1932

Abstract

Recent development of organic solvent nanofiltration (OSN) materials has been overwhelmingly directed toward tight membranes with ultrahigh permeance. However, emerging research into OSN applications is suggesting that improved separation selectivity is at least as important as further increases in membrane permeance. Membrane solutions are being proposed to improve selectivity, mostly by exploiting solute/solvent/membrane interactions and by fabricating tailored membranes. Because achieving a perfect separation with a single membrane stage is difficult, process engineering solutions, such as membrane cascades, are also being advocated. Here we review these approaches to the selectivity challenge, and to clarify our analysis, we propose a selectivity figure of merit that is based on the permselectivity between the two solutes undergoing separation as well as the ratio of their molecular weights.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060816-101325
2017-06-07
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/8/1/annurev-chembioeng-060816-101325.html?itemId=/content/journals/10.1146/annurev-chembioeng-060816-101325&mimeType=html&fmt=ahah

Literature Cited

  1. Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG. 1.  2014. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114:10735–806 [Google Scholar]
  2. Vandezande P, Gevers LEM, Vankelecom IFJ. 2.  2008. Solvent resistant nanofiltration: separating on a molecular level. Chem. Soc. Rev. 37:365–405 [Google Scholar]
  3. Adler S, Beaver E, Bryan P, Robinson S, Watson J. 3.  2000. Vision 2020: 2000 separations roadmap Tech. Rep. 1218701, Cent. Waste Reduct. Technol., Off. Energy Effic. Renew. Energy, Adv. Manuf. Off., US Dep. Energy Washington, DC: [Google Scholar]
  4. Shi B, Marchetti P, Peshev D, Zhang S, Livingston AG. 4.  2017. Will ultra-high permeance membranes lead to ultra-efficient processes? Challenges for molecular separations in liquid systems. J. Membr. Sci. 525:35–47 [Google Scholar]
  5. Karan S, Jiang Z, Livingston AG. 5.  2015. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348:1347–51 [Google Scholar]
  6. Karan S, Samitsu S, Peng X, Kurashima K, Ichinose I. 6.  2012. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 335:444–47 [Google Scholar]
  7. Jimenez Solomon MF, Bhole Y, Livingston AG. 7.  2012. High flux membranes for organic solvent nanofiltration (OSN): interfacial polymerization with solvent activation. J. Membr. Sci. 423–424:371–82 [Google Scholar]
  8. Campbell J, Davies RP, Braddock DC, Livingston AG. 8.  2015. Improving the permeance of hybrid polymer/metal-organic framework (MOF) membranes for organic solvent nanofiltration (OSN): development of MOF thin films via interfacial synthesis. J. Mater. Chem. A 3:9668–74 [Google Scholar]
  9. Volkov AV, Parashchuk VV, Stamatialis DF, Khotimsky VS, Volkov VV, Wessling M. 9.  2009. High permeable PTMSP/PAN composite membranes for solvent nanofiltration. J. Membr. Sci. 333:88–93 [Google Scholar]
  10. Gorgojo P, Karan S, Wong HC, Jimenez-Solomon MF, Cabral JT, Livingston AG. 10.  2014. Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv. Funct. Mater. 24:4729–37 [Google Scholar]
  11. Sorribas S, Gorgojo P, Téllez C, Coronas J, Livingston AG. 11.  2013. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration. J. Am. Chem. Soc. 135:15201–8 [Google Scholar]
  12. Kim JF, Freitas da Silva AM, Valtcheva IB, Livingston AG. 12.  2013. When the membrane is not enough: a simplified membrane cascade using organic solvent nanofiltration (OSN). Sep. Purif. Technol. 116:277–86 [Google Scholar]
  13. Bowen WR, Welfoot JS. 13.  2002. Modelling the performance of membrane nanofiltration: critical assessment and model development. Chem. Eng. Sci. 57:1121–37 [Google Scholar]
  14. Zhao ZP, Li J, Chen J, Chen CX. 14.  2005. Nanofiltration membrane prepared from polyacrylonitrile ultrafiltration membrane by low-temperature plasma: 2. Grafting of styrene in vapor phase. J. Membr. Sci. 251:239–45 [Google Scholar]
  15. See Toh YH, Lim FW, Livingston AG. 15.  2007. Polymeric membranes for nanofiltration in polar aprotic solvents. J. Membr. Sci. 301:3–10 [Google Scholar]
  16. Fontananova E, Di Profio G, Artusa F, Drioli E. 16.  2013. Polymeric homogeneous composite membranes for separations in organic solvents. J. Appl. Polym. Sci. 129:1653–59 [Google Scholar]
  17. Vanherck K, Koeckelberghs G, Vankelecom IFJ. 17.  2013. Crosslinking polyimides for membrane applications: a review. Prog. Polym. Sci. 38:874–96 [Google Scholar]
  18. Behnke S, Ulbricht M. 18.  2015. Thin-film composite membranes for organophilic nanofiltration based on photo-cross-linkable polyimide. React. Funct. Polym. 86:233–42 [Google Scholar]
  19. Sun SP, Chung TS, Lu KJ, Chan SY. 19.  2014. Enhancement of flux and solvent stability of matrimid thin-film composite membranes for organic solvent nanofiltration. AIChE J 60:3623–33 [Google Scholar]
  20. Dutczak SM, Cuperus FP, Wessling M, Stamatialis DF. 20.  2013. New crosslinking method of polyamide-imide membranes for potential application in harsh polar aprotic solvents. Sep. Purif. Technol. 102:142–46 [Google Scholar]
  21. Loh XX, Sairam M, Bismarck A, Steinke JHG, Livingston AG, Li K. 21.  2009. Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents. J. Membr. Sci. 326:635–42 [Google Scholar]
  22. Valtcheva IB, Kumbharkar SC, Kim JF, Bhole Y, Livingston AG. 22.  2014. Beyond polyimide: crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments. J. Membr. Sci. 457:62–72 [Google Scholar]
  23. Xing DY, Chan SY, Chung TS. 23.  2014. The ionic liquid [EMIM]OAc as a solvent to fabricate stable polybenzimidazole membranes for organic solvent nanofiltration. Green Chem 16:1383–92 [Google Scholar]
  24. Holda AK, Aernouts B, Saeys W, Vankelecom IFJ. 24.  2013. Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. J. Membr. Sci. 442:196–205 [Google Scholar]
  25. Strużyńska-Piron I, Loccufier J, Vanmaele L, Vankelecom IFJ. 25.  2013. Synthesis of solvent stable polymeric membranes via UV depth-curing. Chem. Commun. 49:11494–96 [Google Scholar]
  26. Darvishmanesh S, Jansen JC, Tasselli F, Tocci E, Luis P. 26.  et al. 2011. Novel polyphenylsulfone membrane for potential use in solvent nanofiltration. J. Membr. Sci. 379:60–68 [Google Scholar]
  27. Jansen JC, Darvishmanesh S, Tasselli F, Bazzarelli F, Bernardo P. 27.  et al. 2013. Influence of the blend composition on the properties and separation performance of novel solvent resistant polyphenylsulfone/polyimide nanofiltration membranes. J. Membr. Sci. 447:107–18 [Google Scholar]
  28. De Feyter S, Vankelecom IFJ, Li X. 28.  2008. Poly(sulfone)/sulfonated poly(ether ether ketone) blend membranes: morphology study and application in the filtration of alcohol based feeds. J. Membr. Sci. 324:67–75 [Google Scholar]
  29. Buonomenna MG, Golemme G, Jansen JC, Choi SH. 29.  2011. Asymmetric PEEKWC membranes for treatment of organic solvent solutions. J. Membr. Sci. 368:144–49 [Google Scholar]
  30. Hendrix K, Van Eynde M, Koeckelberghs G, Vankelecom IFJ. 30.  2013. Synthesis of modified poly(ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion. J. Membr. Sci. 447:96–106 [Google Scholar]
  31. da Silva Burgal J, Peeva LG, Kumbharkar S, Livingston AG. 31.  2015. Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes. J. Membr. Sci. 479:105–16 [Google Scholar]
  32. Hicke H, Lehmann I, Malsch G, Ulbricht M, Becker M. 32.  2002. Preparation and characterization of a novel solvent-resistant and autoclavable polymer membrane. J. Membr. Sci. 198:187–96 [Google Scholar]
  33. Kosaraju PB, Sirkar KK. 33.  2008. Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration. J. Membr. Sci. 321:155–61 [Google Scholar]
  34. Peyravi M, Rahimpour A, Jahanshahi M. 34.  2012. Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. J. Membr. Sci. 423–24:225–37 [Google Scholar]
  35. Sun SP, Chan SY, Chung TS. 35.  2015. A slow-fast phase separation (SFPS) process to fabricate dual-layer hollow fiber substrates for thin-film composite (TFC) organic solvent nanofiltration (OSN) membranes. Chem. Eng. Sci. 129:232–42 [Google Scholar]
  36. Hermans S, Dom E, Mariën H, Koeckelberghs G, Vankelecom IFJ. 36.  2015. Efficient synthesis of interfacially polymerized membranes for solvent resistant nanofiltration. J. Membr. Sci. 476:356–63 [Google Scholar]
  37. Robinson JP, Tarleton ES, Ebert K, Millington CR, Nijmeijer A. 37.  2005. Influence of cross-linking and process parameters on the separation performance of poly(dimethylsiloxane) nanofiltration membranes. Ind. Eng. Chem. Res. 44:3238–48 [Google Scholar]
  38. Aerts S, Vanhulsel A, Buekenhoudt A, Weyten H, Kuypers S. 38.  et al. 2006. Plasma-treated PDMS membranes in solvent resistant nanofiltration: characterization and study of transport mechanism. J. Membr. Sci. 275:212–19 [Google Scholar]
  39. Stafie N, Stamatialis DF, Wessling M. 39.  2005. Effect of PDMS cross-linking degree on the permeation performance of PAN/PDMS composite nanofiltration membranes. Sep. Purif. Technol. 45:220–31 [Google Scholar]
  40. Li X, Vandezande P, Vankelecom IFJ. 40.  2008. Polypyrrole modified solvent resistant nanofiltration membranes. J. Membr. Sci. 320:143–50 [Google Scholar]
  41. Aba NFD, Chong JY, Wang B, Mattevi C, Li K. 41.  2015. Graphene oxide membranes on ceramic hollow fibers: microstructural stability and nanofiltration performance. J. Membr. Sci. 484:87–94 [Google Scholar]
  42. Long TR, Gupta A, Miller AL II, Rethwisch DG, Bowden NB. 42.  2011. Selective flux of organic liquids and solids using nanoporous membranes of polydicyclopentadiene. J. Mater. Chem. 21:14265–76 [Google Scholar]
  43. Jimenez-Solomon MF, Song Q, Jelfs KE, Munoz-Ibanez M, Livingston AG. 43.  2016. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15:760–67 [Google Scholar]
  44. Fritsch D, Merten P, Heinrich K, Lazar M, Priske M. 44.  2012. High performance organic solvent nanofiltration membranes: development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs). J. Membr. Sci. 401–402:222–31 [Google Scholar]
  45. Li X, Fustin CA, Lefevre N, Gohy JF, De Feyter S. 45.  et al. 2010. Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties. J. Mater. Chem. 20:4333–39 [Google Scholar]
  46. Li X, Basko M, Du Prez F, Vankelecom IFJ. 46.  2008. Multifunctional membranes for solvent resistant nanofiltration and pervaporation applications based on segmented polymer networks. J. Phys. Chem. B 112:16539–45 [Google Scholar]
  47. Li X, De Feyter S, Chen D, Aldea S, Vandezande P. 47.  et al. 2008. Solvent-resistant nanofiltration membranes based on multilayered polyelectrolyte complexes. J. Chem. Mater. 20:3876–83 [Google Scholar]
  48. Ahmadiannamini P, Li X, Goyens W, Meesschaert B, Vanderlinden W. 48.  et al. 2012. Influence of polyanion type and cationic counter ion on the SRNF performance of polyelectrolyte membranes. J. Membr. Sci. 403–404:216–26 [Google Scholar]
  49. Ilyas S, Joseph N, Szymczyk A, Volodin A, Nijmeijer K. 49.  et al. 2016. Weak polyelectrolyte multilayers as tunable membranes for solvent resistant nanofiltration. J. Membr. Sci. 514:322–31 [Google Scholar]
  50. Soroko I, Livingston AG. 50.  2009. Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes. J. Membr. Sci. 343:189–98 [Google Scholar]
  51. Peyravi M, Jahanshahi M, Rahimpour A, Javadi A, Hajavi S. 51.  2014. Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem. Eng. J. 241:155–66 [Google Scholar]
  52. Vanherck K, Hermans S, Verbiest T, Vankelecom I. 52.  2011. Using the photothermal effect to improve membrane separations via localized heating. J. Mater. Chem. 21:6079–87 [Google Scholar]
  53. Siddique H, Rundquist E, Bhole Y, Peeva LG, Livingston AG. 53.  2014. Mixed matrix membranes for organic solvent nanofiltration. J. Membr. Sci. 452:354–66 [Google Scholar]
  54. Lim SK, Setiawan L, Bae TH, Wang R. 54.  2016. Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solvent-resistant nanofiltration under low operating pressure. J. Membr. Sci. 501:152–60 [Google Scholar]
  55. Basu S, Maes M, Cano-Odena A, Alaerts L, De Vos DE, Vankelecom IFJ. 55.  2009. Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks. J. Membr. Sci. 344:190–98 [Google Scholar]
  56. Gevers LEM, Vankelecom IFJ, Jacobs PA. 56.  2005. Zeolite filled polydimethylsiloxane (PDMS) as an improved membrane for solvent-resistant nanofiltration (SRNF). Chem. Commun. 2005:2500–2 [Google Scholar]
  57. Vanherck K, Aerts A, Martens J, Vankelecom IFJ. 57.  2010. Hollow filler based mixed matrix membranes. Chem. Commun. 46:2492–94 [Google Scholar]
  58. Mao H, Zhang H, Li Y, Xue Y, Pei F. 58.  et al. 2015. Tunable solvent permeation properties of thin film nanocomposite membrane by constructing dual-pathways using cyclodextrins for organic solvent nanofiltration. ACS Sustain. Chem. Eng. 3:1925–33 [Google Scholar]
  59. Roy S, Ntim SA, Mitra S, Sirkar KK. 59.  2011. Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites. J. Membr. Sci. 375:81–87 [Google Scholar]
  60. Tsuru T, Sudoh T, Yoshioka T, Asaeda M. 60.  2001. Nanofiltration in non-aqueous solutions by porous silica-zirconia membranes. J. Membr. Sci. 185:253–61 [Google Scholar]
  61. Rezaei Hosseinabadi S, Wyns K, Meynen V, Carleer R, Adriaensens P. 61.  et al. 2014. Organic solvent nanofiltration with Grignard functionalised ceramic nanofiltration membranes. J. Membr. Sci. 454:496–504 [Google Scholar]
  62. Tsuru T, Narita M, Shinagawa R, Yoshioka T. 62.  2008. Nanoporous titania membranes for permeation and filtration of organic solutions. Desalination 233:1–9 [Google Scholar]
  63. Zeidler S, Puhlfürß P, Kätzel U, Voigt I. 63.  2014. Preparation and characterization of new low MWCO ceramic nanofiltration membranes for organic solvents. J. Membr. Sci. 470:421–30 [Google Scholar]
  64. Ngamou PHT, Overbeek JP, Kreiter R, van Veen HM, Vente JF. 64.  et al. 2013. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges. J. Mater. Chem. A 1:5567–76 [Google Scholar]
  65. Van Gestel T, Van der Bruggen B, Buekenhoudt A, Dotremont C, Luyten J. 65.  et al. 2003. Surface modification of γ-Al2O3/TiO2 multilayer membranes for applications in non-polar organic solvents. J. Membr. Sci. 224:3–10 [Google Scholar]
  66. Verrecht B, Leysen R, Buekenhoudt A, Vandecasteele C, Van der Bruggen B. 66.  2006. Chemical surface modification of γ-Al2O3 and TiO2 top layer membranes for increased hydrophobicity. Desalination 200:385–86 [Google Scholar]
  67. Sah A, Castricum HL, Bliek A, Blank DHA, ten Elshof JE. 67.  2004. Hydrophobic modification of γ-alumina membranes with organochlorosilanes. J. Membr. Sci. 243:125–32 [Google Scholar]
  68. Tanardi CR, Catana R, Barboiu M, Ayral A, Vankelecom IFJ. 68.  et al. 2016. Polyethyleneglycol grafting of γ-alumina membranes for solvent resistant nanofiltration. Microporous Mesoporous Mater 229:106–16 [Google Scholar]
  69. Pinheiro AFM, Hoogendoorn D, Nijmeijer A, Winnubst L. 69.  2014. Development of a PDMS-grafted alumina membrane and its evaluation as solvent resistant nanofiltration membrane. J. Membr. Sci. 463:24–32 [Google Scholar]
  70. See Toh YH, Silva M, Livingston AG. 70.  2008. Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes. J. Membr. Sci. 324:220–32 [Google Scholar]
  71. Yu H, Qiu X, Nunes SP, Peinemann KV. 71.  2014. Self-assembled isoporous block copolymer membranes with tuned pore sizes. Angew. Chem. Int. Ed. 53:10072–76 [Google Scholar]
  72. Zhao Y, Yuan Q. 72.  2006. A comparison of nanofiltration with aqueous and organic solvents. J. Membr. Sci. 279:453–58 [Google Scholar]
  73. Yang XJ, Livingston AG, Freitas dos Santos L. 73.  2001. Experimental observations of nanofiltration with organic solvents. J. Membr. Sci. 190:45–55 [Google Scholar]
  74. Marchetti P, Butté A, Livingston AG. 74.  2013. An improved phenomenological model for prediction of solvent permeation through ceramic NF and UF membranes. J. Membr. Sci. 415–416:444–58 [Google Scholar]
  75. Marchetti P, Butté A, Livingston AG. 75.  2013. NF in organic solvent/water mixtures: role of preferential solvation. J. Membr. Sci. 444:101–15 [Google Scholar]
  76. Geens J, Peeters K, Van der Bruggen B, Vandecasteele C. 76.  2005. Polymeric nanofiltration of binary water-alcohol mixtures: influence of feed composition and membrane properties on permeability and rejection. J. Membr. Sci. 255:255–64 [Google Scholar]
  77. Geens J, Hillen A, Bettens B, Van der Bruggen B, Vandecasteele C. 77.  2005. Solute transport in non-aqueous nanofiltration: effect of membrane material. J. Chem. Technol. Biotechnol. 80:1371–77 [Google Scholar]
  78. Darvishmanesh S, Degréve J, Van der Bruggen B. 78.  2010. Mechanisms of solute rejection in solvent resistant nanofiltration: the effect of solvent on solute rejection. Phys. Chem. Chem. Phys. 12:13333–42 [Google Scholar]
  79. Zeidler S, Kaetzel U, Kreis P. 79.  2013. Systematic investigation on the influence of solutes on the separation behavior of a PDMS membrane in organic solvent nanofiltration. J. Membr. Sci. 429:295–303 [Google Scholar]
  80. Geens J, Boussu K, Vandecasteele C, Van der Bruggen B. 80.  2006. Modelling of solute transport in non-aqueous nanofiltration. J. Membr. Sci. 281:139–48 [Google Scholar]
  81. Van der Bruggen B, Vandecasteele C. 81.  2002. Modelling of the retention of uncharged molecules with nanofiltration.. Water Res 36:1360–68 [Google Scholar]
  82. Schmidt P, Koese T, Lutze P. 82.  2013. Characterisation of organic solvent nanofiltration membranes in multi-component mixtures: membrane rejection maps and membrane selectivity maps for conceptual process design. J. Membr. Sci. 429:103–20 [Google Scholar]
  83. Postel S, Spalding G, Chirnside M, Wessling M. 83.  2013. Systematic investigation on the influence of solutes on the separation behavior of a PDMS membrane in organic solvent nanofiltration. J. Membr. Sci. 447:57–65 [Google Scholar]
  84. Zheng F, Li C, Yuana Q, Vriesekoop F. 84.  2008. Influence of molecular shape on the retention of small molecules by solvent resistant nanofiltration (SRNF) membranes: a suitable molecular size parameter. J. Membr. Sci. 318:114–22 [Google Scholar]
  85. Ben Soltane H, Roizard D, Favre E. 85.  2016. Study of the rejection of various solutes in OSN by a composite polydimethylsiloxane membrane: investigation of the role of solute affinity. Sep. Purif. Technol. 161:193–201 [Google Scholar]
  86. Van der Bruggen B, Schaep J, Wilms D, Vandecasteele C. 86.  1999. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 156:29–41 [Google Scholar]
  87. Bhanushali D, Kloos S, Bhattacharyya D. 87.  2002. Solute transport in solvent-resistant nanofiltration membranes for non-aqueous systems: experimental results and the role of solute-solvent coupling. J. Membr. Sci. 208:343–59 [Google Scholar]
  88. Gevers LEM, Meyen G, De Smet K, Van De Velde P, Du Prez F. 88.  et al. 2006. Physico-chemical interpretation of the SRNF transport mechanism for solutes through dense silicone membranes. J. Membr. Sci. 274:173–82 [Google Scholar]
  89. Bhanushali D, Kloos S, Bhattacharyya D. 89.  2002. Solute transport in solvent resistant nanofiltration membranes for non-aqueous systems: experimental results and the role of solute-solvent coupling. J. Membr. Sci. 208:343–59 [Google Scholar]
  90. See Toh Y, Loh X, Li K, Bismarck A, Livingston A. 90.  2007. In search of a standard method for the characterisation of organic solvent nanofiltration membranes. J. Membr. Sci. 291:120–25 [Google Scholar]
  91. Bowen WR, Welfoot JS. 91.  2002. Modelling of membrane nanofiltration: pore size distribution effects. Chem. Eng. Sci. 57:1393–407 [Google Scholar]
  92. Stawikowska J, Livingston AG. 92.  2012. Nanoprobe imaging molecular scale pores in polymeric membranes. J. Membr. Sci. 413–414:1–16 [Google Scholar]
  93. Van der Bruggen B, Schaep J, Wilms D, Vandecasteele C. 93.  2000. A comparison of models to describe the maximal retention of organic molecules in nanofiltration. Sep. Sci. Technol. 35:169–82 [Google Scholar]
  94. Stamatialis DF, Stafie N, Buadu K, Hempenius M, Wessling M. 94.  2006. Observations on the permeation performance of solvent resistant nanofiltration membranes. J. Membr. Sci. 279:424–33 [Google Scholar]
  95. Stafie N, Stamatialis DF, Wessling M. 95.  2004. Insight into the transport of hexane-solute systems through tailor-made composite membranes. J. Membr. Sci. 228:103–16 [Google Scholar]
  96. Ben Soltane H, Roizard D, Favre E. 96.  2013. Effect of pressure on the swelling and fluxes of dense PDMS membranes in nanofiltration: an experimental study. J. Membr. Sci. 435:110–19 [Google Scholar]
  97. Vankelecom IFJ, De Smet K, Gevers LEM, Livingston A, Nair D. 97.  et al. 2004. Physico-chemical interpretation of the SRNF transport mechanism for solvents through dense silicone membranes. J. Membr. Sci. 231:99–108 [Google Scholar]
  98. Rezaei Hosseinabadi S, Wyns K, Meynen V, Buekenhoudt A, Van der Bruggen B. 98.  2016. Solvent-membrane-solute interactions in organic solvent nanofiltration (OSN) for Grignard functionalised ceramic membranes: explanation via Spiegler-Kedem theory. J. Membr. Sci. 513:177–85 [Google Scholar]
  99. Volkov A, Yushkin A, Kachula Y, Khotimsky V, Volkov V. 99.  2014. Application of negative retention in organic solvent nanofiltration for solutes fractionation. Sep. Purif. Technol. 124:43–48 [Google Scholar]
  100. Ku JR, Stroeve P. 100.  2004. Protein diffusion in charged nanotubes: “on-off” behavior of molecular transport. Langmuir 20:2030–32 [Google Scholar]
  101. Tsuru T, Shutou T, Nakao SI, Kimura S. 101.  1994. Peptide and amino acid separation with nanofiltration membranes. Sep. Sci. Technol. 29:971–84 [Google Scholar]
  102. Garem A, Daufin G, Maubois JL, Léonil J. 102.  1997. Selective separation of amino acids with a charged inorganic nanofiltration membrane: effect of physicochemical parameters on selectivity. Biotechnol. Bioeng. 54:291–302 [Google Scholar]
  103. Kim JF, Gaffney PRJ, Valtcheva IB, Williams GD, Buswell AM. 103.  et al. 2016. Organic solvent nanofiltration (OSN): a new technology platform for liquid-phase oligonucleotide synthesis (LPOS). Org. Process Res. Dev. 20:1439–52 [Google Scholar]
  104. Wang W, Dong X, Nan J, Jin W, Hu Z. 104.  et al. 2012. A homochiral metal-organic framework membrane for enantioselective separation. Chem. Commun. 48:7022–24 [Google Scholar]
  105. Weng X, Baez JE, Khiterer M, Hoe MY, Bao Z, Shea KJ. 105.  2015. Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers. Angew. Chem. Int. Ed. 54:11214–18 [Google Scholar]
  106. Yashima E, Nocuchi J, Okamoto Y. 106.  1994. Enantiomer enrichment of oxprenolol through cellulose tris (3,5-dimethylphenylcarbamate) membrane. J. Appl. Polym. Sci. 54:1087–91 [Google Scholar]
  107. Szekely G, Valtcheva IB, Kim JF, Livingston AG. 107.  2015. Molecularly imprinted organic solvent nanofiltration membranes: revealing molecular recognition and solute rejection behaviour. React. Funct. Polym. 86:215–24 [Google Scholar]
  108. Koh DY, McCool BA, Deckman HW, Lively RP. 108.  2016. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science 353:804–7 [Google Scholar]
  109. Bulut M, Gevers LEM, Paul JS, Vankelecom IFJ, Jacobs PA. 109.  2006. Directed development of high-performance membranes via high-throughput and combinatorial strategies. J. Comb. Sci. 8:168–73 [Google Scholar]
  110. Marchetti P, Butté A, Livingston AG. 110.  2013. Quality by design for peptide nanofiltration: fundamental understanding and process selection. Chem. Eng. Sci. 101:200–12 [Google Scholar]
  111. Madaeni SS, Hasankiadeh NT, Kurdian AR, Rahimpour A. 111.  2010. Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm. Sep. Purif. Technol. 76:33–43 [Google Scholar]
  112. Valtcheva IB, Marchetti P, Livingston AG. 112.  2015. Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN): analysis of crosslinking reaction mechanism and effects of reaction parameters. J. Membr. Sci. 493:568–79 [Google Scholar]
  113. da Silva Burgal J, Peeva LG, Marchetti P, Livingston AG. 113.  2015. Controlling molecular weight cut-off of PEEK nanofiltration membranes using a drying method. J. Membr. Sci. 493:524–38 [Google Scholar]
  114. So S, Peeva LG, Tate EW, Leatherbarrow RJ, Livingston AG. 114.  2010. Organic solvent nanofiltration: a new paradigm in peptide synthesis. Org. Process Res. Dev. 14:1313–25 [Google Scholar]
  115. Gaffney PRJ, Kim JF, Valtcheva IB, Williams GD, Anson MS. 115.  et al. 2015. Liquid-phase synthesis of 2′-methyl-RNA on a homostar support through organic-solvent nanofiltration. Chem. Eur. J. 21:9535–43 [Google Scholar]
  116. Marchetti P, Butté A, Livingston AG. 116.  2013. Reactive peptide nanofiltration. Sustainable Nanotechnology and the Environment: Advances and Achievements N Shamim, S Virender 121–50 ACS Symp. Ser. Washington, DC: Am. Chem. Soc [Google Scholar]
  117. Ormerod D, Noten B, Dorbec M, Andersson L, Buekenhoudt A, Goetelen L. 117.  2015. Cyclic peptide formation in reduced solvent volumes via in-line solvent recycling by organic solvent nanofiltration. Org. Process Res. Dev. 19:841–48 [Google Scholar]
  118. Lightfoot EN. 118.  2005. Can membrane cascades replace chromatography? Adapting binary ideal cascade theory of systems of two solutes in a single solvent. Sep. Sci. Technol. 40:739–56 [Google Scholar]
  119. Avgidou MS, Kaldis SP, Sakellaropoulos GP. 119.  2004. Membrane cascade schemes for the separation of LPG olefins and paraffins. J. Membr. Sci. 233:21–37 [Google Scholar]
  120. Kale V, Katikaneni SPR, Cheryan M. 120.  1999. Deacidifying rice bran oil by solvent extraction and membrane technology. J Am. Oil Chem. Soc. 76:723–27 [Google Scholar]
  121. Sereewatthanawut I, Baptista IIR, Boam AT, Hodgson A, Livingston AG. 121.  2011. Nanofiltration process for the nutritional enrichment and refining of rice bran oil. J. Food Eng. 102:16–24 [Google Scholar]
  122. Sereewatthanawut I, Lim FW, Bhole YS, Ormerod D, Horvath A. 122.  et al. 2010. Demonstration of molecular purification in polar aprotic solvents by organic solvent nanofiltration. Org. Process Res. Dev. 14:600–11 [Google Scholar]
  123. Vanneste J, Ormerod D, Theys G, Van Gool D, Van Camp B. 123.  et al. 2013. Towards high resolution membrane-based pharmaceutical separations. J. Chem. Technol. Biotechnol. 88:98–108 [Google Scholar]
  124. Kim JF, Székely G, Valtcheva IB, Livingston AG. 124.  2014. Increasing the sustainability of membrane processes through cascade approach and solvent recovery: pharmaceutical purification case study. Green Chem 16:133–45 [Google Scholar]
  125. Kim JF, Szekely G, Schaepertoens M, Valtcheva IB, Jimenez-Solomon MF, Livingston AG. 125.  2014. In situ solvent recovery by organic solvent nanofiltration. ACS Sustain. Chem. Eng. 2:2371–79 [Google Scholar]
  126. Schaepertoens M, Didaskalou C, Kim JF, Livingston AG, Szekely G. 126.  2016. Solvent recycle with imperfect membranes: a semi-continuous workaround for diafiltration. J. Membr. Sci. 514:646–58 [Google Scholar]
  127. Gutmann B, Cantillo D, Kappe CO. 127.  2015. Continuous-flow technology: a tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed. 54:6688–728 [Google Scholar]
  128. Siew WE, Livingston AG, Ates C, Merschaert A. 128.  2013. Continuous solute fractionation with membrane cascades: a high productivity alternative to diafiltration. Sep. Purif. Technol. 102:1–14 [Google Scholar]
  129. Lin JC-T, Livingston AG. 129.  2007. Nanofiltration membrane cascade for continuous solvent exchange. Chem. Eng. Sci. 62:2728–36 [Google Scholar]
  130. Siew WE, Livingston AG, Ates C, Merschaert A. 130.  2013. Molecular separation with an organic solvent nanofiltration cascade: augmenting membrane selectivity with process engineering. Chem. Eng. Sci. 90:299–310 [Google Scholar]
  131. Peeva L, Burgal JdS, Valtcheva I, Livingston AG. 131.  2014. Continuous purification of active pharmaceutical ingredients using multistage organic solvent nanofiltration membrane cascade. Chem. Eng. Sci. 116:183–94 [Google Scholar]
  132. Abejón R, Garea A, Irabien A. 132.  2014. Analysis and optimization of continuous organic solvent nanofiltration by membrane cascade for pharmaceutical separation. AIChE J 60:931–48 [Google Scholar]
  133. Abejón R, Garea A, Irabien A. 133.  2015. Organic solvent recovery and reuse in pharmaceutical purification processes by nanofiltration membrane cascades. Chem. Eng. Trans. 43:1057–62 [Google Scholar]
  134. Micovic J, Werth K, Lutze P. 134.  2014. Hybrid separations combining distillation and organic solvent nanofiltration for separation of wide boiling mixtures. Chem. Eng. Res. Des. 92:2131–47 [Google Scholar]
  135. Schmidt P, Bednarz EL, Lutze P, Górak A. 135.  2014. Characterisation of organic solvent nanofiltration membranes in multi-component mixtures: process design workflow for utilising targeted solvent modifications. Chem. Eng. Sci. 115:115–26 [Google Scholar]
  136. White LS, Wildemuth CR. 136.  2006. Aromatics enrichment in refinery streams using hyperfiltration. Ind. Eng. Chem. Res. 45:9136–43 [Google Scholar]
  137. Lutze P, Gorak A. 137.  2013. Reactive and membrane-assisted distillation: recent developments and perspective. Chem. Eng. Res. Des. 91:1978–97 [Google Scholar]
  138. Ghazali NF, Ferreira FC, White AJP, Livingston AG. 138.  2006. Enantiomer separation by enantioselective inclusion complexation-organic solvent nanofiltration. Tetrahedron: Asymmetry 17:1846–52 [Google Scholar]
  139. Ferguson S, Ortner F, Quon J, Peeva L, Livingston A. 139.  et al. 2014. Use of continuous MSMPR crystallization with integrated nanofiltration membrane recycle for enhanced yield and purity in API crystallization. Cryst. Growth Des. 14:617–27 [Google Scholar]
  140. Rundquist EM, Pink CJ, Livingston AG. 140.  2012. Organic solvent nanofiltration: a potential alternative to distillation for solvent recovery from crystallisation mother liquors. Green Chem 14:2197–205 [Google Scholar]
  141. Nimmig S, Kaspereit M. 141.  2013. Continuous production of single enantiomers at high yields by coupling single column chromatography, racemization, and nanofiltration. Chem. Eng. Process. Process Intensif. 67:89–98 [Google Scholar]
  142. Rundquist E, Pink C, Vilminot E, Livingston A. 142.  2012. Facilitating the use of counter-current chromatography in pharmaceutical purification through use of organic solvent nanofiltration. J. Chromatogr. A 1229:156–63 [Google Scholar]
  143. Pink CJ, Wong H-t, Ferreira FC, Livingston AG. 143.  2008. Organic solvent nanofiltration and adsorbents; a hybrid approach to achieve ultra low palladium contamination of post coupling reaction products. Org. Process Res. Dev. 12:589–95 [Google Scholar]
  144. Székely G, Bandarra J, Heggie W, Sellergren B, Ferreira FC. 144.  2012. A hybrid approach to reach stringent low genotoxic impurity contents in active pharmaceutical ingredients: combining molecularly imprinted polymers and organic solvent nanofiltration for removal of 1,3-diisopropylurea. Sep. Purif. Technol. 86:79–87 [Google Scholar]
  145. Boam A, Rocha I, Koleva V, Bouwhuis Y, Kobus A. 145.  2014. OSN (organic solvent nanofiltration): a new technology for hybrid processes with solvent extraction Presented at Int. Solv. Extr. Conf. , 20th. Würzburg: [Google Scholar]
  146. Wijmans JG. 146.  2003. Letter to the editor. J. Membr. Sci. 220:1–3 [Google Scholar]
  147. Marchetti P, Livingston AG. 147.  2015. Predictive membrane transport models for organic solvent nanofiltration: How complex do we need to be?. J. Membr. Sci. 476:530–53 [Google Scholar]
  148. Wijmans JG, Baker RW. 148.  1995. The solution-diffusion model: a review. J. Membr. Sci. 107:1–21 [Google Scholar]
  149. Robeson LM. 149.  2008. The upper bound revisited. J. Membr. Sci. 320:390–400 [Google Scholar]
  150. Volkov AV, Tsarkov SE, Gokzhaev MB, Bondarenko GN, Legkov SA. 150.  et al. 2012. Nanofiltration and sorption of organic solvents in poly(1-trimethylsilyl-1-propyne) samples of different microstructures. Pet. Chem. 52:598–608 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060816-101325
Loading
/content/journals/10.1146/annurev-chembioeng-060816-101325
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error