Future energy systems will be determined by the increasing relevance of solar and wind energy. Crude oil and gas prices are expected to increase in the long run, and penalties for CO emissions will become a relevant economic factor. Solar- and wind-powered electricity will become significantly cheaper, such that hydrogen produced from electrolysis will be competitively priced against hydrogen manufactured from natural gas. However, to handle the unsteadiness of system input from fluctuating energy sources, energy storage technologies that cover the full scale of power (in megawatts) and energy storage amounts (in megawatt hours) are required. Hydrogen, in particular, is a promising secondary energy vector for storing, transporting, and distributing large and very large amounts of energy at the gigawatt-hour and terawatt-hour scales. However, we also discuss energy storage at the 120–200-kWh scale, for example, for onboard hydrogen storage in fuel cell vehicles using compressed hydrogen storage. This article focuses on the characteristics and development potential of hydrogen storage technologies in light of such a changing energy system and its related challenges. Technological factors that influence the dynamics, flexibility, and operating costs of unsteady operation are therefore highlighted in particular. Moreover, the potential for using renewable hydrogen in the mobility sector, industrial production, and the heat market is discussed, as this potential may determine to a significant extent the future economic value of hydrogen storage technology as it applies to other industries. This evaluation elucidates known and well-established options for hydrogen storage and may guide the development and direction of newer, less developed technologies.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Panwar NL, Kaushik SC, Kothari S. 1.  2011. Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15:1513–24 [Google Scholar]
  2. 2. Bundesministerium für Wirtschaft und Technologie. 2015. Die Energiewende zum Erfolg führen. http://www.bmwi.de/DE/Themen/Energie/energiewende.html
  3. Smeets F, Vaes J, Zhang D, Zeng K, Tjarks G. 3.  et al. 2016. H2 from electricity. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology D Stolten, B Emonts 253–390 Weinheim, Ger.: Wiley-VCH [Google Scholar]
  4. Tremel A, Wasserscheid P, Baldauf M, Hammer T. 4.  2015. Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis. Int. J. Hydrogen Energy 40:11457–64 [Google Scholar]
  5. Kodama T, Gokon N. 5.  2007. Thermochemical cycles for high-temperature solar hydrogen production. Chem. Rev. 107:4048–77 [Google Scholar]
  6. Villacampa JI, Royo C, Romeo E, Montoya JA, Del Angel P, Monzón A. 6.  2003. Catalytic decomposition of methane over Ni-Al2O3 coprecipitated catalysts: reaction and regeneration studies. Appl. Catal. 252:363–83 [Google Scholar]
  7. Grote J-P, Zeradjanin AR, Cherevko S, Savan A, Breitbach B. 7.  et al. 2016. Screening of material libraries for electrochemical CO2 reduction catalysts – improving selectivity of Cu by mixing with Co. J. Catal. 343:248–56 [Google Scholar]
  8. Jones LW. 8.  1976. Perspectives on the evolution into a hydrogen economy. Energy Commun 2:6573–84 [Google Scholar]
  9. Bockris JOM. 9.  2013. The hydrogen economy: its history. Int. J. Hydrogen Energy 38:62579–88 [Google Scholar]
  10. Stolten D, Emonts B. 10.  2016. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology, 2 Weinheim, Ger.: Wiley-VCH [Google Scholar]
  11. Töpler J, Lehman J. 11. , eds. 2014. Hydrogen and Fuel Cell: Technologies and Market Perspectives Berlin: Springer [Google Scholar]
  12. McWhorter S, Ordaz G. 12.  2013. Onboard Type IV Compressed Hydrogen Storage Systems—Current Performance and Cost Record no. 13010 Washington, DC: Dep. Energy https://www.hydrogen.energy.gov/pdfs/13010_onboard_storage_performance_cost.pdf [Google Scholar]
  13. 13. EUR-LEX. 2009. Regulation (EC) No 79/2009 of the European Parliament and of the Council of 14 January 2009 on type-approval of hydrogen-powered motor vehicles, and amending Directive 2007/46/EC. Official J. Eur. Union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R0079&from=EN [Google Scholar]
  14. Zhevago N, Glebov V. 14.  2007. Hydrogen storage in capillary arrays. Energy Convers. Manag. 48:1554–59 [Google Scholar]
  15. Zhevago N, Denisov E, Glebov V. 15.  2010. Experimental investigation of hydrogen storage in capillary arrays. Int. J. Hydrogen Energy 35:169–75 [Google Scholar]
  16. Kohli DK, Khardekar RK, Singh R, Gupta PK. 16.  2008. Glass micro-container based hydrogen storage scheme. Int. J. Hydrogen Energy 33:417–22 [Google Scholar]
  17. Noack F, Burggraf F, Hosseiny SS, Lettenmeier P, Kold S. 17.  et al. 2014. Studie über die Planung einer Demonstrationsanlage zur Wasserstoff-Kraftstoffgewinnung durch Elektrolyse mit Zwischenspeicherung in Salzkavernen unter Druck Stuttgart, Ger.: DLR [Google Scholar]
  18. Prieur A, Favreau D, Vinot S. 18.  2009. Well-to-tank technology pathways and carbon balance Deliverable 4.3, Doc. no. R2H4003PU.2. Roads2HyCom. http://s3.amazonaws.com/zanran_storage/www.roads2hy.com/ContentPages/2498021066.pdf [Google Scholar]
  19. Lord A, Kobos P, Borns D. 19.  2014. Geologic storage of hydrogen: scaling up to meet city transportation demands. Int. J. Hydrogen Energy 39:15570–82 [Google Scholar]
  20. Adler R, Siebert G. 20.  2006. Verfahren und Vorrichtung zum Verdichten eines gasförmigen Mediums Patent No. WO2006034748A1 [Google Scholar]
  21. Mayer M. 21.  2014. From prototype to serial production, manufacturing hydrogen filling stations Presented at 9th Int. A3PS Conf. Eco-Mobility, Oct. 20–21, Vienna. http://www.a3ps.at/sites/default/files/conferences/2014/papers/01_linde_mayer.pdf [Google Scholar]
  22. Dicken C. 22.  2006. Temperature distribution within a compressed gas cylinder during filling Master Thesis, Univ British Columbia: [Google Scholar]
  23. Hedman B. 23.  2008. Waste energy recovery opportunities for interstate natural gas pipelines http://www.ingaa.org/file.aspx?id=6210 [Google Scholar]
  24. Flynn TM. 24.  1997. Cryogenic Engineering New York: Dekker [Google Scholar]
  25. Barron RF. 25.  1985. Cryogenic Systems Oxford, UK: Oxford Univ. Press, 2nd ed.. [Google Scholar]
  26. Timmerhaus K, Flynn T. 26.  1989. Cryogenic Process Engineering New York: Plenum [Google Scholar]
  27. Peschka W. 27.  1992. Liquid Hydrogen - Fuel of the Future Vienna: Springer-Verlag [Google Scholar]
  28. Kesten M, Fieseler H. 28.  1994. Double walled insulated container Patent application DE4418745 A1 [Google Scholar]
  29. 29. BMW Group. 2008. The new generation of hydrogen storage tanks: lighter and more compact. Innovative design of liquid hydrogen tanks enables better integration into vehicles. Press Release, June 3. https://www.press.bmwgroup.com/united-kingdom/article/detail/T0015295EN_GB [Google Scholar]
  30. Simon AJ. 30.  2016. Cryo-compressed pathway analysis Presented at 2016 Annual Merit Review Proceedings, June 6–10 Washington, DC: https://www.hydrogen.energy.gov/pdfs/review16/pd134_simon_2016_o.pdf [Google Scholar]
  31. Kropshot RH, Birmingham BW, Mann DB. 31.  1968. Technology of Liquid Helium Washington, DC: US Dep. Comm. [Google Scholar]
  32. Alekseev A. 32.  2016. Hydrogen liquefaction. Hydrogen Science and Engineering: Materials, Processes, Systems and Technology D Stolten, B Emonts 2733–61 Weinheim, Ger.: Wiley-VCH [Google Scholar]
  33. Lemmon E, Huber M, McLinden M. 33.  2013. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties REFPROP, Version 9.1 Gaithersburg, MD: Natl. Inst. Stand. Technol. [Google Scholar]
  34. Leachman J, Jacobsen R, Penoncello S, Lemmon E. 34.  2009. Fundamental EOS for parahydrogen, normal hydrogen and orthohydrogen. J. Phys. Chem. Ref. Data 38:3721–48 [Google Scholar]
  35. Cardella U, Donaubauer P, Klein H, Decker L. 35.  2015. Katalytische ortho-para Wasserstoff Umwandlung in Plattentauscher Presented at Deutsche Kälte- und Klimatagung (DKV), Nov 18–20 Dresden, Ger.: [Google Scholar]
  36. Krasae-in S, Stang J, Nekså P. 36.  2009. Development of large-scale hydrogen liquefaction processes from 1898 to 2009. Int. J. Hydrogen Energy 35:4524–33 [Google Scholar]
  37. Ohlig K, Decker L. 37.  2014. The latest developments and outlook for hydrogen liquefaction technology. AIP Conf. Proc. 1573:1311–17 [Google Scholar]
  38. Bracha M, Decker L. 38.  2008. Grosstechnische Wasserstoffverflüssigung in Leuna. DKV-Tagungsbericht 35:455–60 [Google Scholar]
  39. Bischoff S, Decker L. 39.  2010. First operating results of a dynamic gas bearing turbine in an industrial hydrogen liquefier. AIP Conf. Proc. 1218:887–94 [Google Scholar]
  40. Cardella U, Decker L, Klein H. 40.  2016. Economically viable large scale hydrogen liquefaction Presented at Proc. 26th Int. Cryogen. Eng. Conf. Int. Cryogen. Mater. Conf. (ICEC26-ICMC 2016), Aug. 3. Delhi, India. http://icec26-icmc2016.org/downloads/8-O-1A-1.pdf [Google Scholar]
  41. 41. Fuel Cells Hydrogen Joint Undertaking (FCH JU). 2013. IDEALHY: integrated design for efficient advanced liquefaction of hydrogen. Proj. Ref. 278177. http://www.fch.europa.eu/project/integrated-design-efficient-advanced-liquefaction-hydrogen
  42. Ohira K. 42.  2004. A summary of liquid hydrogen and cryogenic technologies in Japan's WE-NET Project. AIP Conf. Proc. 710:27–34 [Google Scholar]
  43. Quack H. 43.  2001. Conceptual design of a high efficiency large capacity hydrogen liquefier. AIP Conf. Proc. 613:255–63 [Google Scholar]
  44. Berstad D, Stang J, Nekså P. 44.  2010. Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling. Int. J. Hydrogen Energy 35:104512–23 [Google Scholar]
  45. Cardella U, Decker L, Klein H. 45.  2015. Wirtschaftlich umsetzbare Wasserstoff Großverflüssiger Presented at Deutsche Kälte und Klimatagung (DKV), Nov 18–20 Dresden. Ger.: [Google Scholar]
  46. Black J. 46.  2013. Cost and Performance Baseline for Fossil Energy Plants Revision 2a, Sep. 2013 Morgantown, VA: Natl. Energy Technol. Lab., US Dep. Energy https://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/OE/BitBase_FinRep_Rev2a-3_20130919_1.pdf [Google Scholar]
  47. 47. US Dep. Energy. 2008. Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications Washington, DC: U.S. Dep. Energy Hydrogen Prog., US Dep. Energy https://www.hydrogen.energy.gov/pdfs/cryocomp_report.pdf [Google Scholar]
  48. Kunze K, Kirchner O. 48.  2012. Cryo-compressed hydrogen storage Presented at Cryogenic Cluster Day, Sep. 28 Oxford, UK: https://www.stfc.ac.uk/stfc/cache/file/F45B669C-73BF-495B-B843DCDF50E8B5A5.pdf [Google Scholar]
  49. Ahluwalia R, Hua T, Peng J, Lasher S, McKenne K, Sinha J. 49.  2010. Technical assessment of cryo-compressed hydrogen storage tank system for automotive applications. Int. J. Hydrogen Energy 35:4171–84 [Google Scholar]
  50. Yürüm Y, Taralp A, Nejat Veziroglu T. 50.  2009. Storage of hydrogen in nanostructured carbon materials. Int. J. Hydrogen Energy 3:3784–98 [Google Scholar]
  51. Vos WL, Finger LW, Russel JH, Ho-Kwang M, Hemley RJ, Mao H-K. 51.  1993. Novel H2-H2O clathrates at high pressure. Phys. Rev. Lett. 71:193150–53 [Google Scholar]
  52. Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA. 52.  et al. 2004. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306:5695469–71 [Google Scholar]
  53. Veluswamy HP, Kumar R, Linga P. 53.  2014. Hydrogen storage in clathrate hydrates: current state of the art and future directions. Appl. Energy 122:112–32 [Google Scholar]
  54. Sakintuna B, Lamari-Darkrim F, Hirscher M. 54.  2007. Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32:91121–40 [Google Scholar]
  55. van den Berg AWC, Arean CO. 55.  2008. Materials for hydrogen storage: current research trends and perspectives. Chem. Commun. 6:668–81 [Google Scholar]
  56. Pickering L. 56.  2014. Ti-V-Mn based metal hydrides for hydrogen storage and compression applications PhD Thesis, Univ Birmingham, UK: [Google Scholar]
  57. Jain IP, Lal C, Jain A. 57.  2010. Hydrogen storage in Mg: a most promising material. Int. J. Hydrogen Energy 35:105133–44 [Google Scholar]
  58. Souahlia A, Dhaou H, Mellouli S, Askri F, Jemni A, Ben Nasrallah S. 58.  2014. Experimental study of metal hydride-based hydrogen storage tank at constant supply pressure. Int. J. Hydrogen Energy 39:147365–72 [Google Scholar]
  59. Chaise A, de Rango P, Marty P, Fruchart D. 59.  2010. Experimental and numerical study of a magnesium hydride tank. Int. J. Hydrogen Energy 35:126311–22 [Google Scholar]
  60. Zaluska A, Zaluski L, Ström-Olsen JO. 60.  1999. Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288:1–2217–25 [Google Scholar]
  61. Norberg NS, Arthur TS, Fredrick SJ, Prieto AL. 61.  2011. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution. J. Am. Chem. Soc. 133:2810679–81 [Google Scholar]
  62. Johnson SR, Anderson PA, Edwards PP, Gameson I, Prendergast JW. 62.  et al. 2005. Chemical activation of MgH2; a new route to superior hydrogen storage materials. Chem. Commun. 22:2823–25 [Google Scholar]
  63. Li J, Fan P, Fang ZZ, Zhou C. 63.  2014. Kinetics of isothermal hydrogenation of magnesium with TiH2 additive. Int. J. Hydrogen Energy 39:147373–81 [Google Scholar]
  64. Liu Y, Rzhevskii A, Rigos S, Xie WY, Zhang SB. 64.  et al. 2013. A study of Parylene coated Pd/Mg nanoblades for reversible hydrogen storage. Int. J. Hydrogen Energy 38:125019–29 [Google Scholar]
  65. Garrier S, Delhomme B, de Rango P, Marty P, Fruchart D, Miraglia S. 65.  2013. A new MgH2 tank concept using a phase-change material to store the heat of reaction. Int. J. Hydrogen Energy 38:239766–71 [Google Scholar]
  66. Delhomme B, Lanzini A, Ortigoza-Villalba GA, Nachev S, de Rango P. 66.  et al. 2013. Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank. Int. J. Hydrogen Energy 38:114740–47 [Google Scholar]
  67. Pasini JM, Corgnale C, van Hassel BA, Motyka T, Kumar S, Simmons KL. 67.  2013. Metal hydride material requirements for automotive hydrogen storage systems. Int. J. Hydrogen Energy 38:239755–65 [Google Scholar]
  68. Černý R, Severa G, Ravnsbæk DB, Filinchuk Y, D'Anna V. 68.  et al. 2009. NaSc(BH4)4: a novel scandium-based borohydride. J. Phys. Chem. C 114:21357–64 [Google Scholar]
  69. Ley MB, Jepsen LH, Lee Y-S, Cho YW, Bellosta von Colbe JM. 69.  et al. 2014. Complex hydrides for hydrogen storage—new perspectives. Mater. Today 17:3122–28 [Google Scholar]
  70. Bogdanović B, Schwickardi M. 70.  1997. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloy. Compd. 253–54:1–9 [Google Scholar]
  71. Orimo S-I, Nakamori Y, Eliseo JR, Züttel A, Jensen CM. 71.  2007. Complex hydrides for hydrogen storage. Chem. Rev. 107:104111–32 [Google Scholar]
  72. Ahluwalia RK. 72.  2007. Sodium alanate hydrogen storage system for automotive fuel cells. Int. J. Hydrogen Energy 32:91251–61 [Google Scholar]
  73. Jess A, Wasserscheid P. 73.  2013. Chemical Technology: An Integral Textbook Weinheim, Ger.: Wiley-VCH [Google Scholar]
  74. Lan R, Irvine JTS, Tao S. 74.  2012. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int. J. Hydrogen Energy 37:21482–94 [Google Scholar]
  75. Sedlacek R. 75.  2009. Untertage-Gasspeicherung in Deutschland. Erdöl Erdgas Kohle 125:11412–26 [Google Scholar]
  76. 76. LBEG. 2014. Erdöl und Erdgas in der Bundesrepublik Deutschland 2013 Hannover, Ger.: Landesamt Bergbau, Energ. Geol. [Google Scholar]
  77. Lunde PJ, Kester FL. 77.  1973. Rates of methane formation from carbon dioxide and hydrogen over a ruthenium catalyst. J. Catal. 30:3423–29 [Google Scholar]
  78. Ausfelder F, Bazzanella A. 78.  2008. Verwertung und Speicherung von CO2 Frankfurt: DECHEMA e.V https://dechema.de/dechema_media/diskussionco2-view_image-1-called_by-dechema-original_site-dechema_eV-original_page-124930.pdf [Google Scholar]
  79. Federsel C, Jackstell R, Beller M. 79.  2010. Moderne Katalysatoren zur Hydrierung von Kohlendioxid. Angew. Chem. Int. Ed. 122:366392–95 [Google Scholar]
  80. Mohseni F, Görling M, Alvfors P. 80.  2013. The competitiveness of synthetic natural gas as a propellant in the Swedish fuel market. Energy Policy 52:810–18 [Google Scholar]
  81. Schoder M, Armbruster U, Martin A. 81.  2013. Heterogen katalysierte Hydrierung von Kohlendioxid zu Methan unter erhöhten Drücken. Chem. Ing. Tech. 85:3344–52 [Google Scholar]
  82. Mohseni F, Magnusson M, Görling M, Alvfors P. 82.  2012. Biogas from renewable electricity—increasing a climate neutral fuel supply. Appl. Energy 90:111–16 [Google Scholar]
  83. Schinarakis K. 83.  2015. Power-to-Gas: Wind und Sonne in Erdgas speichern Karlsruhe, Ger.: Karlsruher Inst. Technol http://www.kit.edu/kit/pi_2014_14950.php [Google Scholar]
  84. Tremel A, Wasserscheid P, Baldauf M, Hammer T. 84.  2015. Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis. Int. J. Hydrogen Energy 40:11457–64 [Google Scholar]
  85. Abbas HF, Wan Daud WMA. 85.  2010. Hydrogen production by methane decomposition: a review. Int. J. Hydrogen Energy 35:31160–90 [Google Scholar]
  86. Olah GA. 86.  2005. Beyond oil and gas: the methanol economy. Angew. Chem. Int. Ed. 44:182636–39 [Google Scholar]
  87. Argyropoulos P, Scott K, Taama WM. 87.  1999. Carbon dioxide evolution patterns in direct methanol fuel cells. Electrochim. Acta 44:203575–84 [Google Scholar]
  88. Shinoda S, Itagaki H, Saito Y. 88.  1985. Dehydrogenation of methanol in the liquid phase with a homogeneous ruthenium complex catalyst. J. Chem. Soc. Chem. Commun. 13:860–61 [Google Scholar]
  89. Loges B, Boddien A, Gärtner F, Junge H, Beller M. 89.  2010. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials. Top. Catal. 53:13–14902–14 [Google Scholar]
  90. Park J-Y, Seo Y, Kang S, You D, Cho H, Na Y. 90.  2012. Operational characteristics of the direct methanol fuel cell stack on fuel and energy efficiency with performance and stability. Int. J. Hydrogen Energy 37:75946–57 [Google Scholar]
  91. Sundarrajan S, Allakhverdiev SI, Ramakrishna S. 91.  2012. Progress and perspectives in micro direct methanol fuel cell. Int. J. Hydrogen Energy 37:108765–86 [Google Scholar]
  92. Kundu A, Jang JH, Gil JH, Jung CR, Lee HR. 92.  et al. 2007. Micro-fuel cells—current development and applications. J. Power Sources 170:167–78 [Google Scholar]
  93. Yong ST, Ooi CW, Chai SP, Wu XS. 93.  2013. Review of methanol reforming-Cu-based catalysts, surface reaction mechanisms, and reaction schemes. Int. J. Hydrogen Energy 38:229541–52 [Google Scholar]
  94. Kusche M, Enzenberger F, Bajus S, Niedermeyer H, Bösmann A. 94.  et al. 2013. Enhanced activity and selectivity in catalytic methanol steam reforming by basic alkali metal salt coatings. Angew. Chem. Int. Ed. 52:195028–32 [Google Scholar]
  95. Boddien A, Loges B, Junge H, Beller M. 95.  2008. Hydrogen generation at ambient conditions: application in fuel cells. ChemSusChem 1:8–9751–58 [Google Scholar]
  96. Boddien A, Loges B, Junge H, Gärtner F, Noyes JR, Beller M. 96.  2009. Continuous hydrogen generation from formic acid: highly active and stable ruthenium catalysts. Adv. Synth. Catal. 351:14–152517–20 [Google Scholar]
  97. Joó F. 97.  2008. Breakthroughs in hydrogen storage—formic acid as a sustainable storage material for hydrogen. ChemSusChem 1:10805–8 [Google Scholar]
  98. Fellay C, Dyson PJ, Laurenczy G. 98.  2008. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem. Int. Ed. 120:214030–32 [Google Scholar]
  99. Rohmann K, Kothe J, Haenel MW, Englert U, Hölscher M, Leitner W. 99.  2016. Hydrogenation of CO2 to formic acid with a highly active ruthenium acriphos complex in DMSO and DMSO/water. Angew. Chem. Int. Ed. 55:318966–69 [Google Scholar]
  100. Wesselbaum S, Hintermair U, Leitner W. 100.  2012. Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO2 process with immobilized catalyst and base. Angew. Chem. Int. Ed. 51:8585 [Google Scholar]
  101. Schmidt I, Müller K, Arlt W. 101.  2014. Evaluation of formic-acid-based hydrogen storage technologies. Energy Fuels 28:106540–44 [Google Scholar]
  102. Yadav M, Xu Q. 102.  2012. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 5:129698–725 [Google Scholar]
  103. Porosoff MD, Yan B, Chen JG. 103.  2016. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 9:162–73 [Google Scholar]
  104. Albert J, Jess A, Kern A, Pohlmann F, Glowienka K, Wasserscheid P. 104.  2016. Formic acid-based Fischer-Tropsch synthesis for green fuel production from wet waste biomass and renewable excess energy. ACS Sustain. Chem. Eng. 4:95078–86 [Google Scholar]
  105. Preuster P, Papp C, Wasserscheid P. 105.  2017. Liquid organic hydrogen carriers (LOHCs) - towards a hydrogen-free hydrogen. Acc. Chem. Res. 50:174–85 [Google Scholar]
  106. von Wild J, Friedrich T, Cooper AC, Toseland B, Muraro G. 106.  et al. 2010. Liquid organic hydrogen carriers (LOHC): an auspicious alternative to conventional hydrogen storage technologies Presented at 18th World Hydrogen Energy Conf., May 16–21 Essen, Ger: http://juser.fz-juelich.de/record/135562/files/HS2b_2_von-Wild.pdf [Google Scholar]
  107. Ichikawa M. 107.  2008. Organic liquid carriers for hydrogen storage. Solid-State Hydrogen Storage G Walker 500–32 Cambridge, UK: Woodhead Publishing [Google Scholar]
  108. Müller K, Völkl J, Arlt W. 108.  2013. Thermodynamic evaluation of potential organic hydrogen carriers. Energy Technol 1:120–24 [Google Scholar]
  109. Taube M, Rippin DWT, Cresswell DL, Knecht W. 109.  1983. A system of hydrogen-powered vehicles with liquid organic hydrides. Int. J. Hydrogen Energy 8:213–25 [Google Scholar]
  110. Taube M, Rippin D, Knecht W, Hakimifard D, Milisavljevic B, Grünenfelder N. 110.  1985. A prototype truck powered by hydrogen from organic liquid hydrides. Int. J. Hydrogen Energy 10:595–99 [Google Scholar]
  111. Teichmann D, Arlt W, Wasserscheid P. 111.  2012. Stabile Energieversorgung trotz unsteter Erzeugung. Solarzeitalter 1:170–77 [Google Scholar]
  112. Teichmann D, Arlt W, Wasserscheid P. 112.  2012. Flüssige Wasserstoffträger für ein Nachhaltiges Energiesystem. ATZ – Automob. Z. 114:5430–34 [Google Scholar]
  113. Zenner M, Teichmann D, Di Pierro M, Dungs J. 113.  2012. Flüssige Wasserstoffträger als Potenzieller Pkw-Kraftstoff. ATZ – Automob. Z. 114:12940–47 [Google Scholar]
  114. Newson E, Haueter T, Hottinger P, von Roth F, Scherer GWH, Schucan TH. 114.  1998. Seasonal storage of hydrogen in stationary systems with liquid organic hydrides. Int. J. Hydrogen Energy 23:10905–9 [Google Scholar]
  115. Pradhan AU, Shukla A, Pande JV, Karmarkar S, Biniwale RB. 115.  2011. A feasibility analysis of hydrogen delivery system using liquid organic hydrides. Int. J. Hydrogen Energy 36:1680–88 [Google Scholar]
  116. Shimura M, Okada Y. 116.  2013. Development of large-scale H2 storage and transportation technology with liquid organic hydrogen carrier (LOHC) Presented at 21st Joint GCC Japan Environ. Symp., Feb. 5–6 Doha, Qatar: [Google Scholar]
  117. Shukla A, Karmakar S, Biniwale RB. 117.  2012. Hydrogen delivery through liquid organic hydrides: considerations for a potential technology. Int. J. Hydrogen Energy 37:43719–26 [Google Scholar]
  118. Moores A, Poyatos M, Luo Y, Crabtree RH. 118.  2006. Catalysed low temperature H2 release from nitrogen heterocycles. New J. Chem. 30:111675–78 [Google Scholar]
  119. Schwarz DE, Cameron TM, Hay PJ, Scott BL, Tumas W, Thorn DL. 119.  2005. Hydrogen evolution from organic “hydrides. ”. Chem. Commun. 47:5919–21 [Google Scholar]
  120. Crabtree RH. 120.  2008. Hydrogen storage in liquid organic heterocycles. Energy Environ. Sci. 1:1134–38 [Google Scholar]
  121. Clot E, Eisenstein O, Crabtree RH. 121.  2007. Computational structure-activity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chem. Commun. 22:2231–33 [Google Scholar]
  122. Cui Y, Kwok S, Bucholtz A, Davis B, Whitney RA, Jessop PG. 122.  2008. The effect of substitution on the utility of piperidines and octahydroindoles for reversible hydrogen storage. New J. Chem. 32:61027–37 [Google Scholar]
  123. Pez GP, Scott AR, Cooper AC, Cheng H, Wilhelm FC, Abdourazak AH. 123.  2008. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates US Patent No. 20050002857 A1 [Google Scholar]
  124. Grebenyuk SA, Popov AF. 124.  1998. Energetic and structural characteristics of N-substituted carbazoles and diphenylamines as components of charge transfer complexes. Theor. Exp. Chem. 34:269–71 [Google Scholar]
  125. Brückner N, Obesser K, Bösmann A, Teichmann D, Arlt W. 125.  et al. 2014. Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems. ChemSusChem 7:1229–35 [Google Scholar]
  126. Markiewicz M, Zhang Y-Q, Bösmann A, Brückner N, Thöming J. 126.  et al. 2015. Environmental and health impact assessment of liquid organic hydrogen carrier (LOHC) systems—challenges and preliminary results. Energy Environ. Sci. 8:31035–45 [Google Scholar]
  127. Völter J, Lange B, Kuhn W. 127.  1965. Vergleichende Hydrierung von Alkylaromaten an einem Nickelkatalysator. Z. Anorg. Allg. Chem. 340:5–6253–60 [Google Scholar]
  128. Schildhauer T, Newson E, Müller S. 128.  2001. The equilibrium constant for the methylcyclohexane–toluene system. J. Catal. 198:2355–58 [Google Scholar]
  129. Okada Y, Sasaki E, Watanabe E, Hyodo S, Nishijima H. 129.  2006. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method. Int. J. Hydrogen Energy 31:101348–56 [Google Scholar]
  130. Hodoshima S, Arai H, Takaiwa S, Saito Y. 130.  2003. Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle. Int. J. Hydrogen Energy 28:111255–62 [Google Scholar]
  131. 131. VDI-Ges. Verfahrenstechnik Chemieingenieurwesen. 2006. Stoffwerte und Zustandsgrößen VDI-Wärmeatlas Dd1–Dd64 Heidelberg, Ger: Springer-Verlag, 10th ed.. [Google Scholar]
  132. Müller K, Stark K, Emel'yanenko VN, Varfolomeev MA, Zaitsau DH. 132.  et al. 2015. Liquid organic hydrogen carriers: thermophysical and thermochemical studies of benzyl- and dibenzyl-toluene derivatives. Ind. Eng. Chem. Res. 54:327967–76 [Google Scholar]
  133. Biniwale RB, Rayalu S, Devotta S, Ichikawa M. 133.  2008. Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int. J. Hydrogen Energy 33:1360–65 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error