar]
  52. 51. 
    Coppens M-O, Weissenberger T, Zhang Q, Ye G. 2020. Nature-inspired, computer-assisted optimization of hierarchically structured zeolites. Adv. Mat. Int. 8:4e2001409
    [Google Scholar]
  53. 52. 
    Trogadas P, Coppens M-O. 2020. Nature-inspired electrocatalysts and devices for energy conversion. Chem. Soc. Rev. 49:3107–41
    [Google Scholar]
  54. 53. 
    Francia V, Wu K, Coppens M-O. 2020. Dynamically structured fluidization: intensification of gas-solid fluidized bed operation by using an oscillating gas flow. Chem. Eng. Proc. Proc. Int. 159:108143
    [Google Scholar]
  55. 54. 
    Perera AS, Coppens M-O. 2018. Re-designing materials for biomedical applications: From biomimicry to nature-inspired chemical engineering. Philos. Trans. R. Soc. A 377:20180268
    [Google Scholar]
  56. 55. 
    Gladden LF. 2013. Magnetic resonance in reaction engineering. Curr. Opin. Chem. Eng. 2:331–37
    [Google Scholar]
  57. 56. 
    Keil FJ. 2018. Molecular modelling for reactor design. Annu. Rev. Chem. Biomol. Eng. 9:201–27
    [Google Scholar]
  58. 57. 
    Güthenke A, Chatterjee D, Weibel M, Krutzsch B, Kočí P et al. 2007. Current status of modelling lean exhaust gas aftertreatment catalysts. Adv. Chem. Eng. 33:103–211
    [Google Scholar]
  59. 58. 
    Vecchi V, Barera S, Bassi R, Dall'Osto L 2020. Potential and challenges of improving photosynthesis in algae. Plants 9:67
    [Google Scholar]
  60. 59. 
    Weibel ER. 1963. Morphometry of the Human Lung Berlin: Springer
  61. 60. 
    Weibel ER. 1984. The Pathway for Oxygen Cambridge, MA: Harvard Univ. Press
  62. 61. 
    Mauroy B, Filoche M, Weibel ER, Sapoval B. 2004. An optimal bronchial tree may be dangerous. Nature 427:633–36
    [Google Scholar]
  63. 62. 
    Vogel S. 2004. Living in a physical world. J. Biosci. 29:391–97
    [Google Scholar]
  64. 63. 
    Gheorghiu S, Coppens M-O. 2004. Optimal bimodal pore networks for heterogeneous catalysis. AIChE J 50:812–20
    [Google Scholar]
  65. 64. 
    Johannessen E, Wang G, Coppens M-O. 2007. Optimal distributor networks in porous catalyst pellets. I: molecular diffusion. Ind. Eng. Chem. Res. 46:4245–56
    [Google Scholar]
  66. 65. 
    Wang G, Coppens M-O. 2008. Calculation of the optimal macropore size in nanoporous catalysts and its application to DeNOx catalysis. Ind. Eng. Chem. Res. 47:3847–55
    [Google Scholar]
  67. 66. 
    Wang J, Groen JC, Yue W, Zhou W, Coppens M-O. 2007. Single-template synthesis of zeolite ZSM-5 composites with tunable mesoporosity. Chem. Commun. 44:4653–55
    [Google Scholar]
  68. 67. 
    Wang J, Yue W, Zhou W, Coppens M-O. 2009. TUD-C: a tunable, hierarchically structured mesoporous zeolite composite. Micropor. Mesopor. Mater. 120:19–28
    [Google Scholar]
  69. 68. 
    Rao SM, Saraci E, Gläser R, Coppens M-O. 2017. Surface barriers as dominant mechanism to transport limitations in hierarchically structured catalysts—application to the zeolite-catalyzed alkylation of benzene with ethylene. Chem. Eng. J. 329:45–55
    [Google Scholar]
  70. 69. 
    Wang G, Coppens M-O. 2010. Rational design of hierarchically structured porous catalysts for autothermal reforming of methane. Chem. Eng. Sci. 65:2344–51
    [Google Scholar]
  71. 70. 
    Rao SM, Coppens M-O. 2012. Increasing robustness against deactivation of nanoporous catalysts by introducing an optimized hierarchical pore network—application to hydrodemetalation. Chem. Eng. Sci. 83:66–76
    [Google Scholar]
  72. 71. 
    Mou J, Sheng S, Ho R, Shao S. 1996. Chaperonins GroEL and GroES: views from atomic force microscopy. Biophys. J. 71:2213–21
    [Google Scholar]
  73. 72. 
    Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–32
    [Google Scholar]
  74. 73. 
    Sang LC, Coppens M-O. 2011. Effects of surface curvature and surface chemistry on the structure and function of proteins adsorbed in nanopores. Phys. Chem. Chem. Phys. 13:6689–98
    [Google Scholar]
  75. 74. 
    Lynch MM, Liu J, Nigra M, Coppens M-O. 2016. Chaperonin-inspired pH protection by mesoporous silica SBA-15 on myoglobin and lysozyme. Langmuir 32:9604–10
    [Google Scholar]
  76. 75. 
    Siefker J, Karande P, Coppens M-O. 2014. Packaging biological cargoes in mesoporous materials: opportunities for drug delivery. Expert Opin. Drug Deliv. 11:1781–93
    [Google Scholar]
  77. 76. 
    Siefker J, Biehl R, Krutyeva M, Feoktystov, Coppens M-O 2018. Confinement facilitated protein stabilization, as investigated by small-angle neutron scattering. J. Am. Chem. Soc. 140:12720–23
    [Google Scholar]
  78. 77. 
    Marras F, Wang J, Coppens M-O, Reek JNH. 2010. Ordered mesoporous materials as solid supports for rhodium-diphosphine catalysts with remarkable hydroformylation activity. Chem. Comm. 46:6587–89
    [Google Scholar]
  79. 78. 
    Hou C, Gheorghiu S, Coppens M-O, Huxley VH, Pfeifer P 2005. Gas diffusion through the fractal landscape of the lung: How deep does oxygen enter the alveolar system?. Fractals in Biology and Medicine IV GA Losa, D Merlini, TG Nonnenmacher, ER Weibel 17–30 Basel, Switz: Birkhäuser
    [Google Scholar]
  80. 79. 
    Gheorghiu S, Kjelstrup S, Pfeifer P, Coppens M-O 2005. Is the lung an optimal gas exchanger?. Fractals in Biology and Medicine IV GA Losa, D Merlini, TG Nonnenmacher, ER Weibel 31–42 Basel, Switz: Birkhäuser
    [Google Scholar]
  81. 80. 
    Kjelstrup S, Coppens M-O, Pharoah J, Pfeifer P. 2010. Nature-inspired energy and material efficient design of a polymer electrolyte membrane fuel cell. Energy Fuels 24:5097–108
    [Google Scholar]
  82. 81. 
    Marquis J, Coppens M-O. 2013. Achieving ultra-high platinum utilization via optimization of PEM fuel cell cathode catalyst layer microstructure. Chem. Eng. Sci. 102:151–62
    [Google Scholar]
  83. 82. 
    Trogadas P, Cho JIS, Neville TP, Marquis J, Wu B et al. 2018. A lung-inspired approach to scalable and robust fuel cell design. Energy Environ. Sci. 11:136–43
    [Google Scholar]
  84. 83. 
    Cho JIS, Marquis J, Trogadas P, Neville TP, Brett DJL, Coppens M-O. 2020. Optimizing the architecture of lung-inspired fuel cells. Chem. Eng. Sci. 215:115375
    [Google Scholar]
  85. 84. 
    Murray CD. 1926. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. PNAS 12:207–14
    [Google Scholar]
  86. 85. 
    Murray CD. 1926. The physiological principle of minimum work. II. Oxygen exchange in capillaries. PNAS 12:299–304
    [Google Scholar]
  87. 86. 
    Bethapudi VS, Hack J, Trogadas P, Cho JIS, Rasha L et al. 2019. A lung-inspired printed circuit board polymer electrolyte fuel cell. Energy Convers. Manag. 202:112198
    [Google Scholar]
  88. 87. 
    Cho JIS, Neville TP, Trogadas P, Meyer Q, Wu Y et al. 2019. Visualization of liquid water in a lung-inspired flow-field based polymer electrolyte membrane fuel cell via neutron radiography. Energy 170:14–21
    [Google Scholar]
  89. 88. 
    Bethapudi VS, Hack J, Trogadas P, Hinds G, Shearing PR et al. 2020. Hydration state diagnosis in fractal flow-field based polymer electrolyte membrane fuel cells using acoustic emission analysis. Energy Convers. Manag. 220:113083
    [Google Scholar]
  90. 89. 
    Trogadas P, Cho JIS, Bethapudi VS, Shearing P, Brett DJL, Coppens M-O. 2020. Nature-inspired flow-fields and water management for PEM fuel cells. ECS Trans 98:9145–52
    [Google Scholar]
  91. 90. 
    Kalyanasundaram K, Graetzel M. 2010. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. Curr. Opin. Biotechnol. 21:298–310
    [Google Scholar]
  92. 91. 
    Dogutan DK, Nocera DG. 2019. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 52:3143–48
    [Google Scholar]
  93. 92. 
    Lackner KS 2014. The use of artificial trees. Geoengineering of the Climate System RM Harrison, RE Hester 80–104 Cambridge, UK: R. Soc. Chem.
    [Google Scholar]
  94. 93. 
    Fan LS. 2017. Chemical Looping Partial Oxidation Cambridge, UK: Cambridge Univ. Press
  95. 94. 
    Song W, Kumar M. 2019. Artificial water channels: toward and beyond desalination. Curr. Opin. Chem. Eng. 25:9–17
    [Google Scholar]
  96. 95. 
    Majumder M, Chopra N, Andrews N, Hinds BJ. 2005. Enhanced flow in carbon nanotubes. Nature 483:44
    [Google Scholar]
  97. 96. 
    Lynch CI, Rao S, Sansom MSP. 2020. Water in nanopores and biological channels: a molecular simulation perspective. Chem. Rev. 120:1810298–335
    [Google Scholar]
  98. 97. 
    Wang Y, Lee J, Werber JR, Elimelech M. 2020. Capillary-driven desalination in a synthetic mangrove. Sci. Adv. 6:eeax5253
    [Google Scholar]
  99. 98. 
    Hausmann R, Grepl M, Knecht V, Moeller MJ. 2012. The glomerular filtration barrier function. Curr. Opin. Nephrol. Hypertens. 21:441–49
    [Google Scholar]
  100. 99. 
    Mohamed H, Hudziak S, Arumuganathan V, Meng Z, Coppens M-O. 2020. Effects of charge and hydrophilicity on the anti-fouling properties of kidney-inspired, polyester membranes. Mol. Syst. Design Eng. 5:1219–29
    [Google Scholar]
  101. 100. 
    Li J, Liu Y, Campos LC, Coppens M-O. 2021. Increased E. coli bio-adsorption resistance of microfiltration membranes, using a bio-inspired approach. Sci. Total Environ. 751:141777
    [Google Scholar]
  102. 101. 
    Bizon C, Shattuck MD, Swift JB, McCormick WD, Swinney HL. 1998. Patterns in 3D vertically oscillated granular layers: simulation and experiment. Phys. Rev. Lett. 80:57–60
    [Google Scholar]
  103. 102. 
    Wu K, de Martín Monton L, Mazzei L, Coppens M-O. 2016. Pattern formation in fluidized beds as a tool for model validation: a two-fluid model based study. Powder Technol 295:35–42
    [Google Scholar]
  104. 103. 
    Wu K, de Martín Monton L, Coppens M-O. 2017. Pattern formation in pulsed gas-solid fluidized beds—the role of granular solid mechanics. Chem. Eng. J. 329:4–14
    [Google Scholar]
  105. 104. 
    de Martín L, Ottevanger C, van Ommen JR, Coppens M-O. 2018. Universal stability curve for pattern formation in pulsed gas-solid fluidized beds of sand-like particles. Phys. Rev. Fluids 3:034303
    [Google Scholar]
  106. 105. 
    Van den Bleek CM, Coppens M-O, Schouten JC. 2002. Applications of chaos analysis to multiphase reactors. Chem. Eng. Sci. 57:4763–78
    [Google Scholar]
  107. 106. 
    Cross MC, Hohenberg PC. 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65:851–1112
    [Google Scholar]
  108. 107. 
    Melo F, Umbanhowar PB, Swinney HL. 1994. Transition to parametric wave patterns in a vertically oscillated granular layer. Phys. Rev. Lett. 72:172–75
    [Google Scholar]
  109. 108. 
    Wu K, Francia V, Coppens M-O. 2020. Dynamic viscoplastic granular flows: a persistent challenge in gas-solid fluidization. Powder Tech 365:172–85
    [Google Scholar]
  110. 109. 
    Lakes R. 1993. Materials with structural hierarchy. Nature 361:511–15
    [Google Scholar]
  111. 110. 
    Aizenberg J, Fratzl P. 2009. Biological and biomimetic materials. Adv. Mater. 21:387–88
    [Google Scholar]
  112. 111. 
    Studart AR. 2012. Towards high-performance bioinspired composites. Adv. Mater. 24:5024–44
    [Google Scholar]
  113. 112. 
    Bhushan B. 2018. Biomimetics Cham, Switz: Springer Nat, 3rd ed..
  114. 113. 
    Barthlott W, Neinhuis C. 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8
    [Google Scholar]
  115. 114. 
    Studart AR. 2016. Additive manufacturing of biologically-inspired materials. Chem. Soc. Rev. 45:359–76
    [Google Scholar]
  116. 115. 
    Mann S. 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials and Chemistry Oxford, UK: Oxford Univ. Press
  117. 116. 
    Ozin GA, Arsenault AC, Cademartiri L. 2009. Nanochemistry: A Chemical Approach to Nanomaterials Cambridge, UK: R. Soc. Chem, 2nd ed..
  118. 117. 
    Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J et al. 2014. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345:668–72
    [Google Scholar]
  119. 118. 
    Gardner M. 1970. The fantastic combinations of John Conway's new solitaire game “life. .” Sci. Am. 223:120–23
    [Google Scholar]
  120. 119. 
    Wolfram S 1984. Cellular automata as models of complexity. Nature 311:419–24
    [Google Scholar]
  121. 120. 
    Huang Y, Krumanocker I, Coppens M-O. 2012. Fractal self-organization of bacteria-inspired agents. Fractals 20:179–95
    [Google Scholar]
  122. 121. 
    Noble D. 2006. The Music of Life: Biology Beyond Genes Oxford, UK: Oxford Univ. Press
  123. 122. 
    Goldfield EC. 1995. Emergent Forms: Origins and Early Development of Human Action and Perception New York: Oxford Univ. Press
  124. 123. 
    Goldfield EC. 2018. Bioinspired Devices: Emulating Nature's Assembly and Repair Process Cambridge, MA: Harvard Univ. Press
  125. 124. 
    Chin MHW, Gentleman E, Coppens M-O, Day R. 2020. Rethinking cancer immunotherapy by embracing and engineering complexity. Trends Biotechnol 38:1054–65
    [Google Scholar]
  126. 125. 
    Li J. 2015. Approaching virtual process engineering with exploring mesoscience. Chem. Eng. J. 278:541–55
    [Google Scholar]
  127. 126. 
    Goldenfeld N, Kadanoff LP. 2009. Simple lessons from complexity. Science 284:87–89
    [Google Scholar]
  128. 127. 
    Li J, Huang W. 2014. Towards Mesoscience: The Principle of Compromise in Competition Berlin: Springer
  129. 128. 
    Li J, Huang W. 2018. From multiscale to mesoscience: addressing mesoscales in mesoregimes of different levels. Annu. Rev. Chem. Biomol. Eng. 9:41–60
    [Google Scholar]
  130. 129. 
    Li J, Kwauk M. 1994. Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method Beijing: Metall. Ind. Press
  131. 130. 
    Prigogine I. 1955. Introduction to Thermodynamics of Irreversible Processes Springfield: Charles C. Thomas Publ.
  132. 131. 
    Prigogine I, Nicolis G. 1977. Self-Organization in Non-Equilibrium Systems New York: Wiley
  133. 132. 
    West GB, Brown JH, Enquist BJ. 1997. A general model for the origin of allometric scaling laws in biology. Science 276:122–26
    [Google Scholar]
  134. 133. 
    West GB, Brown JH, Enquist BJ. 1999. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–79
    [Google Scholar]
  135. 134. 
    Bejan A. 2000. Shape and Structure, From Engineering to Nature Cambridge, UK: Cambridge Univ. Press
  136. 135. 
    Bejan A. 2017. Evolution in thermodynamics. Appl. Phys. Rev 4:011305
    [Google Scholar]
  137. 136. 
    Tondeur D, Luo L. 2004. Design and scaling laws of ramified fluid distributors by the constructal approach. Chem. Eng. Sci. 59:1799–813
    [Google Scholar]
  138. 137. 
    Kjelstrup S, Bedeaux D. 2020. Non-Equilibrium Thermodynamics of Heterogeneous Systems Singapore: World Sci, 2nd ed..
  139. 138. 
    Onsager L 1996. The Collected Works of Lars Onsager PC Hemmer, H Holden, S Kjelstrup. World Sci. Ser. 20th Cent. Phys. 17 River Edge, NJ: World Sci.
  140. 139. 
    De Groot SR, Mazur P. 1962. Non-Equilibrium Thermodynamics Amsterdam: North-Holland Publ.
  141. 140. 
    Kjelstrup S, Magnanelli E. 2020. Efficiency in the process industry: three thermodynamic tools for better resource use. Trends Food Sci. Technol. 104:84–90
    [Google Scholar]
  142. 141. 
    Gerbaud V, Shcherbakova, Da Cunha S. 2020. A nonequilibrium thermodynamics perspective on nature-inspired chemical engineering processes. Chem. Eng. Res. Des. 154:316–30
    [Google Scholar]
  143. 142. 
    Titz B, Rajagopala SV, Goll J, Häuser R, McKevitt MT et al. 2008. The binary protein interactome of Treponema pallidum—the syphilis spirochete. PLOS ONE 3:5e2292
    [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error